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Online IVA with Adaptive Learning for Speech 
Separation using Various Source Priors 

 
• The separation of speech signals in a  cocktail party environment. 
• The problem is known as blind source separation (BSS). 
• Independent Vector Analysis (IVA) is a frequency domain (FDBSS) 

method [1]. 
 
 
 
 
 
 
 
 

 

THE IVA ALGORITHM 

 
 
 
 
 
 
 

 
 

 
 

INTRODUCTION 

• The IVA algorithm solves the permutation problem in FDBSS.  

• Uses a multivariate source prior to retain the dependency between 
different frequency bins of each source [1]. 
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• The coefficients of the separation filter are updated at every frame: 

 𝑤𝑤𝑖𝑖𝑖𝑖
𝑘𝑘 𝑛𝑛 + 1 = 𝑤𝑤𝑖𝑖𝑖𝑖

𝑘𝑘 𝑛𝑛 + 𝜂𝜂 (𝜉𝜉 𝑘𝑘 [𝑛𝑛])−1𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖
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• For high learning rate (η), the convergence is faster with large fluctuations.  
• For small value (η), the convergence is slower with smoother solution. 
• The new learning rate is controlled by a particular FROBENIUS norm.  

 𝐺𝐺(𝑘𝑘) 𝑛𝑛 = Λ 𝑘𝑘 𝑛𝑛 − ℜ(𝑘𝑘)[𝑛𝑛] 𝐹𝐹                                           (10) 
• We define a new normalised smoothed learning rate at time frame n as: 
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• The new online update equation: 

 𝑤𝑤𝑖𝑖𝑖𝑖
𝑘𝑘 𝑛𝑛 + 1 =  𝑤𝑤𝑖𝑖𝑖𝑖

𝑘𝑘 𝑛𝑛  + 𝜂𝜂(𝑘𝑘) 𝑛𝑛 (𝜉𝜉(𝑘𝑘)[𝑛𝑛])−1𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖
𝑘𝑘 𝑛𝑛                (12) 

 
BSS SYSTEM MODEL 
• The BSS problem is the estimation of N source signals from M 

observed mixture signals that are unknown function of the sources. 
 
 

 
 
 
 
 

• The Online IVA is suitable for practical embedded real time systems. 
• The noise free FDBSS online IVA mixing and separation model [2]: 
  𝑒𝑒𝑖𝑖
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Fig 1. Convolutive mixing of two sources and two microphones 

Fig 2. BSS Processes 
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Fig 3. IVA Model 

EXPERIMENTAL SETUP 
• A two-input two-output (TITO) system is adopted. 
• Real recorded speech signals, from the TIMIT [4] used as the source signals. 
• Evaluated using real room impulse responses (BRIRs) [5]. 
• Signal to Distortion Ratio (SDR) is used to measure the separation performance [6]. 

      𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log10
𝒔𝒔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 2
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𝒆𝒆𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖+𝒆𝒆𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 2
2                  (13) 

• SDR Averaged over 10 mixtures. 

RESULTS 

CONCLUSION 
• A new adaptive learning scheme to control the learning rate has been 

proposed. 
• The scheme yields faster convergence time and better separation 

performance.  
• The scheme incurs an additional computational cost. 
• Explore combining the super Gaussian and the generalized Gaussian 

source priors to acquire the best aspect of each distribution. 

• The proposed scheme reduces the convergence time by an average of: 
 20.5 seconds (46%) using the super-Gaussian source prior  
 21 seconds (51%) using the generalized Gaussian source prior. 

• The scheme with the generalized Gaussian source prior converges faster than 
with the super-Gaussian source prior, on average, by 3.8 seconds (16%). 

• The average steady state SDR improvements are approximately: 
 0.15 dB using the super-Gaussian source prior. 
 0.05 dB using the generalized Gaussian source prior. 

• The super-Gaussian source prior achieves better separation performs than the 
generalized Gaussian source prior by approximately 0.2 dB. 

OBJECTIVE 
• Introduce a robust adaptive learning scheme as a function of proximity 

to the target solution. 
• Explore different source priors to model the speech signals. 
• Evaluate the technique using real room impulse responses and real 

speech signals. 
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EXPERIMENT PARAMTERS 
The length of the DFT 2048 
Sampling frequency 8 kHz 
Window type Hanning 
Sound propagation speed 343 m/s 
Reverberation time 565 ms 
η for original method 0.5 
𝜂𝜂0 for proposed method 2.0 
Smoothing factor β 0.5 

 Convergence Time (s) 

Source Prior Angle 
15° 30° 45° 60° 75° 

super-Gaussian 75 42 38 35 31 
super-Gaussian with 
Adaptive learning 50 22 17 16 14 

generalized Gaussian 75 40 35 30 25 
generalized Gaussian 
with Adaptive learning 40 17 15 14 14 

 Steady State  SDR (dB) 

Source Prior Angle 
15° 30° 45° 60° 75° 

super-Gaussian 9.25 13.24 14.94 15.82 16.36 
super-Gaussian with 
Adaptive learning 9.26 13.37 15.11 16 16.56 

generalized Gaussian 9.18 13.18 14.85 15.71 16.22 
generalized Gaussian 
with Adaptive learning 9.22 13.2 14.88 15.73 16.25 

ADAPTIVE LEARNING 

Fig 4. Room Layout 
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