

Radar as Signal of Opportunity, A New Paradigm for Wireless Communications

Moeness Amin

Center for Advanced Communications Villanova University

> London, UK, SSPD December 2017

RF Co-Existence

The RF spectrum is getting increasingly crowded

Motivations

Due to constantly increasing demand on bandwidth, defense applications are losing spectrum to commercial communications.

Ongoing research is developing multi-function methods to share aperture and spectrum between radar, electronic warfare, and military communications.

Moving away from independent systems and dedicated components.

Co-Existence Approaches

• Cohabitation: Address the interference which separately operated systems could cause to one another

 Co-Design: Involves cooperative control within the same system.

• A primary goal of radar is to efficiently track and detect targets, whereas that of communications is to maximize information transfer reliably

Signal vs. System of Opportunity

SIGNAL OF OPPORTUNITY

Using someone else's signal for a different function/task/mission <u>It is not your transmitter, but it is your own receiver</u>

<u>SYSTEM</u> OF OPPORTUNITY

Using someone else's system for a different function/task/ mission

You are a "Guest" on the transmitter, but it is your own receiver

CAC Center for Advanced Communications Signal of Opportunity- Passive Radar

System of Opportunity

Communications dictates

- Array Configuration
- Beamformer
- Carrier frequency
- Frequency bandwidth
- Signal waveform
- Power
- Modulation
- Antennas

Radar Receiver uses Communications as <u>Signals</u> of Opportunities

Radar dictates

- Beamformer,
- Array structure,
- Frequency bandwidth
- Signal waveform
- Power
- Antennas
- Coherent Processing Interval
- MIMO configuration

Communications Receiver uses Radar as <u>System</u> of Opportunity

Dual Function Radar Communications System (DFRC)

Primary: Radar Secondary: Communications

- Identical signals, same frequency and bandwidth, and a common antenna array are used for both radar and communication operations
- Radar function remains the same over the entire processing interval
- Secondary Communications Function:
 - \blacktriangleright Embeds *a* sequence of binary data b_1 , ..., b_K during each radar pulse
 - Should not disturb the primary function of the joint system

- Establishing dual system functionality, allowing radar to <u>house voice and data transmission and reception.</u>
- Developing novel signaling schemes for embedding information into the radar pulsed emissions, which, in most cases, is blind to the primary radar operation.
- Considering different transmit and receive antenna configurations, including MIMO radars, achieving high data rate communications by combining amplitude and phaseshift keying modulations with waveform-diversity, while satisfying an overall power constraint

Aperture Co-design

Sparse Arrays

• They change

Criteria SNR, SINR, DOA

 $a(\theta)$

MaxSINR Beamformers

Array Thinning **Antenna Selections** Array Reconfiguration

Changes Covariance Matrix Changes Eigenvalues/Vectors

SINR_{oi} max \mathbf{z} s.t. $\mathbf{1}_N^T \mathbf{z} = K$

 $0 \leq z \leq 1$

MaxSINR Beamformers

Multiple Beamformers

Different sets of weights, but the same optimum sparse array Use Capon beamformer for each

Single Beamformer

Analogous to multiple frequencies

Shared Aperture

• 2 Sources at SNR=0 dB, INR=20 dB

StreakglycooredateedSoourcess

SINR Comparison

	Joint opt.(Eq.(14))	Separate opt.(Eq.(17))
$SINR_{oA}, \phi_A = 93^o$	7.5068	9.2781
$SINR_{oB}, \phi_B = 91^o$	7.9369	9.3065
$SINR_{oA}, \phi_B = 135^o$	10.7526	10.7743
$SINR_{oB}, \phi_B = 50^o$	10.7426	10.7730

Co-Design -Same Antennas Shared Bandwidth

Embedding through modulation over fast time

- Using the radar signal, comprised of a radar pulse, as the carrier and the communications message as the <u>modulating</u> <u>signal</u>
- Communications receiver removes radar signal before demodulation
- Radar receiver may or may not remove communications signal before target detection

