IDENTIFICATION OF RADAR EMITTER TYPE WITH RECURRENT NEURAL NETWORKS

Sabine Apfeld, Alexander Charlish, Gerd Ascheid

Sensor Data and Information Fusion

Fraunhofer Institute for Communication, Information Processing and Ergonomics (FKIE) Wachtberg, Germany.

Introduction Traditional emitter identification uses database

Intercepted signals

Database

		PRI [µs]		RF [GHz]			PW [µs]			- 1		
Emitter	Mode	min	max	mod	min	max	mod	min	max	r	nod	- +
Em01	M01	740	760	stable	10	11	stepped	7	8	st	able	
	M02	400	460	jittered	9.5	9.8	stable	4	5	jit	tered	
Em02	M01	855	905	stable	4.5	5	stable	8	9	st	able	Ì,
	M02	200	700	stagger	4.5	5.5	stable	2	7	stagger		a
	M03	300	900	sine	4.5	5	stable	3	9	5	sine	Ì
Em03	M01	880	920	stable	4.7	5.3	stable	8	9	stable		r
	M02	900	1800	sawtooth	4	5	stable	9	18	sav	vtootl	n
EIN	03 M	02	900	1800 sawt	ooth	4	5 sta	ble	9	18	saw	rtooth
	Em03	M0	2 9	00 1800 s	awtoc	oth 4	4 5	stab	le	9	18	sawt

Introduction

Agile emitters require new methods

Multifunction Radars

- Perform several tasks in parallel
- Choose waveform parameters adaptively

Challenges

- No operational modes any more
- Fast switching between tasks
- Traditional database representation not suited

Needed

- New signal representation / modelling
- New methods for identification

Approach **REPRESENTATION & IDENTIFICATION**

Approach

Radar as a system that speaks a language

Hierarchical Modelling

- Modelling of the radar as a system that speaks a language
- Grammar defines the structural rules of the emissions

MPRF = Medium Pulse Repetition Frequency HPRF = High Pulse Repetition Frequency

N. A. Visnevski, V. Krishnamurthy, A. Wang, and S. Haykin, "Syntactic modeling and signal processing of multifunction radars: A stochastic context-free grammar approach," Proceedings of the IEEE, 2007. S. Apfeld, A. Charlish, and G. Ascheid, "Modelling, Learning and Prediction of Complex Radar Emitter Behaviour," IEEE International Conference on Machine Learning and Applications (ICMLA), 2019.

Approach Long Short-Term Memory

Long Short-Term Memory (LSTM)

- Variant of a recurrent neural network
- Keeps information about past input in its internal state ("memory")
- Output depends on current and past inputs
- Allows for the analysis of long-term dependencies

Identification of Emitter Type Processing chain

Processing steps

1.

Deinterleaving: Pulses are sorted by common properties (and hopefully by emitter)

Identification of Emitter Type Processing chain

Processing steps

- 1. Deinterleaving: Pulses are sorted by common properties (and hopefully by emitter)
- 2. Symbol extraction: Pulses are translated to symbols

Processing chain

Processing steps

2

- 1. Deinterleaving: Pulses are sorted by common properties (and hopefully by emitter)
- 2. Symbol extraction: Pulses are translated to symbols
 - LSTM: Emitters are identified based on symbols

Example emitter with different resource management methods

Example Emitter

- Simulated airborne radar
- Three different resource management methods:
 - Quality of Service (QoS)
 - Simple Rules (Rules-v1)
 - Improved Rules (Rules-v2)
- Like three emitters with same language but different grammar
 - \rightarrow Especially hard to distinguish!

Example scenario with resource allocation

Example emitter with different resource management methods

Example Emitter

- Each emitter has a dictionary containing its symbols (i.e. letters, syllables, words, commands, and functions)
- Resource management methods differ in their complexity

Method	Letter	Syllable	Word	Command	Function
QoS	18	25380	26653	10	3
Rules-v1	13	103	21	2	3
Rules-v2	18	27786	34440	10	3

Number of symbols used by each emitter

LSTM training details

- LSTMs are trained with different sequence lengths (number of consecutive symbols from the same emitter)
 - LSTM₁₀ Trained with a sequence length of 10 symbols
 - **LSTM**_{rand} Trained with random sequence lengths \in [1, 1400]
 - LSTM_{scen} Trained with complete scenarios
- Smallest network: one LSTM layer with 4 cells
- Largest network: one LSTM layer with 16 cells
- Batch: 120 simulation runs in parallel
- Internal state of LSTM cells kept between batches

Identification of Emitter Type **EXPERIMENTAL EVALUATION**

Evaluation Method

- Comparison of the LSTMs to
 - Random guessing
 - Uniform probability for each emitter, i.e. 33.33%
 - Dictionary lookup
 - Weight of an emitter is 1 if complete sequence is in its dictionary, 0 otherwise
 - Weights are normalised, random selection of emitter ID if equal weights
 - Resembles database lookup
- Sequence lengths: 1, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, and 1400 symbols
- Scenarios:
 - Ideal data
 - Corrupted data with missing and additional symbols

Evaluation Results for letters & functions

Dictionary lookup

Random guessing

Letters (Pulses) and Functions

- Emitters cannot be distinguished based on letters and functions
- LSTMs assign complete input to the same emitter

 \rightarrow LSTM₁₀

→ LSTM_{rand}

LSTM_{scen}

Evaluation Results for syllables

Syllables (Bursts)

- QoS radar is recognised based on its syllables
- Two rule based radars are confused
- LSTM₁₀ much better than the others for only one syllable

Evaluation Results for words

Words (Dwells)

- QoS radar is recognised based on its words
- Two rule based radars are distinguished with increasing sequence length
- LSTM₁₀ much better than the others for only one word but does not improve with increasing sequence length

Evaluation Results for words – LSTM_{rand}

Evaluation Results for commands

Commands

- Emitters are hard to distinguish based on the commands
- LSTM₁₀ identifies the QoS radar with 77% accuracy
- LSTM_{scen} recognises the rules-v1 radar with 50% accuracy when sequences are longer, but almost never the QoS radar

Fraunhofer

RESULTS WITH CORRUPTED DATA

© Fraunhofer

Evaluation

Evaluation Missing symbols

Evaluation Additional symbols

- All LSTMs are very robust with respect to additional syllables
- LSTM_{rand} does not perform as well as the others with additional words

Words

 $\rightarrow 0$

Additional words [%]

→ 1, single

---- 1, blocks of five

Summary & Conclusion

Emitter type identification with hierarchical modelling

- Example emitters mainly use the same symbols → especially hard to distinguish
- LSTMs are able to recognise the resource management method
- Identification accuracy depends on sequence length
 - More symbols needed to distinguish between very similar emitters
- Radar words (dwells) are the modelling level best suited for identification
- LSTMs are in general very robust with respect to missing and additional symbols

Contact address

Name:	Sabine Apfeld
Department:	Sensor Data and Information Fusion
Phone:	+49 228 9435 841
E-Mail:	sabine.apfeld@fkie.fraunhofer.de

