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Background Recursive Polynomial Matrix Segmentation

Motivation: Several algorithms for the calculation of a polynomial matrix eigenvalue » Sequential matrix segmentation (SMS) is a novel 2(2)

decomposition (PEVD) have been developed. The PEVD can be used in a number of broadband variant of SMD designed to segment an input

multichannel problems, including MIMO, beamforming, and angle of arrival estimation. matrix R(Z) e CM*M" into two independent 4%
parahermitian matrices R, (z) € CM'=P)x(M'=P)

Aim: Develop a low complexity algorithm for the PEVD by employing divide-and-conquer

and Ry (z) € C"P and two matrices

strategies alongside existing sequential matrix diagonalisation (SMD) [1] algorithm. Ry(2) € (C(M/_Plxp nd R21<Z> e CPx(M'-P)
> A space-time covariance matrix R[7] = £{x[n|x"[n — 7]}, R[r] € CM**¥ can be where Ry3(2) = Ryi(2) are approximately zero.
constructed from the auto- & cross- correlation sequences of vector x[n] € C¥, where x[n]
is obtained from, e.g., an M-element sensor array. » The SMS algorithm is initialised and operates in a similar

manner to the SMD algorithm, but with a few key differences. Instead of
iteratively shifting single row-column pairs in an effort to diagonalise a

» Cross spectral density matrix R(z) = > R|7|z77 is a polynomial matrix and exhibits parahermitian matrix S"(2), SMS iteratively minimises the energy in
parahermitian symmetry: R(z) _ RH(l/z*) — R(2). select regions of S(Z)(z) in an attempt to segment the matrix.

» R[7] exhibits symmetry about its centre: R[7] = R"[—7].

» The PEVD has been defined as an extension of the eigenvalue decomposition (EVD) to
parahermitian polynomial matrices in [2]. The PEVD uses finite impulse response (FIR)
paraunitary matrices [3] to approximately diagonalise and spectrally majorise [4] a space-time
covariance matrix:

Independent Conquering of Divided Polynomial Matrices

» At this stage of DC-SMD, R(z) € CM*M has been segmented into multiple independent
R(z) ~ F(Z)D(Z)F(z) parahermitian matrices, which are stored as blocks on the diagonal of R/(2).

» Each matrix can now be diagonalised individually through the use of the SMD algorithm.

Existing Iterative PEVD Algorithms » Upon completion, the SMD algorithm returns matrices H(z) and D(z), which contain the
polynomial eigenvectors and eigenvalues for input matrix A(z), respectively.

» Existing iterative PEVD algorithms consist of three major steps:

. . . . / .
1. Determine the elements to be shifted onto the zero-lag: » At iteration ~y of this stage, A(z) contains the yth block of R'(z) from the bottom-right.

2. Shift the appropriate row and column onto the zero-lag;

8. Tranfer energy from the ser-ag onto th digorsl
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» Second order Sequential Best Rotation (SBR2) [2] algorithm uses a Jacobi transformation "2 1
. 20
applied to all lags for step 3. S .
» The Sequential Matrix Diagonalisation (SMD) [1] algorithm uses a full EVD of the zero-lag
(applied to all lags) for step 3. Method MSE Paraunitary filter length
I . M = 20 M =40 M = 20 M = 40
» Product over [ iterations is the paraunitary matrix F(Z) = H Q(Z)A(Z) (Z) standard (SMD) 1.991 x 1076 5.643 x 10~7 116.8 79 13
i=1
proposed (DC-SMD) | 7.991 x 107° 3.477 x 107° 154.3 121.8

Divide-and-Conquer Sequential Matrix Diagonalisation

Conclusions

» We have proposed an alternative technique to compute the polynomial EVD of a
parahermitian matrix; this algorithm — named DC-SMD — makes use of a
divide-and-conquer approach to the PEVD.

» Research in [5]-[7] has demonstrated that complexity reduction can be obtained by using a
divide-and-conquer approach to eigenproblems.

» Inspired by this work, here we describe a divide-and-conquer approach for the PEVD, which
can be utilised to reduce algorithm complexity.

» The framework of the developed algorithm — titled divide-and-conquer sequential matrix > DC-SMD operates with lower computational complexity and execution time than the

diagonalisation (DC-SMD) — is based on the SMD algorithm. traditional SMD algorithm.
» These benefits come with the disadvantage of increasing the mean squared reconstruction
While the SMD algorithm attempts to diagonalise R(z) : .
g e > gor =M  clagonall W error and the paraunitary filter length.
an entire M x M parahermitian matrix at once, ///;;%%%//
the DC-SMD algorithm first divides the matrix y ~~ » A further advantage of the DC-SMD algorithm is its ability to produce multiple independent
into a number of smaller, independent “Ni R(z) parahermitian matrices, which may be processed in parallel.
0

parahermitian matrices, before diagonalising — or
conquering — each matrix separately.

N » Simulation results demonstrate that DC-SMD outperforms SMD more significantly for larger
values of M; therefore, DC-SMD is suitable for broadband multichannel applications with a

il /Nr  D(2)
» An algorithm named sequential matrix segmentation (SMS) is | & - large number of sensors.
used to recursively divide R(z) into multiple independent il
parahermitian matrices. Each of these is stored on the diagonal e e

of matrix R'(z); thus, R’(z) is block diagonal by construction.
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