Signal Processing and Networks Research Group, Wolfson School of Mechanical, Manufacturing and Electrical Engineering

Online IVA with Adaptive Learning for Speech Separation using Various Source Priors

Suleiman Erateb, Mohsen Naqvi and Jonathon Chambers

INTRODUCTION

- The separation of speech signals in a cocktail party environment.
- The problem is known as blind source separation (BSS). \bullet
- Independent Vector Analysis (IVA) is a frequency domain (FDBSS) \bullet method [1].

Fig 1. Convolutive mixing of two sources and two microphones

BSS SYSTEM MODEL

• The BSS problem is the estimation of N source signals from Mobserved mixture signals that are unknown function of the sources.

	1
Ontimication	
Optimisation	
A 1	
Algorithm	

ADAPTIVE LEARNING

• The coefficients of the separation filter are updated at every frame:

$$w_{ij}^{(k)}[n+1] = w_{ij}^{(k)}[n] + \eta \sqrt{(\xi^{(k)}[n])^{-1}} \Delta w_{ij}^{(k)}[n]$$
(8)

$$\Delta w_{ij}^{(k)}[n] = \sum_{l=1}^{N} \left(\Lambda_{ij}^{(k)}[n] - \Re_{ij}^{(k)}[n] \right) w_{ij}^{(k)}[n]$$
(9)

- For high learning rate (η) , the convergence is faster with large fluctuations. \bullet
- For small value (η), the convergence is slower with smoother solution.
- The new learning rate is controlled by a particular *FROBENIUS* norm.

$$G^{(k)}[n] = \left\| \Lambda^{(k)}[n] - \Re^{(k)}[n] \right\|_{F}$$
(10)

We define a new normalised smoothed learning rate at time frame *n* as: •

$$\eta^{(k)}[n] = \frac{\eta_0}{G^{(k)}[1]} \left[\lambda G^{(k)}[n-1] + (1-\lambda)G^{(k)}[n] \right]$$
(11)

The new online update equation: •

$$w_{ij}^{(k)}[n+1] = w_{ij}^{(k)}[n] + \eta^{(k)}[n]\sqrt{(\xi^{(k)}[n])^{-1}}\Delta w_{ij}^{(k)}[n]$$
(12)

EXPERIMENTAL SETUP

- A two-input two-output (TITO) system is adopted.
- Real recorded speech signals, from the TIMIT [4] used as the source signals.

Fig 2. BSS Processes

- The Online IVA is suitable for practical embedded real time systems.
- The noise free FDBSS online IVA mixing and separation model [2]:

$$\sum_{j=1}^{k} \sum_{i=1}^{N} h_{ji}^{(k)}[n] s_{i}^{(k)}[n]$$
(1)
$$\sum_{j=1}^{k} \sum_{j=1}^{M} w_{ij}^{(k)}[n] x_{j}^{(k)}[n]$$
(2)

OBJECTIVE

- Introduce a robust adaptive learning scheme as a function of proximity to the target solution.
- Explore different source priors to model the speech signals. \bullet
- Evaluate the technique using real room impulse responses and real speech signals.

THE IVA ALGORITHM

- The IVA algorithm solves the permutation problem in FDBSS. \bullet
- Uses a multivariate source prior to retain the dependency between different frequency bins of each source [1].

- Evaluated using real room impulse responses (BRIRs) [5]. ۲
- Signal to Distortion Ratio (SDR) is used to measure the separation performance [6]. \bullet

$$SDR = 10 \log_{10} \frac{\|s_{target}\|_{2}^{2}}{\|e_{interf} + e_{artif}\|_{2}^{2}}$$
(13)

SDR Averaged over 10 mixtures. \bullet

EXPERIMENT PARAMTERS							
The length of the DFT	2048						
Sampling frequency	8 kHz						
Window type	Hanning						
Sound propagation speed	343 m/s						
Reverberation time	565 ms						
η for original method	0.5						
η_0 for proposed method	2.0						
Smoothing factor β	0.5						

Fig 4. Room Layout

RESULTS

- The proposed scheme reduces the convergence time by an average of:
 - 20.5 seconds (46%) using the super-Gaussian source prior
 - 21 seconds (51%) using the generalized Gaussian source prior.
- The scheme with the generalized Gaussian source prior converges faster than with the super-Gaussian source prior, on average, by 3.8 seconds (16%).
- The average steady state SDR improvements are approximately:
 - 0.15 dB using the super-Gaussian source prior.
 - 0.05 dB using the generalized Gaussian source prior.
- The super-Gaussian source prior achieves better separation performs than the \bullet generalized Gaussian source prior by approximately 0.2 dB.

