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Introduction

I The main objective of video-based multiple human tracking is to locate a num-
ber of human targets, retrieve their trajectories with identities from a stream of
noisy images.

I This task becomes more challenging especially in complex scene conditions
with background clutter, long-term occlusions, and illumination changes.

I The Gaussian mixture-probability hypothesis density (GM-PHD) filter [15] as
an effective online state estimation technique has the ability to deal with
varying number of targets, reduce missed detections, and mitigate spatial
noise.

I Our approach is to exploit the convolutional neural network (CNN) based
weight penalization to enhance the GM-PHD filter for tracking multiple
targets in video.

Baseline Method

I The Gaussian Mixture PHD Filter
The GM-PHD filter [15] introduces a closed-form solution to the PHD recur-
sion. The posterior PHD intensity function can be represented by a sum of
weighted Gaussian components that are propagated analytically in time.
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Measurement Classification

I Detection Analysis Eliminates the False Measurements
. Use the detection confidence score ck ∈ [0, 1] associated with each detec-

tion to categorize the spurious measurement set Γk = {zk,f : ck < cth}
that will be discarded.

. A real measurement set is obtained by Zk,r = Zk \ Γk.
I Adaptive Gating Technique Initialises New-Born Targets
. An adaptive gating method [19] based on spatio-temporal relation is used to

further extract the birth measurement set Zk,b and the survival measurement
set Zk,s from the real measurement set Zk,r = Zk,b ∪ Zk,s.

. Target Birth: each measurement zk,b in Zk,b will be initialised as a new target
trajectory with a new identity, and it will be eventually infused with the birth
prediction.
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CNN-based Weight Penalization

I Weight Matrix Wk ∈ RJk|k−1×Nk Initialization

I CNN-based Feature Extraction
. We adopt the deep neural network [21] trained on a largescale person re-

identification dataset that contains over 1,100,000 images of 1,261 pedestri-
ans for feature generation.

. The global feature map of dimensionality 128 is to construct feature vectors
of fk and dk.

I Weight Penalization
. Bhattacharyya distance is utilized to calculate the following similarity score

in terms of feature space between the j-th predicted target and n-th measu-
rement at time k,
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. Weight Refinement:
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Improved Track Managenment

We adapt the method in [17] to select targets with the maximum weights as a
collection of possible tracks. The maximum weights for each row of the penalized
weight matrix Wp

k can be computed as, ñ = arg maxn=1:Nk
(w

(j,n)
k ).

I Target Confirmation: targets can be confirmed with w(j,ñ)
k ≥ wth and label-

led with the same identity as that in prediction.
I Target Termination: The rest of the targets which fail to reach wth are tenta-

tively eliminated after a certain value of Tmiss frames.
I Merged Target Segmentation: Search for the ambiguous weights in Wp

k with
the same value of ñ, and select the targets with smaller weights among them
as covered targets, which will remain unchanged during the update step.

Experiments

I CLEAR MOT metrics [25] are employed to evaluate the tracking performance.
I Quantitative comparison between proposed method and different approaches

on PETS2009 and TUD-stadtmitte datasets.

Method
MOTP MOTA IDS FPR FNR
(↑) (↑) (↓) (↓) (↓)

Breitenstein [5] 56.0% 79.7% - - -
GAC [6] 58.3% 81.4% 19 - -
Gomez [26] 75.0% 51.1% 27 3.7% 45.2%
Yoon [27] 57.4% 66.6% 34 15.1% 18.0%
GSDL [19] 61.5% 80.3% 33 6.2% 13.3%
Proposed 68.7% 81.0% 46 8.2% 9.9%

Method
MOTP MOTA IDS FPR FNR
(↑) (↑) (↓) (↓) (↓)

Andriyenko [7] 65.8% 60.5% 7 - -
DT-MTT [8] 61.6% 56.2% 15 - -
Riahi [9] 57.2% 67.0% 22 6.0% 26.0%
GSDL [19] 61.7% 62.0% 9 7.7% 30.1%
Proposed 62.0% 65.7% 22 3.5% 28.8%

Conclusions

I Presented an enhanced GM-PHD filter using CNN-based weight penalization
for multiple target tracking in video.

I Exploited the deep learning method to extract human features, which are used
to penalize the weights in the weight matrix.

I An improved track management has been introduced to correctly estimate
target states and eliminate false tracks.


