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Overview

• Need for small UAV detection and classification system in defence sector

• Radar micro-Doppler signature analysis of sUAVs by STFT

• Wavelet Transform

- Continuous Wavelet Transform

- Discrete Wavelet Transform

- Wavelet transform for sUAV data analysis

• Experimental results (Drone and Bionic Bird)

- CW radar

- FMCW radar

• Conclusions



• Consumer drones have become readily available to the general public

• A user with malicious intent can use it for dropping/transferring explosives or
contraband, illegal video recording etc.

• A novice user can create problems unintentionally which may disrupt a
citizen’s privacy/safety or create damage to an important facility

• There is a need for reliable, compact and low cost drone detection and
classification system in the market

Need for small UAV detection and classification 
system in defence sector



• Joint time-frequency analysis methods are mainly used for analysing micro-
Doppler signals

• The most widely used technique is the linear analysis method, named the
Short-Time Fourier Transform (STFT)

• Very intuitive, illustrates the variation in signal frequency content over time

• Millimeter-wave radar can produce high fidelity micro-Doppler returns from a
sUAV due to the very fast rotating propeller blades

Radar micro-Doppler signature analysis of 
sUAVs by STFT

Spectrogram 
of a flying 

UAV



• In STFT, there is a trade-off between time and frequency resolution

• Different window lengths used in the STFT reveal different features

Radar micro-Doppler signature analysis of 
sUAVs by STFT

Spectrograms obtained by using different STFT window length revealing different 
features (HERM lines, blade flashes)

* Using different window lengths for feature extraction can increase computational 
load



• Uses wavelets instead of sines/cosines as the basis function

• Wavelets are localized both in time and frequency

• The localization is achieved by means of scaling or dilation (frequency
localization) and shifting or translation (time localization)

• The resultant analysis is represented by a scalogram, which shows the energy
distribution of the signal in different scales (revealing different frequency
components) over time

• Capability to extract Doppler signatures of fast moving objects (i.e. sUAV
propeller blades)

Wavelet transform



Continuous Wavelet Transform (CWT)
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• a and b are the scaling and shifting parameters respectively

• ψ* is the complex conjugate of the mother wavelet

• x(t) is correlated with the different scaled versions of the wavelet function as
well as the wavelet being shifted along the time axis

• The Haar (or Daubechies 1, ‘db1’) wavelet has been used to analyse data here

Wavelet transform



Discrete Wavelet Transform (DWT)

• The discretization is done in terms of integer powers of 2 (2j, j=1, 2, 3,…)

• By performing multi-level DWTs, the original signal can be decomposed into
various components corresponding to different frequencies

• The high-pass outputs are defined as the detailed coefficients and the final
low-pass output defines the approximation coefficients

• A 5-level wavelet decomposition process,
x = cd1 + cd2 + cd3 + cd4 + cd5 + ca5

(The first five components correspond to detailed coefficients and the last one corresponds to 
approximate coefficients)

Wavelet transform



Wavelet Transform for sUAV data analysis

• Combination of CWT and DWT have been used to analyze the micro-Doppler
signatures of the millimeter-wave radar data (in 3 steps)

Step 1- Perform wavelet decomposition (4-6 levels) on the phase coherent
radar return signal.

Step 2- Select cd1 and/or cd2 and performing CWT to attain micro-Doppler
feature.

Step 3- Select the final low-pass output and perform CWT to get bulk Doppler
feature.

Wavelet transform



Millimeter-wave radars used for micro-Doppler 
measurements

94 GHz FMCW/CW radar ‘T-220’                          
• 94GHz FMCW / CW
• +18 dBm
• B up to 1.8GHz
• Dual antenna fan beam
• 0.92°Az x 3.00° El (40.5dBi)
• CP only (odd bounce)
• NF  ~ 6dB
• 70dB Tx-Rx isolation
• Staring or slow pan
• Very low phase noise
• DDS chirps

94 GHz FMCW radar ‘NIRAD’
• 94GHz FMCW
• +20 dBm
• B up to 600 MHz
• Single antenna pencil beam
• 0.74°Az x 0.87° El (42.5dBi)
• CP, V, H or 450 (co- and x-pol)
• NFeff ~ 26.5 dB (Tx-Rx leakage)
• R3 filter
• 10 Hz PPI rate or Staring
• Low phase noise
• DDS chirps



sUAVs used for data collection

- DJI Phantom 3 Standard

- Bionic bird biomimetic drone                   

Flying DJI 
Phantom 3  
Standard

Radarhttps://www.dji.com/phantom-3-standard

http://www.mybionicbird.com/?lang=en



CW radar data (DJI Phantom 3 Standard)-
Spectrogram

Spectrogram of hovering DJI phantom with blades attached to 
only one rotor

• Conventional STFT with Gaussian windowing is used
• The Phantom was ~20 m away from the radar



CW radar data (DJI Phantom 3 Standard)- 6-
level wavelet decomposition 

• Most of the signal energy is concentrated in bulk velocity component

Real part

High Frequency component, cd1
Low frequency component, ca6



CW radar data (DJI Phantom 3 Standard)-
Scalogram, high frequency component

Scalogram of the high frequency component, cd1. The blade 
flashes are observed 

* The scaling parameter is discretized in terms of 21/v. Here, v is greater than 1, 
hence the scale factor is always positive



CW radar data (DJI Phantom 3 Standard)-
Scalogram, low frequency component

Scalogram of the low frequency component, ca6. Zero Doppler 
components are observed

* The bulk-Doppler and micro-Doppler (due to propeller blade rotation) 
components are hence separated



CW radar data (Bionic bird)- Spectrogram

• Spectrogram of the Bionic Bird
flapping wings. The periodic
motion of the wing beats is
clearly observed

• the real part of the
corresponding time-domain
signal. Negligible bulk Doppler



CW radar data (Bionic bird)- Scalogram

• Scalogram of the same data
showing wing beats. 4-level
wavelet decomposition is
performed

• Time slice of the 10th scale



FMCW radar data (DJI Phantom 3 Standard)-
Spectrogram

• All 4 rotor blades rotating
• Both micro-Doppler and bulk Doppler signatures are observed, but neither is fully

resolved



FMCW radar data (DJI Phantom 3 Standard)- 6-
level wavelet decomposition 

• Real part of the deramped signal of
the sUAV return. 6-level wavelet
decomposition performed

• High frequency component, cd2,
first iteration did not suppress the
low frequency part entirely, hence
cd2 is chosen



FMCW radar data (DJI Phantom 3 Standard)-
Scalogram

• Scalogram of the high frequency
component (top), cd2, showing
the micro-Doppler features of
the sUAV

• Scalogram of the low frequency
component (bottom), ca6. Micro-
Doppler features are filtered out
in this case



Conclusions

• Spectrograms provide very good visualization of the micro-Doppler features

• Combination of wavelet decomposition and scalograms obtained by CWTs can
be used for separating the micro-Doppler information

• The wavelet transform method can be used to feed a classifier with unique
sUAV micro-Doppler characteristic

• The computational complexity

• Fast wavelet transform O(n)

• Fast Fourier transform O(n.log2(n))

• For real-time sUAV detection operation, the proposed method has the
potential to be more efficient in terms of false alarm rate and computational
load
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