Co-Design -Same Antennas Shared Bandwidth

• Sample LFM and embed BFSK with reduced phase angle

College of Engineering

Co-Design -Same Antennas Shared Bandwidth

• Embedding MSK through modulation

Secrecy Rate Optimizations for DFRC

$$\begin{split} R_{c} &= \log \left| \mathbf{I} + (\mathbf{H}_{c}\mathbf{W}_{1}\mathbf{H}_{c}^{H}) \left(\frac{\mathbf{H}_{c}\mathbf{W}_{2}\mathbf{H}_{c}^{H}}{L_{m}} + \sigma_{c}^{2} \right)^{-1} \right| \\ R_{e} &= \log \left| \mathbf{I} + (\mathbf{H}_{e}\mathbf{W}_{1}\mathbf{H}_{e}^{H} \left(\frac{\mathbf{H}_{e}\mathbf{W}_{2}\mathbf{H}_{e}^{H}}{L_{m}} + \sigma_{e}^{2} \right)^{-1} \right| \\ SR &= \left[R_{c} - R_{e} \right]^{+} \\ \\ M \text{IMO Radar} \\ \end{split}$$

Ť

Embedding-Modulation Over Slow-Time

• A dictionary of 2^{K} orthogonal waveforms employed $\{b_{1}, \ldots, b_{K}\} \Leftrightarrow \mathsf{D}_{WD} = \{s_{1}(t), \ldots, s_{2^{K}}\}$

- Communication receiver detects the received waveform and decodes the corresponding binary information
- Limitations:
 - Low bit rate Symbol rate=Pulse rate

S. D. Blunt et. al., "Embedding information into radar emissions via waveform implementation," Int. Waveform Diversity and Design Conf., 2010.

High Data Rate Non-Fast-Time Modulations

• To embed K bits, a constellation of size 2^{K} is employed

$$\{b_1,\ldots,b_K\} \Leftrightarrow \mathsf{D}_{\mathrm{AM}} = \{\Delta_1,\ldots,\Delta_{2^K}\}$$

• Each symbol Δ_k , $k = 1, ..., 2^K$ is represented by a specific SLL

 Communication receiver detects the SLL and deciphers the associated symbol

J. Euziere et. al., "Dual function radar communication time-modulated array," Int. Radar Conf., 2014.

ASK Signaling

M=10, four sidelobe levels -20 dB, -25 dB, -30 dB, and -35 dB,

Switching beams is as fast as pulse repetition frequency

Amplitude Shift-Keying Based DFRC

Basic Idea:

Stationary main radar beam; variable SLLs

$$\begin{split} \min_{\mathbf{u}_k} \max_{\theta_i} & \left| e^{j\varphi(\theta_i)} - \mathbf{u}_k^H \mathbf{a}(\theta_i) \right|, \ \theta_i \in \mathbf{\Theta}, \ i = 1, \dots, I \\ \text{subject to} & \left| \mathbf{u}_k^H \mathbf{a}(\theta_p) \right| \le \varepsilon, \quad \theta_p \in \mathbf{\bar{\Theta}}, \ p = 1, \dots, P, \\ & \mathbf{u}_k^H \mathbf{a}(\theta_c) = \Delta_k, \end{split}$$

$$\min_{\mathbf{u}_k} \max_{\theta} \left| \mathbf{w}_0^H \mathbf{a}(\theta) - \mathbf{u}_k^H \mathbf{a}(\theta) \right|, \quad \forall \theta \in [-\pi, \pi]$$
$$\mathbf{u}_k^H \mathbf{a}(\theta_c) = \Delta_k.$$

A. Hassanien, M. Amin, Y. Zhang, F. Ahmad "Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity," *IEEE TSP*, Apr. 2016.

CAC Control for Advanced Communications Multiple Access Information Delivery

Number of beams increases with number of users

Sidelobe Signaling

 $= \alpha_{i}(\tau) \Delta_{k} \phi(t) + \eta(t;\tau)$

AM constellation of size $K = 2^Q$, denoted as $\mathbb{D}_{AM} = \{\Delta_1, \dots, \Delta_K\}$.

$$\Delta_1 > \Delta_2 > \ldots > \Delta_K$$

Transmitted signal $\mathbf{s}(t; \tau) = \mathbf{u}_k^* \phi(t)$

At communication receiver $y_{com}(t;\tau) = \alpha_{ch}(\tau) \left(\mathbf{u}_k^H \mathbf{a}(\theta_c) \right) \phi(t) + n(t;\tau),$

$$y_{\text{com}}(\tau) = \int_{T_p} y_{\text{com}}(t;\tau)\phi^*(t)dt = \alpha_{\text{ch}}(\tau)\Delta_k + n(\tau).$$

$$\hat{\Delta}(\tau) = \begin{cases} \Delta_1, & \eta_{\text{AM}}(\tau) \ge T_1, \\ \Delta_2, & T_2 \le \eta_{\text{AM}}(\tau) < T_1, \\ \vdots \\ \Delta_K, & \eta_{\text{AM}}(\tau) < T_{K-1}. \end{cases}$$
Communication receiver cannot be in the main beam

