
 

 

 

 

 

 

Abstract 

In a cooperative navigation system for multiple Autonomous 

Underwater Vehicles (AUVs), an acoustic communication 

technique is usually used to exchange information and measure 

range between AUVs, and many cheap but low-accuracy 

Micro-Electro-Mechanical Systems (MEMS)-based Inertial 

Measurement Units (IMUs) are used as Dead-Reckoning (DR) 

sensors on AUVs. The use of unreliable sensors and an acoustic 

communication technique can induce outliers leading to the 

probability densities of process and measurement noise having a 

heavier-tailed behavior than a Gaussian distribution. To cope with 

such non-Gaussian distributions, the process and measurement 

noises are modeled as Student’s t distributions, and the Student’s t 

filtering algorithm for cooperative navigation is presented. 

Simulation results show the efficiency and superiority of the 

proposed robust cooperative navigation algorithm as compared 

with the standard extended Kalman filtering-based cooperative 

navigation algorithm. 

Introduction 

Accurate navigation is a vital enabler for the operation of an 

Autonomous Underwater Vehicle (AUV) and it is also essential to 

improve the efficiency of AUV missions. Aiming at the 

deployment of multiple AUVs, Cooperative Navigation (CN) is a 

viable option for high accuracy underwater navigation of multiple 

AUVs. In CN, a fleet of AUVs exchange relative position 

measurements from their exteroceptive sensors and their motion 

information from proprioceptive sensors to collectively estimate 

their states. The study indicates that: 

 The exchange of positioning information benefits all vehicles. 

 If absolute geo reference information could be provided to one 

of the vehicles, the states of vehicles performing CN are observable 

in a connected Relative Position Measurement Graph (RPMG).  

Such increase in navigation accuracy is a major benefit to CN, 

and its advantages also include sensor coverage, robustness and 

flexibility, and thus it remains an active area of research. 

Many CN algorithms which could make a consistent and 

accurate estimation of the positions of the full fleet of vehicles have 

been proposed. However, most approaches proposed assume that 

the process and measurement noises admit a Gaussian distribution. 

In fact, the Gaussian distribution assumption of the process and 

measurement noises is usually violated by some outliers induced 

by: 

 Low-accuracy and unreliable DR sensors present on slave 

AUVs, such as a Micro-Electro-Mechanical Systems 

(MEMS)-based Inertial Measurement Unit (IMU). 

 Underwater acoustic communication system. 

   Thus, the process and measurement noise contaminated by the 

outliers from unreliable MEMS-based IMU and the underwater 

acoustic range measurements are modeled by a Student’s t 

distribution in this paper, and a new robust CN algorithm for 

multiple AUVs based on a Student’s t distribution is proposed. 

System Model and Noise Analysis 

A typical framework of master-slave CN for three AUVs is 

considered in this paper. In this configuration, A and B are two 

slave AUVs, which are both equipped with low-cost and 

low-accuracy compass and speed sensor. To bound the navigation 

error of the slave AUVs, a master AUV (C AUV) with an 

expensive and accurate navigation suite is included in the CN 

system. With the information about ranges to the master AUV and 

the accurate position of master AUV, the unbounded navigation 

errors of the slave AUVs are corrected by a filter technique. The 

discrete-time kinematic equations on the x-y horizontal plane for 

the i-th AUV of a fleet of AUVs are: 
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Considering the discrete-time kinematic equations for the 

i-th AUV, the CN dynamic model is as below: 

𝑋𝑘+1 = 𝑓 𝑋𝑘 , 𝑢𝑘 , 𝑤𝑘 = 𝑋𝑘 + 𝑡 ∙ 𝐺𝑘(𝑢𝑘 + 𝑤𝑘) 

The range between A AUV and C AUV is calculated as 

below: 
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The measurement equation is nonlinear and the linearized 

measurement matrix is represented by: 
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To cope with the outliers in the process and measurement 

noise, we introduce the multivariate Student’s t distribution to 

describe the process and measurement noises as below: 
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In Fig.1, the posterior probability density function (pdf) of 

several Student’s t distributions with different dof values are 

drawn and compared. 

