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Space-Time Covariance ”s"?rs‘?ﬁ'c%?e

Engineering

» We have M sensor signals organised in x[n] € CM;
> to take the broadband nature of signals into account, we must
consider lags T;

> space-time covariance matrix R[r] = £{x[n|x"[n — 7]} ;
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Cross-Spectral Density Matrix s B
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» CSD matrix forms a z-transform pair with the space-time
covariance matrix,

R(z) = Z R[7]z77 or R(z) e—o R|[7];

» symmetry of R[r] — R(z) is parahermitian:
R(z) = R"() = R(1/2") ;

(Hermitian transposition and time reversal)

> link to a narrowband covariance at normalised angular freq. 2,

R(?) = R(2)|

2=elf2%

» many optimal (narowband!) methods are based on
decompositions such as the EVD: R(ef%) = QAQH.
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McWhirter Decomposition Strathclyde
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» John McWhirter et al. (2007): polynomial eigenvalue
decomposition of a parahermitian matrix:

R(z) # Q(2)A(2)Q" (2)

> paraunitary (i.e. lossless) matrix Q(2), s.t. Q(2)QF(z) =T;
» diagonal and spectrally majorised A(z):
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Parahermitian Matrix EVD (PEVD) ”s"?,;‘{'ﬁ'c%?:
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» Franz Rellich (1937): for R(e/?) analytic, there exist analyt
eigenvectors T'(e/?) and analytic eigenvalues U (e/?);
» can be generalised to

R(z) =U(2)T(2)U" (2) ;

3 T
2 2 —¥— ()
15 15 25 —C- Sie)]
i
8 05 05 2¢- -G -G -G -G -GG -6 -6 —& -6 -6 -6 -6 -6 -6 —4
g1~ g,
© D
-_— o
[7]
= 2 2
P 1 ¥
8 5 5
' ' 05
05 05
. . 0 . . . . . . . . .
o ¥ 2 o 1 H 0 01 02 03 04 05 06 07 08 09 1
Q/m
lag 7

> eigenvalues are unique, eigenvectors can be modified by arbitrary
allpass filters H(z) (s.t. H(z)HY (z) = 1),

R(2)u(2)H(2) = v(2)u(2)H(2) .
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Source-Sensor Transfer Functions Sirathclyde
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» We take M-array measurements of a single source:
1

sensor 1 sensor m sensor M

> 2nd order stats: R;(2) = S(2)a;(2)al (2) = vi(2)ui(2)u?.
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Transfer Functions and PEVD ”S"r,;‘;'.;'c%?:
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> 2nd order stats: R;(z) = S(2)a;(2)al (2) = vim(2)ui(2)ul;

2

» difference: u;(z) is normal, u! (2)u;(z) = 1, while a;(z) is not:

a; (2)ai(z) = Ay (2)Ai 1) (2) = A7 (1) (2) A (19 (2)
with minimum-phase A;)(2);
> therefore:
a;(z)
H;(2)ui(2) = ——
(2)ui(z) T ()
14(2) = Ai () (2)S()AT 4 ()

» from a single measurement R;(z), we cannot say anything about

a;(z) or S(z).
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Multiple Measurements Strathclyde
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» If we have several measurements ¢ =1...1:

__ai(?)
Ai,(-i-) (2)
7i(2) = Ay (2)S(2) A} (1 (2)

» we can extract S(z) as the greatest common divisor

H;(2)u;(2)

5(z) = GCD{m1(2) ... v(2)};

> we can then extract the terms A; (4)(z), and hence determine the
vectors a;(z) save of an arbitrary phase response due to the
allpass H;(z):

ai(z) = Ay () () Hi(2)ui(2) -
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Alternative DFT Domain Attempt Strathclyde
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» As an alternative, we take measurements in independent

frequency bins Q = %:

R = Ri(e/%) = a;(e/)S(e)a; (%)
= qi,k&,kqﬁfk .

» principal eigenvectors and eigenvalues for the measurement
campaigns are

_ai(e%)
q’L,k - |CLZ(€]Q’€)‘ b
Aige = S(e1%)]a; (/) .
> because of the normalisation, nothing can be extracted about the

source or the transfer functions.

10/15
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Numerical Example Strathclyde
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» Source with power spectral density

1 5 1

» vector of transfer functions during campaign ¢ = 1:

1 + 11
ai(z) = [ 3 fz—l ]
2

4

» vector of transfer functions during campaign ¢ = 2:

ax(s) = | _

[N
+ |

N[ —
NI NI
—
||

» based on these: PEVD computations for R;(z) and Ra(z), and
GCD calculation based on eigenvalues.

11/15



Overview Preliminaries Source-Sensor TFs Comparison Example Conclusions

Numerical Results — Source PSD Sirathlyde
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» Eigenvalues / source PSD for both measurements i = {1,2

T T T T T T T T T
04
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-6

normalised power spectral density / [dB]
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normalised angular frequency Q/(2mw)

!
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Numerical Result — Magnitude Responses | e
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» Eigenvectors / magnitude response for measurement ¢ = {1

T T T T T

0

normnalised magnitude / [dB]

-15 - 1 1 1 1 1 1 1 T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

normalised angular frequency Q/(2mw)
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Numerical Result — Magnitude Responses Il e
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» Eigenvectors / magnitude response for measurement i = {2

normalised magnitude / [dB]
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Summary and Critique ”s"{"rZ‘E'rfc
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» We can extract the source PSD and the magnitude responses
once we have at least two measurements;

» an independent frequency bin approach does not yield anything;

> the polynomial approach rests on an accurate parahermitian EVD,
and an accurate root finding / GCD algorithm;

» root finding is numerically challenging: research since Euclid
(300BC), with robust root-finding methods still on-going
(Grobner bases, algebraic geometry);

» nevertheless the approach gives a glimpse of the type of
advantages that a coherent broadband approach can offer.
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