Beampattern Synthesis with Phase Control

$$\mathbf{v}_{k}, \ k = 1, \dots, K \qquad \Omega_{k} = \angle(\mathbf{v}_{k}^{H} \mathbf{a}(\theta_{c}), \qquad \mathbb{D}_{PM} = \{\Omega_{1}, \dots, \Omega_{K}\}$$
$$\min_{\mathbf{v}_{k}} \left\| \mathbf{w}_{0} - \mathbf{v}_{k} \right\| \text{ subject to } \mathbf{v}_{k}^{H} \mathbf{a}(\theta_{c}) = G_{0}e^{-j\Omega_{k}}, \quad k = 1, \dots, K,$$
$$G_{0} = \left| \mathbf{w}_{0}^{H} \mathbf{a}(\theta_{c}) \right|$$

Transmit Radiation Pattern Invariance

Start with a principal transmit beamforming weight vector

• Consider the polynomial *f*(*z*) of order 2*M*-2

First term

$$f(z) \triangleq \underbrace{(W_1 + W_2 z + W_3 z^2 + \dots + W_M z^{M-1})}_{\text{Second term}} \times \underbrace{(W_1^* + W_2^* z^{-1} + W_3^* z^{-2} + \dots + W_M^* z^{-M+1})}_{\text{Second term}}$$

• The transmit radiation pattern can be represented as

$$\left|\mathbf{w}^{H}\mathbf{a}(\theta)\right|^{2} = f\left(e^{-j\pi\sin(\theta)}\right)$$

• If r is a root of the first term, then $\frac{1}{r^*}$ is a root of the second term!

Transmit Radiation Pattern Invariance

• *f*(*z*) can be decomposed as

$$f(z) = \prod_{i=1}^{M-1} (z - r_i) \prod_{i=1}^{M-1} (z^{-1} - r_i^*)$$

• 2^{*M*-1} different combinations can be constructed!

$$\mathbf{W}_{\text{pop}} = \{\mathbf{w}, \mathbf{w}_1, \dots, \mathbf{w}_{2^{M-1}-1}\}$$

• All generated weight vectors have same transmit radiation pattern

$$\min_{\mathbf{v}_k \in \mathbf{W}} \left| \angle (\mathbf{v}_k^H \mathbf{a}(\theta_c) - \Omega_k \right|, \qquad k = 1, \dots, K.$$

Example-16 Element Array

Example

(a) Magnitude versus phase for 2^{15} weight vectors (red colored dots) and K = 4 chosen vectors (blue colored circles) towards the communication direction $\theta_c = -40^\circ$; (b) Magnitude versus phase for 2^{15} weight vectors (red colored dots) and K = 4 chosen vectors (blue colored circles) towards the communication direction $\theta_c = 10^\circ$.

Multi Waveform ASK Signaling

Decompose the radar signal into

 $\psi_1, \ldots, \psi_K : K$ orthogonal waveforms (subbands)

AC Multi Waveform ASK Signaling

Leaving the transmitter $\mathbf{s}_{ASK}(t;\tau) = \frac{1}{\sqrt{K_w}} \sum_{k=1}^{N_w} \left(b_k(\tau) \mathbf{u}_{L}^* + \bar{b}_k(\tau) \mathbf{u}_{H}^* \right) \psi_k(t),$

At the communications receiver

$$\begin{aligned} y_{\text{ASK}}(t;\tau) &= \frac{\alpha_{\text{ch}}}{\sqrt{K_w}} \sum_{k=1}^{K_w} \left(b_k(\tau) \mathbf{u}_{\text{L}}^H \mathbf{a}(\theta_c) + \bar{b}_k(\tau) \mathbf{u}_{\text{H}}^H \mathbf{a}(\theta_c) \right) \psi_k(t) + n(t;\tau) \\ &= \frac{\alpha_{\text{ch}}}{\sqrt{K_w}} \sum_{k=1}^{K_w} \left(b_k(\tau) \Delta_{\text{L}} + \bar{b}_k(\tau) \Delta_{\text{H}} \right) \psi_k(t) + n(t;\tau). \end{aligned}$$
$$\begin{aligned} y_k(\tau) &= \int_{T_p} y_{\text{ASK}}(t;\tau) \psi_k^*(t) dt = \begin{cases} \frac{\alpha_{\text{ch}}}{\sqrt{K_w}} \Delta_{\text{H}} + n_k, & b_k(\tau) = 0, \\ \frac{\alpha_{\text{ch}}}{\sqrt{K_w}} \Delta_{\text{L}} + n_k, & b_k(\tau) = 1, \end{cases} \qquad \hat{b}_k(\tau) = \begin{cases} 0, \\ 1, \end{cases} T_0 \end{aligned}$$

