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Background

Motivation: Several algorithms for the calculation of a polynomial matrix eigenvalue
decomposition (PEVD) have been developed. The PEVD can be used in a number of broadband
multichannel problems, including MIMO, beamforming, and angle of arrival estimation.

Aim: Develop a low complexity algorithm for the PEVD by employing divide-and-conquer
strategies alongside existing sequential matrix diagonalisation (SMD) [1] algorithm.

◮ A space-time covariance matrix R[τ ] = E
{

x[n]xH[n− τ ]
}

, R[τ ] ∈ CM×M , can be
constructed from the auto- & cross- correlation sequences of vector x[n] ∈ C

M , where x[n]
is obtained from, e.g., an M -element sensor array.

◮ R[τ ] exhibits symmetry about its centre: R[τ ] = RH[−τ ].

◮ Cross spectral density matrix R(z) =
∑

τ R[τ ]z−τ is a polynomial matrix and exhibits

parahermitian symmetry: R̃(z) = R
H(1/z∗) = R(z).

◮ The PEVD has been defined as an extension of the eigenvalue decomposition (EVD) to
parahermitian polynomial matrices in [2]. The PEVD uses finite impulse response (FIR)
paraunitary matrices [3] to approximately diagonalise and spectrally majorise [4] a space-time
covariance matrix:

R(z) ≈ F̃ (z)D(z)F (z)

Existing Iterative PEVD Algorithms

◮ Existing iterative PEVD algorithms consist of three major steps:

1. Determine the elements to be shifted onto the zero-lag;
2. Shift the appropriate row and column onto the zero-lag;

3. Transfer energy from the zero-lag onto the diagonal.

1. {k(i), τ (i)} = argmaxk,τ ‖ŝ
(i−1)
k [τ ]‖∞
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2. S(i)′(z) = Λ
(i)(z)S(i−1)(z)Λ̃

(i)
(z)

0

3. S(i)(z) = Q(i)S(i)′(z)Q(i)H

◮ Second order Sequential Best Rotation (SBR2) [2] algorithm uses a Jacobi transformation
applied to all lags for step 3.

◮ The Sequential Matrix Diagonalisation (SMD) [1] algorithm uses a full EVD of the zero-lag
(applied to all lags) for step 3.

◮ Product over I iterations is the paraunitary matrix F (z) =
I
∏

i=1
Q(i)Λ(i)(z).

Divide-and-Conquer Sequential Matrix Diagonalisation

◮ Research in [5]–[7] has demonstrated that complexity reduction can be obtained by using a
divide-and-conquer approach to eigenproblems.

◮ Inspired by this work, here we describe a divide-and-conquer approach for the PEVD, which
can be utilised to reduce algorithm complexity.

◮ The framework of the developed algorithm — titled divide-and-conquer sequential matrix
diagonalisation (DC-SMD) — is based on the SMD algorithm.

◮ While the SMD algorithm attempts to diagonalise
an entire M ×M parahermitian matrix at once,
the DC-SMD algorithm first divides the matrix
into a number of smaller, independent
parahermitian matrices, before diagonalising — or
conquering — each matrix separately.
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◮ An algorithm named sequential matrix segmentation (SMS) is

used to recursively divide R(z) into multiple independent
parahermitian matrices. Each of these is stored on the diagonal
of matrix R′(z); thus, R′(z) is block diagonal by construction.

◮ The paraunitary matrices generated by SMS are concatenated to form an
overall dividing matrix G(z) such that R(z) ≈ G̃(z)R′(z)G(z).

◮ Each block on the diagonal of matrix R′(z) is then diagonalised in sequence through the use
of the SMD algorithm.

◮ The diagonalised outputs, D̂(z), are placed on the diagonal of matrix D(z), and the
corresponding paraunitary matrices, Ĥ(z), are stored on the diagonal of matrix H(z).

◮ R
′(z) ≈ H̃(z)D(z)H(z).

◮ By extension, R(z) ≈ G̃(z)H̃(z)D(z)H(z)G(z) = F̃ (z)D(z)F (z).

Recursive Polynomial Matrix Segmentation

◮ Sequential matrix segmentation (SMS) is a novel
variant of SMD designed to segment an input
matrix R̂(z) ∈ C

M ′×M ′

into two independent
parahermitian matrices R̂11(z) ∈ C

(M ′−P )×(M ′−P )

and R̂22(z) ∈ C
P×P , and two matrices

R̂12(z) ∈ C
(M ′−P )×P and R̂21(z) ∈ C

P×(M ′−P ),

where R̂12(z) =
˜̂
R21(z) are approximately zero.
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◮ The SMS algorithm is initialised and operates in a similar
manner to the SMD algorithm, but with a few key differences. Instead of
iteratively shifting single row-column pairs in an effort to diagonalise a
parahermitian matrix S(i)(z), SMS iteratively minimises the energy in
select regions of S(i)(z) in an attempt to segment the matrix.

Independent Conquering of Divided Polynomial Matrices

◮ At this stage of DC-SMD, R(z) ∈ C
M×M has been segmented into multiple independent

parahermitian matrices, which are stored as blocks on the diagonal of R′(z).

◮ Each matrix can now be diagonalised individually through the use of the SMD algorithm.

◮ Upon completion, the SMD algorithm returns matrices Ĥ(z) and D̂(z), which contain the
polynomial eigenvectors and eigenvalues for input matrix A(z), respectively.

◮ At iteration γ of this stage, A(z) contains the γth block of R′(z) from the bottom-right.

Results
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Method MSE Paraunitary filter length

M = 20 M = 40 M = 20 M = 40

standard (SMD) 1.991× 10−6 5.643× 10−7 116.8 79.13

proposed (DC-SMD) 7.991× 10−6 3.477× 10−6 154.3 121.8

Conclusions

◮ We have proposed an alternative technique to compute the polynomial EVD of a
parahermitian matrix; this algorithm — named DC-SMD — makes use of a
divide-and-conquer approach to the PEVD.

◮ DC-SMD operates with lower computational complexity and execution time than the
traditional SMD algorithm.

◮ These benefits come with the disadvantage of increasing the mean squared reconstruction
error and the paraunitary filter length.

◮ A further advantage of the DC-SMD algorithm is its ability to produce multiple independent
parahermitian matrices, which may be processed in parallel.

◮ Simulation results demonstrate that DC-SMD outperforms SMD more significantly for larger
values of M ; therefore, DC-SMD is suitable for broadband multichannel applications with a
large number of sensors.
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