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INTRODUCTION ADAPTIVE LEARNING

» The separation of speech signals in a cocktail party environment. The coefficients of the separation filter are updated at every frame:

e The problem is known as blind source separation (BSS). wOn+ 1] = w9l + 9/ E®mDTawPm)  (8)
. mgteh%edn([jf]nt Vector Analysis (IVA) is a frequency domain (FDBSS) 2w ] = 2 (A ] - 1)) wi[n] (9)
| « For high learning rate (1), the convergence is faster with large fluctuations.
Microphone 1= e For small value (1), the convergence is slower with smoother solution.
=L > . . .
Souros 1\ * The new learning rate is controlled by a particular FROBENIUS norm.
A”’ Microphone 2 G(k) [n] = ”A(k) [n] — SR(R) [n]”F (10)
D:I ' » (O * We define a new normalised smoothed learning rate at time frame n as:
Source 2
‘ < / n®n] = G(’,Z—;’m [6® [ —1]+ (1 - )G [n]] (11)
Fig 1. Convolutive mixing of two sources and two microphones * The new online update equation:
BSS SYSTEM MODEL wiOn + 1] = wPnl +n® [l E® D 1aw O n] (12)
e The BSS problem is the estimation of N source signals from M
observed mixture signals that are unknown function of the sources. EXPERIMENTAL SETUP
optimisation | * Atwo-input two-output (TITO) system is adopted.
Algorhm “ « Real recorded speech signals, from the TIMIT [4] used as the source signals.
« Evaluated using real room impulse responses (BRIRS) [5].
——  Signal to Distortion Ratio (SDR) is used to measure the separation performance [6].
Mixer emixer —
s(t) ‘ X(t) ‘ \ y(t) S > ”Starget”2
H SDR — 1010g10 2 73 (13)
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Ig 2. BSS Processes _
« The Online IVA is suitable for practical embedded real time systems. * SDR Averaged over 10 mixtures. =
* The noise free FDBSS online IVA mixing and separation model [2]:
W11 = N 50 100 2048
x;[n] = Xi=q1 by~ [n]s; ™ [n] () 8 kHz NG
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* Introduce a robust adaptive learning scheme as a function of proximity 0_;‘ . N \%%:"/&sz
to the target solution. 2.0 LBy
o Explore different source priors to model the speech signals. 0> =
i : : Fig 4. Room Layout
o Evaluate the technique using real room impulse responses and real

speech signals. RESULTS
THE IVA ALGORITHM * The proposed scheme reduces the convergence time by an average of:
* The IVA algorithm solves the permutation problem in FDBSS. = 20.5 seconds (46%) using the super-Gaussian source prior
« Uses a multivariate source prior to retain the dependency between " 21 seconds (51%) using the generalized Gaussian source prior.
different frequency bins of each source [1]. * The scheme with the generalized Gaussian source prior converges faster than
U nlnon o . with the super-Gaussian source prior, on average, by 3.8 seconds (16%).

e The average steady state SDR improvements are approximately:
= (.15 dB using the super-Gaussian source prior.
= (.05 dB using the generalized Gaussian source priotr.

* The super-Gaussian source prior achieves better separation performs than the
generalized Gaussian source prior by approximately 0.2 dB.
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Fig 3. IVA Model
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. (k)|
super-Gaussian [1] q(s;) = aexp (—\/Z’k{:l s; ‘ ) (4) CONCLUSION
A (k) . . .
Score Function o (gi(l) §i(k)) =t (5) * Anew adaptive learning scheme to control the learning rate has been
JZ’,§=1 58] proposed.
3 - . : : :
Generalized Gaussian [3] q(s;) = a exp (_ \/Z’;§=1 Si(k)‘ ) 6) The scheme vyields faster convergence time and better separation
performance.
5 (k) . . ;

Score Function e (g.i(l) §i(k)) _ Si (7) « The scheme incurs an additional computational cost.

« Explore combining the super Gaussian and the generalized Gaussian
source priors to acquire the best aspect of each distribution.
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