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Introduction
Traditional emitter identification uses database
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Introduction
Agile emitters require new methods

Multifunction Radars

 Perform several tasks in parallel

 Choose waveform parameters adaptively

Challenges

 No operational modes any more

 Fast switching between tasks

 Traditional database representation not suited

Needed

 New signal representation / modelling

 New methods for identification
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REPRESENTATION & IDENTIFICATION
Approach
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Approach
Radar as a system that speaks a language
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MPRF = Medium Pulse Repetition Frequency

HPRF = High Pulse Repetition Frequency
Hierarchical Modelling

 Modelling of the radar as a system that speaks a language 

 Grammar defines the structural rules of the emissions

Letters
(Pulses)

Syllables
(Bursts)

Words
(Dwells)

Commands

Functions

2-Syll.-MPRF 2-Syll.-MPRF 3-Syll.-HPRF

Search Track Track
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Approach
Long Short-Term Memory

Long Short-Term Memory (LSTM)

 Variant of a recurrent neural network

 Keeps information about past input in its internal state (“memory”)

 Output depends on current and past inputs

 Allows for the analysis of long-term dependencies
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Identification of Emitter Type
Processing chain

Processing steps
1. Deinterleaving: Pulses are sorted by common properties (and hopefully by emitter)
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Identification of Emitter Type
Processing chain
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Processing steps
1. Deinterleaving: Pulses are sorted by common properties (and hopefully by emitter)
2. Symbol extraction: Pulses are translated to symbols
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Identification of Emitter Type
Processing chain
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Processing steps
1. Deinterleaving: Pulses are sorted by common properties (and hopefully by emitter)
2. Symbol extraction: Pulses are translated to symbols
3. LSTM: Emitters are identified based on symbols

Identification accuracy depends 
on number of consecutive 

symbols from the same emitter!
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Identification of Emitter Type
Example emitter with different resource management methods
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Functions:       search confirm track

Example Emitter

 Simulated airborne radar

 Three different resource management methods:

 Quality of Service  (QoS)

 Simple Rules           (Rules-v1)

 Improved Rules      (Rules-v2)

 Like three emitters with same language but different grammar

 Especially hard to distinguish!

Example scenario with resource allocation

resource allocation
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Identification of Emitter Type
Example emitter with different resource management methods
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Example Emitter

 Each emitter has a dictionary containing its symbols (i.e. letters, syllables, words, commands, and functions)

 Resource management methods differ in their complexity

Number of symbols used by each emitter
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 LSTMs are trained with different sequence lengths (number of consecutive 
symbols from the same emitter)

 LSTM10 Trained with a sequence length of 10 symbols

 LSTMrand Trained with random sequence lengths ∈ [1, 1400]

 LSTMscen Trained with complete scenarios

 Smallest network: one LSTM layer with 4 cells

 Largest network: one LSTM layer with 16 cells

 Batch: 120 simulation runs in parallel

 Internal state of LSTM cells kept between batches
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Identification of Emitter Type
LSTM training details

Mapping of 
symbols to 

vectors
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EXPERIMENTAL EVALUATION
Identification of Emitter Type
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Evaluation
Method

 Comparison of the LSTMs to

 Random guessing 

 Uniform probability for each emitter, i.e. 33.33%

 Dictionary lookup 

 Weight of an emitter is 1 if complete sequence is in its dictionary, 0 otherwise

 Weights are normalised, random selection of emitter ID if equal weights

 Resembles database lookup

 Sequence lengths: 1, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, and 1400 symbols

 Scenarios:

 Ideal data 

 Corrupted data with missing and additional symbols
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Evaluation
Results for letters & functions

Letters (Pulses) and Functions

 Emitters cannot be 
distinguished based on 
letters and functions

 LSTMs assign complete input 
to the same emitter
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Evaluation
Results for syllables
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Syllables (Bursts)

 QoS radar is recognised based on its syllables

 Two rule based radars are confused

 LSTM10 much better than the others for only one syllable

~25-50 s~6-9 s
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Evaluation
Results for words
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~35-45 s ~2.5-3 min

Words (Dwells)

 QoS radar is recognised based on its words

 Two rule based radars are distinguished with increasing 
sequence length

 LSTM10 much better than the others for only one word but does 
not improve with increasing sequence length
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Evaluation
Results for words – LSTMrand
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Evaluation
Results for commands
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Commands

 Emitters are hard to distinguish based on the commands

 LSTM10 identifies the QoS radar with 77% accuracy

 LSTMscen recognises the rules-v1 radar with 50% accuracy when 
sequences are longer, but almost never the QoS radar
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RESULTS WITH CORRUPTED DATA
Evaluation
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Evaluation
Missing symbols

Missing symbols [%]

Syllables Words
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Additional words [%]

Evaluation
Additional symbols

 All LSTMs are very robust with 
respect to additional syllables

 LSTMrand does not perform as well 
as the others with additional words

Words
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Summary & Conclusion
Emitter type identification with hierarchical modelling

 Example emitters mainly use the same symbols  especially hard to distinguish

 LSTMs are able to recognise the resource management method

 Identification accuracy depends on sequence length

 More symbols needed to distinguish between very similar emitters

 Radar words (dwells) are the modelling level best suited for identification

 LSTMs are in general very robust with respect to missing and additional symbols
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