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1. Motivations
Reliable target detection based on a set of secondary data is a crucial issue in radar processing.

The presence of heterogenous data, especially data containing outliers which share similar steering
vectors as the desired target, might cause a significant performance degradation of typical detectors.

To overcome the drawback of the outliers, we devise a two-stage detector which first selects the most
homogeneous training data from the available secondary dataset and then exploits a CFAR detector. As
to the training data selection procedures, we obtain the maximum likelihood (ML) estimate of the
outlier subset resorting to the generalized likelihood function (GLF) and remove the data vectors whose
indices belong to the estimated subset. We also design an approximate procedure in order to reduce the
computational load. Then we combine this selector together with the adaptive matched filter (AMF)
to construct the two-stage detector.

2. Data Model
Assume a radar system collecting data from N channels (spatial and/or temporal). The returns from
the range cell under test and K secondary range cells are properly sampled to form the N -dimensional
primaray data x and secondary data xi, i = 1, · · · , K, respectively, and suppose that{

xi = ci, ∀i ∈ Ω− Ω0
xi = ci + pi, ∀i ∈ Ω0

• c1, · · · , cK are independent, circular, zero-mean, complex Gaussian random vectors with the same
covariance matrix R;

• Ω = {1, · · · , K} is a set of size K;

• Ω0 = {i1, · · · , iM} is a subset of Ω with distinct elements and of size M , denoting the outlier subset;
• pis are unknown, possibly random, outlier vectors.

3. ML Estimate of the Outlier Subset
Resorting to the GLF and modeling R,pi1, · · · ,piM as unknown quantities, the ML estimate of Ω0 is
the solution to the following optimization problem

Ω̂0 = arg max
Ω0

[max
R

max
pi1,··· ,piM

f (x1, · · · ,xK|R,pi1, · · · ,piM)]

where arg max
Ω0

(·) denotes the set between the
(K
M

)
=

K!

(K −M)!M !
subsets of Ω with distinct elements

and of size M which maximizes the argument and f (x1, · · · ,xK|R,pi1, · · · ,piM) is the joint proba-
bility density function (pdf) of x1, · · · ,xK .

After some algerbra, the above optimization problem is tantamount to solving:

Ω̂0 = arg min
Ω0

[det(Rx)]

where Rx =
1

K −M
∑

i∈Ω−Ω0

xix
†
i is the sample covariance matrix (SCM) corresponding to Ω− Ω0.

4. Approximate ML procedure
The above problem is a combinatorial optimization problem whose computational burden is heavy. It
is thus of interest developing approximate procedures which permit a more affordable computational
load and ensure good quality solutions. Toward this goal, we give the following theorem:

Theorem 1. Consider a dataset X = {x1, · · · ,xK} containing K random vectors of size N . Let H1 ⊂
{1, · · · , K} with |H1| = h (N ≤ h = (K −M) ≤ K) and evaluate the SCM S1 = (1/h)

∑
i∈H1

xix
†
i .

Then compute the GIP values for all the data

d1(i) = x
†
iS
−1
1 xi, for i = 1, · · · , K

Now take the indices associated with the lowest h GIP values to construct H2, and compute the new
SCM S2 = (1/h)

∑
i∈H2

xix
†
i based on H2, then det(S2) ≤ det(S1) with equality if and only if S2 = S1.

• Starting from an initial SCM S1, we could obtain a more concentrated SCM S2 (i.e. sharing a lower
determinant),so this procedure is referred to as Concentration-step (C-step);
•An iterative algorithm which provides a sequence of secondary datasets (with cardinality h) charac-

terized by a non-increasing SCM determinant can be obtained;

• The iterative algorithm must converge due to the finitely many h-subsets, and the stopping criterion
can be set as det(Sm) = det(Sm−1).

• There is no guarantee that the iterative algorithm converges to the global optimum of the minimal
covariance determinant problem.

Fortunately, if we take more initial subsets, apply C-steps on each subset until convergence and select
the one leading to the lowest covariance determinant, the qualtiy of the solution improves.