Example

A Dual-Function MIMO Radar-Communications System

- A new method for information embedding into the emission of MIMO radar
- Each waveform carries an independent phase symbol leading to high data rate
- Fully Transparent to the radar
- Uniform communications performance across the spatial dimension

MIMO Radar Signal Model

- Consider a dual-function system with *M* colocated transmit antennas
- Let $\phi_m(t)$, m = 1, ..., M be M orthogonal waveforms
- Assume that Q targets are located in the far-field, the received signal is

$$\mathbf{x}(t,\tau) = \sum_{q=1}^{Q} \alpha_q(\tau) \left[\mathbf{a}^T(\theta_q) \mathbf{\Phi}(t) \right] \mathbf{b}(\theta_q) + \mathbf{n}(t,\tau)$$

τ: Pulse number

 θ_q, α_q : Direction and reflection coefficient of the *q*-th target $a(\theta), b(\theta)$: Steering vectors of transmit and receive arrays $\boldsymbol{\Phi}(t) = [\phi_1(t), \dots, \phi_M(t)]^T$: Vector of orthogonal waveforms $n(t, \tau)$: Vector of AWGN

MIMO radar

Output Signal after Matched-Filtering:

• Matched-filtering the received signals to the orthogonal waveforms yields the *MN*x1 extended virtual data

$$\mathbf{y}(\tau) = \operatorname{vec}\left(\int_{T_0} \mathbf{x}(t,\tau) \,\mathbf{\Phi}^H(t) \,dt\right)$$
$$= \sum_{q=1}^Q \alpha_q(\tau) \left[\mathbf{a}(\theta_q) \otimes \mathbf{b}(\theta_q)\right] + \tilde{\mathbf{n}}(\tau)$$

• The noise term simplifies to

$$\tilde{\mathbf{n}}(\tau) = \operatorname{vec}\left(\int_{T_0} \mathbf{n}(t,\tau) \mathbf{\Phi}^H(t) dt\right)$$

• Noise statistics remain the same

MIMO Radar with Phase Rotation

- Let $\Omega = [e^{-j\Omega_1}, ..., e^{-j\Omega_M}]$ be Mx1 vector of phase rotations
- Consider the vector phase-rotated orthogonal waveforms

 $\boldsymbol{\Psi}(t) = \boldsymbol{\Pi} \boldsymbol{\Phi}(t)$

 $\Pi = diag(\Omega)$: Diagonal phase-shift matrix

 Note: The phase rotated waveforms preserve orthogonality

 $\boldsymbol{\Psi}(t)\boldsymbol{\Psi}^{H}(t) = \boldsymbol{\Pi}\boldsymbol{\Phi}(t)\boldsymbol{\Phi}^{H}(t)\boldsymbol{\Pi}^{H} = \boldsymbol{I}_{M}$

MIMO radar with phase rotation

Scaling in lieu of Modulations

MIMO Radar with Phase Rotation

Vector of received signals

$$\tilde{\mathbf{x}}(t,\tau) = \sum_{q=1}^{Q} \alpha_q(\tau) \big[\mathbf{a}^T \big(\theta_q \big) \mathbf{\Psi}(t) \big] \mathbf{b} \big(\theta_q \big) + \mathbf{n}(t,\tau)$$

• Matched-filtering to $\Psi(t)$ yields

$$\tilde{\mathbf{y}}(\tau) = \operatorname{vec}\left(\int_{T_0} \tilde{\mathbf{x}}(t,\tau) \mathbf{\Phi}^H(t) \mathbf{\Pi}^H dt\right)$$
$$= \sum_{q=1}^Q \alpha_q(\tau) \left[\mathbf{a}(\theta_q) \otimes \mathbf{b}(\theta_q)\right] + \breve{\mathbf{n}}(\tau),$$

The AWGN term becomes

$$\widetilde{\boldsymbol{n}}(\tau) = [diag(\boldsymbol{\Omega}^*) \otimes \boldsymbol{I}_N]\widetilde{\boldsymbol{n}}(\tau)$$