 

Fig. 1 Comparison of Gaussian distribution (green dot line) 

and Student’s t distribution with different dof values. 

Cooperative Navigation Algorithm based on Nonlinear 

Student's t Filter 

We propose a robust cooperative navigation algorithm 

based on a Student’s t filter. Roth et al. proposed a Student’s t 

filter for linear systems by approximating the posterior pdf as a 

Student’s t distribution [1]. However, for a CN system, the 

process and measurement equations are nonlinear. Thus, 

directly porting the linear Student’s t filter algorithm to the 

cooperative navigation case is not straightforward. Fortunately, 

both the Gaussian distribution and the Student’s t distribution 

are closed under linear transformation, thus the framework 

proposed by Roth et al. can be extended to nonlinear systems in 

a manner similar to the development of the EKF for Gaussian 

systems. 

The details of the proposed nonlinear Student’s t filter 

algorithm (NSTF) are summarized in the table NSTF 

Algorithm. 

Nonlinear Student’s t Filter (NSTF) Algorithm 

Inputs: Initialize 𝑋 0, 𝑃0, 𝑄𝑘 , 𝑅𝑘 , 𝑄𝑘 , 𝑍1:𝑇, 𝜂0,  ,   

For 𝑘 = 1: 𝑇 Perform the following: 

a. Perform the approximation of common dof and 

adjustment of matrix parameters. 

𝜂𝑘−1
′ = min 𝜂𝑘 , γ , 𝑃𝑘−1

+ → 𝑃 𝑘−1
+  

 

 

 

 

 

 

 

 

b. Linearize the process equation and perform the time 

update of the state estimate together with symmetric 

matrix. 

𝑋 𝑘
− = 𝑓𝑘(𝑋 𝑘−1

+ , 𝑢𝑘−1, 0) 

𝑃𝑘
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𝑃 𝑘−1
+ 𝐹𝑥𝑘−1

𝑇 + 𝐹𝑢𝑘−1
𝑄𝑘−1𝐹𝑢𝑘−1

𝑇  

c. Perform the approximation of common dof and 

adjustment of symmetric matrix, if γ ≠ δ.                                                                          

d. Linearize the measurement equation and perform the 

measurement update of the state estimate and symmetric 

matrix. 
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e. Update the dof.     

                     𝜂𝑘−1 → 𝜂𝑘  

Outputs:  𝑋 𝑘
+, 𝑃 𝑘

+ 0 ≤ 𝑘 ≤ 𝑇   

Simulation Results 

The standard deviations of the range measurement and 

position measurement are 𝜎𝑟 = 4𝑚 ,𝜎𝑝 = 4𝑚 , respectively. 

The standard deviations of the velocity and rotational velocity 

of A and B AUV are set to be 𝜎𝑉 = 1𝑚/𝑠,σ𝜔 = 0.2deg/s. The 

process noise and measurement noise are set to follow 

Student’s t distributions, and the dof for the Student’s t 

distributions were both chosen as 3 

 

Fig. 2 Measurement noise and its pdf, and the dots marked by 

red squares are some outliers. 

 
Fig. 3. Positioning error of A and B AUV in the CN system. 

As it can be seen, the average positioning errors of A 

AUV and B AUV are 10.13m and 12.42m using EKF, 

respectively. Estimated by the NSTF, the average positioning 

errors are reduced to be 6.14m and 3.14m, and the positioning 

accuracy is improved by 39.4% and 74.7%, respectively. 

Conclusion 

It was found that the CN algorithm based on the Student’s 

t distribution outperformed the standard EKF in terms of 

positioning error when the process and measurement noise had 

heavy-tailed behavior. 
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