Convergence Time (s)						Steady State SDR (dB)							
Source Prior	Angle						Source Prior	Angle					
	15°	30°	45°	60°	75°	Source i mor	15°	30°	45°	60°	75°		
super-Gaussian	75	42	38	35	31		super-Gaussian	9.25	13.24	14.94	15.82	16.36	
super-Gaussian with Adaptive learning	50	22	17	16	14		super-Gaussian with Adaptive learning	9.26	13.37	15.11	16	16.56	
generalized Gaussian	75	40	35	30	25	İ	generalized Gaussian	9.18	13.18	14.85	15.71	16.22	
generalized Gaussian with Adaptive lear <u>ning</u>	40	17	15	14	14		generalized Gaussian with Adaptive learning	9.22	13.2	14.88	15.73	16.25	

Cost Function

$$C = \mathcal{KL}\left(p(\hat{s}_{1}, ..., \hat{s}_{N}) \| \prod_{1}^{N} q(\hat{s}_{i})\right)$$
(3)
SOURCE PRIORS:
super-Gaussian [1] $q(s_{i}) = \alpha \exp\left(-\sqrt{\sum_{k=1}^{K} \left|s_{i}^{(k)}\right|^{2}}\right)$ (4)
Score Function $\varphi^{(k)}\left(\hat{s}_{i}^{(1)} ... \hat{s}_{i}^{(k)}\right) = \frac{\hat{s}_{i}^{(k)}}{\sqrt{\sum_{k=1}^{K} \left|\hat{s}_{i}^{(k)}\right|^{2}}}$ (5)
Generalized Gaussian [3] $q(s_{i}) = \alpha \exp\left(-\sqrt[3]{\sum_{k=1}^{K} \left|s_{i}^{(k)}\right|^{2}}\right)$ (6)
Score Function $\varphi^{(k)}\left(\hat{s}_{i}^{(1)} ... \hat{s}_{i}^{(k)}\right) = \frac{\hat{s}_{i}^{(k)}}{\sqrt[3]{\left(\sum_{k=1}^{K} \left|\hat{s}_{i}^{(k)}\right|^{2}\right)^{2}}}$ (7)

_		 	
	_		

- T. Kim, H. T. Attias, S. Lee and T. Lee, "Blind source separation exploiting higher-order frequency dependencies," *Audio, Speech, and Language Processing, IEEE Transactions on,* vol. 15, pp. 70-79, 2007.
- T. Kim, "Real-time independent vector analysis for convolutive blind source separation," *Circuits and Systems I: Regular Papers, IEEE Transactions on*, 57(7), pp.1431-1438, 2010.
- 3. Y. Liang, S. M. Naqvi, and J. A. Chambers. "Independent vector analysis with a multivariate generalized Gaussian source prior for frequency domain

blind source separation," Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference on, pp. 6088-6092, 2013.

- . J. S. Garofolo et al, "DARPA TIMIT acoustic phonetic continuous speech corpus CDROM," NASA STI/Recon technical report n, 1993.
- . J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small-room acoustics," *J. Acoust. Soc. Amer.*, vol. 65, pp. 943–950, 1979.
- 6. E. Vincent, R. Gribonval and C. Févotte, "Performance measurement in blind audio source separation," *Audio, Speech, and Language Processing, IEEE Transactions on,* vol. 14, pp. 1462-1469, 2006.

super-Gaussian	75	42	38	35	31	
super-Gaussian with Adaptive learning	50	22	17	16	14	
generalized Gaussian	75	40	35	30	25	
generalized Gaussian with Adaptive learning	40	17	15	14	14	

CONCLUSION

- A new adaptive learning scheme to control the learning rate has been proposed.
- The scheme yields faster convergence time and better separation performance.
- The scheme incurs an additional computational cost.
- Explore combining the super Gaussian and the generalized Gaussian source priors to acquire the best aspect of each distribution.

ACKNOWLEDGEMENTS Prof. Sangarapillai Lambotharan

CONTACT INFORMATION

Wolfson School of Mechanical, Manufacturing and Electrical Engineering Loughborough University Leicestershire LE11 3TU, UK S.Erateb@lboro.ac.uk http://www.lboro.ac.uk/departments/eese/