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Need for small UAV detection and classification >
S

system in defence sector

Consumer drones have become readily available to the general public
A user with malicious intent can use it for dropping/transferring explosives or
contraband, illegal video recording etc.

A novice user can create problems unintentionally which may disrupt a
citizen’s privacy/safety or create damage to an important facility

There is a need for reliable, compact and low cost drone detection and
classification system in the market




Radar micro-Doppler signature analysis of <>

sUAVs by STFT B

Joint time-frequency analysis methods are mainly used for analysing micro-
Doppler signals

The most widely used technique is the linear analysis method, named the
Short-Time Fourier Transform (STFT)

Very intuitive, illustrates the variation in signal frequency content over time

Millimeter-wave radar can produce high fidelity micro-Doppler returns from a
SUAV due to the very fast rotating propeller blades

Spectrogram
of a flying
UAV
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Radar micro-Doppler signature analysis of |
sUAVs by STFT B>

 |In STFT, there is a trade-off between time and frequency resolution

* Different window lengths used in the STFT reveal different features
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Spectrograms obtained by using different STFT window length revealing different
features (HERM lines, blade flashes)

* Using different window lengths for feature extraction can increase computational
load
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Wavelet transform u
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Uses wavelets instead of sines/cosines as the basis function

Wavelets are localized both in time and frequency

The localization is achieved by means of scaling or dilation (frequency
localization) and shifting or translation (time localization)

The resultant analysis is represented by a scalogram, which shows the energy
distribution of the signal in different scales (revealing different frequency
components) over time

Capability to extract Doppler signatures of fast moving objects (i.e. SUAV
propeller blades)
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Wavelet transform u
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Continuous Wavelet Transform (CWT)
CWT(a,b) = [ x(t)yp* (=2) dt
Vial = =® a

g and b are the scaling and shifting parameters respectively
* ()7 is the complex conjugate of the mother wavelet

* x(t) is correlated with the different scaled versions of the wavelet function as
well as the wavelet being shifted along the time axis

 The Haar (or Daubechies 1, ‘db1’) wavelet has been used to analyse data here



Wavelet transform <>

Discrete Wavelet Transform (DWT)

* The discretization is done in terms of integer powers of 2 (2, j=1, 2, 3,...)

* By performing multi-level DWTs, the original signal can be decomposed into
various components corresponding to different frequencies
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 The high-pass outputs are defined as the detailed coefficients and the final
low-pass output defines the approximation coefficients

* A 5-level wavelet decomposition process,
x=cd;+cd,+cdy+cd,+cd;+ca.
(The first five components correspond to detailed coefficients and the last one corresponds to
approximate coefficients)



Wavelet transform
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Wavelet Transform for sUAV data analysis

 Combination of CWT and DWT have been used to analyze the micro-Doppler
signatures of the millimeter-wave radar data (in 3 steps)

Step 1- Perform wavelet decomposition (4-6 levels) on the phase coherent
radar return signal.

Step 2- Select cd1 and/or cd2 and performing CWT to attain micro-Doppler
feature.

Step 3- Select the final low-pass output and perform CWT to get bulk Doppler
feature.



Millimeter-wave radars used for micro-Doppler
measurements

94 GHz FMCW/CW radar ‘T-220’
* 94GHz FMCW /CW

e +18dBm

* Bupto1.8GHz

* Dual antenna fan beam

* 0.92°Az x 3.00° El (40.5dBi)
e CPonly (odd bounce)

* NF ~6dB

 70dB Tx-Rx isolation

» Staring or slow pan

* Very low phase noise

* DDS chirps

94 GHz FMCW radar ‘NIRAD’

94GHz FMCW

+20 dBm

B up to 600 MHz

Single antenna pencil beam
0.74°Az x 0.87° El (42.5dBi)
CP,. V, H or 45° (co- and x-pol)
NF. ~26.5 dB (Tx-Rx leakage)
R3 filter

10 Hz PPI rate or Staring
Low phase noise

DDS chirps




sUAVs used for data collection
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- DJI Phantom 3 Standard

-

(E : —5) "\ Flying DJI
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] ) o & \ Phantom 3
'_. = Y \\
/ :ﬁ1 \ Standard

https://www.dji.com/phantom-3-standard

- Bionic bird biomimetic drone

http://www.mybionicbird.com/?lang=en



CW radar data (DJI Phantom 3 Standard)-
Spectrogram
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Spectrogram of hovering DJI phantom with blades attached to
only one rotor

Conventional STFT with Gaussian windowing is used
The Phantom was ~20 m away from the radar



CW radar data (DJI Phantom 3 Standard)- 6-
level wavelet decomposition
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* Most of the signal energy is concentrated in bulk veloc



CW radar data (DJI Phantom 3 Standard)-
Scalogram, high frequency component
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Scalogram of the high frequency component, cd,. The blade
flashes are observed

* The scaling parameter is discretized in terms of 2/V. Here, v is greater than 1,
hence the scale factor is always positive
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CW radar data (DJI Phantom 3 Standard)-
Scalogram, low frequency component
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Scalogram of the low frequency component, ca,. Zero Doppler
components are observed

* The bulk-Doppler and micro-Doppler (due to propeller blade rotation)
components are hence separated



CW radar data (Bionic bird)- Spectrogram <>
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Spectrogram of the Bionic Bird
flapping wings. The periodic
motion of the wing beats is
clearly observed

the real part of the
corresponding  time-domain
signal. Negligible bulk Doppler
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* Scalogram of the same data
showing wing beats. 4-level
wavelet decomposition s
performed

e Time slice of the 10t scale



FMCW radar data (DJI Phantom 3 Standard)-
Spectrogram
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e All 4 rotor blades rotating

* Both micro-Doppler and bulk Doppler signatures are observed, but neither is fully
resolved
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FMCW radar data (DJI Phantom 3 Standard)- 6-
level wavelet decomposition
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* Real part of the deramped signal of
the sUAV return. 6-level wavelet
decomposition performed
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FMCW radar data (DJI Phantom 3 Standard)-
Scalogram
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Conclusions
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Spectrograms provide very good visualization of the micro-Doppler features

Combination of wavelet decomposition and scalograms obtained by CWTs can
be used for separating the micro-Doppler information

The wavelet transform method can be used to feed a classifier with unique
SUAV micro-Doppler characteristic

The computational complexity
e Fast wavelet transform O(n)
* Fast Fourier transform O(n.log,(n))

For real-time sUAV detection operation, the proposed method has the
potential to be more efficient in terms of false alarm rate and computational
load
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Thank you! Any questions?

Dr Samiur Rahman, 01334 463155, sr206@st-and.ac.uk
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