Note: AWGN statistics remain the same

MIMO radar with Phase rotation yields same signal at matched-filter output

Proposed Information Embedding

- The phase rotations Ω_m , m = 1, ..., M are used as communications symbols
- Each phase symbol represents 'L' bits of binary data
- The symbols from a pre-defined constellation of size *K*, e.g.,

$$\mathbb{D}_{\text{PSK}} = \left\{ 0, \frac{2\pi}{K}, \dots, \frac{(K-1)2\pi}{K} \right\}$$

• The number of bits per symbol $L = log_2 K$

Bits/pulse= $ML = Mlog_2K$

Data rate=ML x pulse repetition frequency

Dual-function MIMO radarcommunication

Communications Receiver Matched-Filter

- Assume that the waveforms are known at the communications receiver
- Matched-filtering the received signal to $\phi_m(t)$ yields

$$y_m(\tau) = \int_{T_0} r(t)\phi_m^*(t)dt$$
$$= \alpha_{\rm ch} \mathbf{a}_{[m]} e^{\Omega_m(\tau)} + w_m(\tau), \ m = 1, \dots, M$$

 $a_{[m]} = e^{-j2\pi d_m \sin \theta_c}$: m-th entry of transmit array steering vector $w_m(\tau) = \int w(t,\tau) \phi^*(t) dt$: Additive noise

- The output of the *m*-th matched filter is a phase-shifted and noisy version of the *m*-th entry of the steering vector *a*(θ_c)
- In radar applications with a high PRF, such as in X-band radar, a data rate in the range of Mbps can be easily achieved

- Higher Data Rate
- Multiply by the length of FH code Q

X-band Radar Example

- Carrier Frequency- 8.2 GHz
- Bandwidth-500 MHz
- Sampling frequency- 1 GHz
- Pulse repetition Interval- 10 micro-sec
- Frequency Step- 10 MHz
- Time step- 1 micro-sec
- Number of antennas-16
- R=32, 64, 128 for BFSK, QPSK, and 16-PSK

BER Source at 0 degree

MIMO-ESPRIT Sources at 2 and 4 degrees

REFERENCES

- Hassanien, M. G. Amin, Y. D. Zhang and B. Himed, "A dual-function MIMO radar-communications system using PSK modulation," 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, 2016, pp. 1613-1617.
 C. Sahin, J. Jakabosky, P. M. McCormick, J. G. Metcalf and S. D. Blunt, "A novel approach for embedding communication symbols into physical radar waveforms," 2017 IEEE Radar Conference (RadarConf), Seattle, WA, 2017, pp. 1498-1503.
- M. J. Nowak, Zhiping Zhang, Yang Qu, D. A. Dessources, M. Wicks and Zhiqiang Wu, "Co-designed radar- communication using linear frequency modulation waveform," *MILCOM 2016 - 2016 IEEE Military Communications Conference*, Baltimore, MD, 2016, pp. 918-923.
- X. Chen, X. Wang, S. Xu and J. Zhang, "A novel radar waveform compatible with communication," 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, 2011, pp. 177-181.
- A. Hassanien, **M. G. Amin**, Y. D. Zhang, and F. Ahmad, "Signaling strategies for dual-function radar- communications: An overview," IEEE Aerospace and Electronic Systems Magazine, vol. 31, no. 10, pp. 36-45, November 2016.
- A. Hassanien, **M. G. Amin**, Y. D. Zhang, and F. Ahmad, "Phase-modulation based dual-function radar-IET Radar, Sonar, and Navigation, vol.10, no. 8, pp. 1411-1421, October 2016.
- A. Hassanien, **M. G. Amin**, Y. D. Zhang, and F. Ahmad, "Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity," IEEE Trans. Signal Processing, vol. 64, no. 8, pp. 2168-2181, April 2016.
- I. E. Lager, C.Trampuz, M.Simeoni, C.I.Coman⁺, L.P. Ligthart, "Application of the shared aperture antenna concept to radar frontends: advantages and limitations," IEEE Explorer.

Conclusions

- Signal embedding is achieved through slow-time modulation, fast-time modulations, and scaling of radar waveforms.
- Proposed method permits information delivering towards arbitrary directions
- The communication process is inherently transparent to the primary radar operation of the dual-function system
- introduction of an RF system based on a shared frequency bandwidth and antenna aperture allows for integrated command and control systems and integrated sensor management
- Co-design and System-of-Opportunity provide the capability of simultaneous transmitting and receiving signals at multiple frequencies, reconfiguring the antenna beam patterns and polarization