To implement the above iterative procedure, it is necessary to specify how it is initialized. In this respect,
we consider the following two methods:

1. Construct a random h-subset H1 (the AML based on this initialization is referred to as AML-h).

2. Construct a random N -subset H and evaluate the SCM S0 = (1/N)
∑
i∈H xix

†
i . Then compute the

GIP values for all the data d0(i) = x
†
iS
−1
0 xi, i = 1, · · · K. Sort them in ascending order and select the

indices corresponding to the lowest h GIP values to form the initial h-subset H1 (the AML procedure
employing this initialization is referred to as AML-N ).

Both the initializations share the same pseudocode which is summarized in Algorithm 1:

Algorithm 1: Pseudocode of the AML method

1. Construct an initial h-subset and carry out C-steps until convergence;

2. Repeat step 1 until a maximum pre-set number of initial subsets Ninitial is reached;

3. Report the subset with the lowest covariance determinant chosen among the Ninitial convergent
subsets as the outlier-free dataset and the corresponding complementary set as the outlier set.

5. Analysis of the Two-stage Receiver

We consider the a two-stage receiver composed of the training data selector based on the approximate
ML procedure plus the AMF detector, whose decision rule can be expressed as

|p†R̂−1x|2

p†R̂−1p

H1

≷
H0

T with p = [1, ej2πfdt, · · · , ej2π(N−1)fdt] and R̂ =
1

K −M
∑

i∈Ω−Ω̂0

xix
†
i

where p is the steering vector of the desired target with normalized Doppler frequency fdt, R̂ is
the estimated interference covariance matrix, Ω̂0 is the estimated outlier subset and T is the detection
threshold which is set resorting to 103/Pfa (Pfa is the nominal probability of false alarm) Monte Carlo
simulations assuming homogeneous (K −M) samples at the input of the AMF detector.

We consider the following interference covariance matrix model

R = R0 + I with R0(i, j) = σ2
cρ
|i−j|ej2πfdc(i−j), i, j = 1, · · · , N

where R0 accounts for the exponentially shaped clutter, σ2
c is the clutter to noise power ratio (CNR), ρ

is the one-lag correlation coefficient, fdc is the normalized clutter Doppler frequency and I accounts for
the thermal noise.

We randomly inject No outliers with equal powers into different secondary range cells. The steering
vectors of these outliers are given by

pi = αi[1, e
j2πfdo,i, · · · , ej2π(N−1)fdo,i], i = 1, · · · , No

where αi and fdo,i are the complex amplitude and normalized Doppler frequency of the ith outlier, re-
spectively. Moreover, Po = |αi|2, i = 1, · · · , No denotes the outlier power.

In the numerical experiments, we study the probability of detection Pd versus the signal-to-interference-
plus-noise ratio (SINR: SINR = |αt|2p†R−1p with αt denoting the complex amplitude of the desired
target) and actual false alarm probability (normalized by the nominal value) considering

K = 20, N = 8, Ninitial = 40, Pfa = 10−4, σ2
c = 20 dB, ρ = 0.95, fdc = 0.05, No = 3, M = 3

for the cases:

1. fdo,i = 0.15, i = 1, · · · , 3, Po = 20 dB;

2. fdo,i = 0.15, i = 1, · · · , 3, Po = 30 dB;

3. the normalized Doppler frequencies of the outliers are modeled as statistically independent random
variables uniformly distributed within the interval [0.1,0.2], Po = 20 dB;

4. outliers with random Doppler frequencies, Po = 30 dB;

6. Conclusions
In this work, we have designed a two-stage detector to counter the presence of outliers.

•We have derived the ML estimate of the outlier subset;

•We have devised an approximate ML procedure to reduce the computational complexity;

•We have combined the training data selector based on the approximate ML procedure and a CFAR
detector AMF to perform the target detection;

•We have evaluated the performance of the proposed two-stage detector based on simulated data.

Numerical Results

Case 1 Case 2 Case 3 Case 4

Table 1: Actual false alarm probability (normalized by the nomi-
nal value) for different receivers

Method GIP RCGIP AML-N AML-h ML homogeneous

case 1 0.58 1.34 1.43 1.41 1.44 1.00

case 2 0.41 0.99 1.01 1.01 1.01 1.01

case 3 0.83 1.49 1.53 1.48 1.53 1.01

case 4 0.85 1.01 0.99 0.99 0.99 0.99
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