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Abstract — Nonlinearity in Raman spectral mixtures caused by wavenumber shifts, has been investigated in this paper. The spectral shifts are mainly caused by the existence of multiple chemicals in the mixtures, with complex
molecular interactions, which can change the spectral features of each constituent. While such non-linear behaviour may be negligible in some mixtures, it may lead to incorrect identification of chemicals in some instances. We
investigate some real spectra and demonstrate the nature of such nonlinearity in Raman spectra. We then mathematically formulate such spectral behaviour and present an approach to compensate the nonlinearity artifacts. The
nonlinearity has been modelled as a smooth transition in a parametric space, which can be locally modelled using first order approximation. Such a first order approximation can be translated to some augmented spectral libraries
to be used with a linear generative model. A convex sparse approximation program, with nonlinearity considerations, has finally been introduced to decompose the spectral mixtures. Such decomposition has been used for chemical
fingerprinting and quantification. The effect of new approach has been demonstrated with some real and synthetic spectra. .

Raman Spectral Mixture Analysis
Motivations:

1. Raman spectra are feature-rich signatures for unknown material detection.

2. Detection of the trace of chemicals and chemical mixtures from a single snapshot is difficult using current
similarity based methods.

3. Most techniques are computationally intensive and not suitable for a real-time implementation.

Aim: Efficiently decompose the spectra, fingerprint and quantify the mixtures.

How:

1. Baseline correction of the spectra to remove the Florescent background artefact.

2. Nonnegative Sparse Decomposition of spectra using a reference library of the pure spectra.

3. Fingerprinting and Quantification based on the nonnegative contribution, i.e. coefficients.

Our approach [Yaghoobi16]: using a novel greedy sparse approximation method called the fast non-
negative orthogonal matching pursuit.
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Wavenumber Shifts and Nonlinear Mixtures

Observation:

• The peaks of spectra in the mixtures can shift, due to molecular interactions between constituents.

• The amount of shift is a nonlinear function of components concentrations.

Issues:

•Misdetection: When the spectral peaks, which have most
energy of the spectra, are shifted, the similarity measure sig-
nificantly drops. → Algorithm will then misdetect a chemi-
cal and possibly select another incorrect component or
count it as the measurement error.

•Misquantification: the correct quantification highly de-
pends on the peaks on the original positions. The quantifica-
tion error is introduced as the result of local peak shifts.

Proposed solution: Approximation of the shift function with
the first order Taylor’s series.
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Robust Raman Nonnegative Sparse Decomposition with Taylor’s First Order Modelling

Locally Perturbed Spectra and First Order Approximations:

• Let the nonlinear spectral generative model be as follows:

y = φ(M,α) + ω =
∑
i

µi∈M

αiµi + ω

where µi is a signal in Mi and M = ∪Ni=1Mi.

• Let f i(∆) : Rr →Mi be the function mapping a Euclidean space dimension
r to Mi, with the following properties for each i, 1 ≤ i ≤ N ,

µi = f i(∆), mi = f i(0).

•Taylor’s first order approximation of f i(∆) can be an estimate for µi, i.e. µi ≈ f i(∆0) + (∆−∆0)
∂
∂∆f i(∆0).

Gaussian Peak Modelling and Approximation around 0 and ∆0/2:

•A spectrum functional with multiple shifting peaks can be written as, f i(∆) = mi +
∑
τ∈Ti gτ(ν −∆τ),

mi → residual spectrum, i.e. spectrum without peaks, Ti → peak locations and ∆ = {∆τ}τ∈Ti → all shifts.

•Each peak can be approximately modelled with a Gaussian kernel, gτ(ν) := βσ exp(−(ν − τ )2/2σ2
τ)

•Approximation around 0: y ≈ ∑
iαimi −

∑
i
∑
τ∈Ti γi,τ∆0,g

′(ν − τ, στ) + ω

•Approximation around ∆0/2: y ≈ ∑
iαimi −

∑
i
∑
τ∈Ti

∑
j∈J γi,j,τg

′(ν − τ − jδ
2 , στ) + ω, where D = {jδ}j∈J

is the set of possible shifts.

Robust Sparse Decomposition With an

Augmented Library

•Building up an augmented system of equations to include first order
approximations,

y = Mα + Aγ + ω, =
[
M A

]
︸ ︷︷ ︸

M+

[
α
γ

]
︸ ︷︷ ︸
α+

+ ω

where A ∈ Rd×M is the matrix related to the discretised linear
functionalg′(ν−τ− jδ

2 , σδ), and α+ ∈ RN+M
+ . M+ is the augmented

library with some extra functions modelling the spectral shifts.

• Finding the non-negative sparse approximation of y to find α+,

α+∗ = argminα+∈R≥0 ‖y −M+α+‖2
2 + λ‖α+‖1,

This optimisation problem can be solved using scalable methods like
ADMM and Nesterov’s optimal first order methods.
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Spectral Shifts for 17 Tabs and
Exact Recovery
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Summary
• Raman spectral decomposition can be used to fingerprint and quantify the mixtures.

• The nonlinearity due to spectral shifts can cause misdetection and misquantification.

• A first order approximation of the spectral local shifts was used to model the artefacts.

• Some promising results show that the new model can compensate moderate shifts.

• Future Work:

– Faster method to solve the optimisation problem, i.e. using greedy methods.

– A comparison with robust sparse decomposition methods with neighborhood constraints.
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