
References

[1] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.- Y. Liu,
B. Li, H. Dai et al., “Satellite-based entanglement distribution over 1200 kilometers,”
Science, vol. 356, no. 6343, pp. 11401144, 2017.
[2] U. Vazirani and T. Vidick, “Fully device-independent quantum key distribution,”
Physical Review Letters, vol. 113, no. 14, p. 140501, 2014.

[3] D. Elkouss, J. Martinez, D. Lancho, and V. Martin, “Rate compatible protocol for
information reconciliation: An application to QKD,” Information Theory, IEEE Infor-
mation Theory Workshop on, pp. 15, 2010.

[4] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth Tanner
graphs,” in Globecom 01, vol. 2. IEEE, 2001, pp. 9951001.

Conclusion

•Due to the short time span available for satellite-to-ground station detections, the use
of short-length codes for the key reconciliation phase of space-based QKD may be
required.

•We outline how short-block length LDPC and turbo codes may be able to provide
reconciliation solutions for the satellite-based DI-QKD system.

• Future work should consider the improvement of decoding performance of the short
LDPC codes and the neglect of finite signalling in the security aspects of our derived
key rates.

Main Results
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Figure 1: The threshold of the 2400
block length LDPC code used in this
work compared to benchmark capacity-
approaching irregular LDPC codes.
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Figure 2: The key rate for one-half rate
codes. A value of k = 0.5 is assumed.
The blue (solid) line represents the LDPC
code, while the red (dashed) line is a
turbo code with the same rate. The block
lengths for both codes used in the simula-
tion is 2400. The dotted line is a standard
entanglement-based QKD key rate calcu-
lated.

• Potential rate-adaptive reconciliation schemes (Fig. 1) We note that in any practi-
cal implementation of a satellite-based QKD protocol, rate-adaptive reconciliation
from some Mother code is appealing. In this paper, puncturing technique in [3] is
applied to increase the code rate from 0.5 to 0.9. Over a wide range of code rates
derived from our Mother code, the thresholds for our 2400 block length LDPC code
is over a factor of two smaller than those for a capacity achieving code.

• LDPC vs. Turbo code (Fig. 2) LDPC code has a slightly better performance at the
low bit-flip errors, although the turbo code does show better performance at higher
bit-flip probabilities (better threshold performance).

• Performance reduction when using short codes (Fig. 2) We simply investigate the
impact our state-of-the-art short-block length codes have on reductions of the system
throughput relative to optimal capacity.

System Model

The two legitimate users, Alice and Bob, are two ground stations, at a distance of about
1000km from each other. A satellite, used to generate and distribute entangled pairs
of photons, is considered to be approximately overhead the two geographically distant
ground stations.
The version of the DI-QKD protocol we adopt in this work follows the one studied in
[2]. We introduce all the phases of this protocol as follows:

• Distribution and measurement of the entangled states: Alice and Bob share Nent

pairs of entangled photons. These states are represented by

|s〉 = (m |01〉 − |10〉)√
m2 + 1

.

where m ∈ R. We will also assume that the only source of error is due to imperfect
entanglement (non-maximal, m 6= 1). For the ith photon pair (i = [1, 2, ...Nent])
Alice and Bob perform a quantum measurement in a basis randomly chosen from
C = {|m(0)

α 〉 , |m(1)
α 〉} where

|m(0)
α 〉 =

|0〉 + eiα |1〉√
2

(1)

|m(1)
α 〉 =

|0〉 − eiα |1〉√
2

, (2)

where α = 0, π2 ,
π
4 . The measurement bases of Alice and Bob are randomly and inde-

pendently varied.

• Selecting the testing set: For photon pairs selected for the test we relabel them with
the index t and define the selected set as T = {t|t ∈ [1, 2, ...Nent]}. Alice then ex-
changes T with Bob. The table below shows how the values of xt and yt are mapped
to the actions to be taken in the phases that follow.

xt yt Action
2 1 Kept for estimating the channel parameter
0 0 Kept for CHSH game
0 1 Kept for CHSH game
1 0 Kept for CHSH game
1 1 Kept for CHSH game

• Checking the violation of Bells Inequality: We want to estimate the probability of
winning the CHSH game to measure the entanglement of Alice and Bob’s photons:

PCHSH = Pr (xt · yt = at ⊕ bt) ,

A pre-set noise tolerance parameter δ is introduced so that the protocol will abort if
PCHSH 6 cos2

(
π
8

)
− δ.

• Estimating the channel parameter: Alice and Bob estimate the fraction of erro-
neous bits, p̂, when xt = 2, yt = 1. The protocol will abort if p̂ 6 δ. When the
estimation is complete, Alice and Bob discard the exchanged bits.

• Key sifting: Alice and Bob exchange all the choices of xi and yi which are not yet
publicly revealed and save the measurement outcome of each photon pair to the raw
key only if xi = yi.

• Reconciliation: Alice and Bob agree on an LDPC matrix H generated by some algo-
rithm (e.g. the Progressive Edge Growth algorithm[4]).Alice applies this matrix on
her key string, and sends H and her syndrome to Bob. Then, Bob adopts an LDPC
decoding algorithm to reconcile his key string.

• Privacy Amplification: For the reconciled string, Alice and Bob use a Toeplitz ma-
trix as a 2-universal hash function (e.g. see [?]) where the block length is N ′, and the
number of rows of the Toeplitz matrix is calculated via L = (1−H2(p̂)) · N ′, and
where H2(·) is the binary entropy function.

Background

Very recently, ubiquitous deployment of such entanglement-based QKD over large dis-
tances has moved closer to reality, as verified by quantum entanglement distribution
from a low Earth orbit satellite. We will demonstrate that this robust form of QKD
via space will require a renewed focus on short-block length error-correcting codes in
order to facilitate the reconciliation phase of the key distribution. Our results high-
light the trade-off between the attainable key throughput vs the communication latency
encountered in space-based implementations of this ultra-secure technology.
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