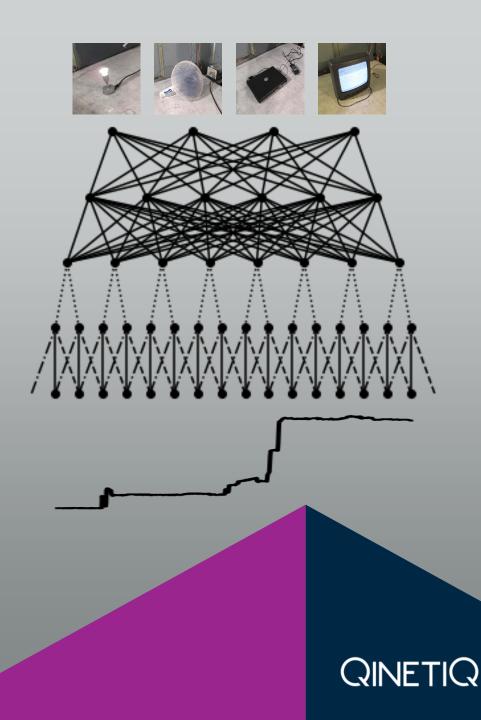
Electrical device classification using deep learning

Dr Richard Lane

Sensor Signal Processing for Defence Conference (SSPD)

15-16 September 2020



Contents

1 Introduction

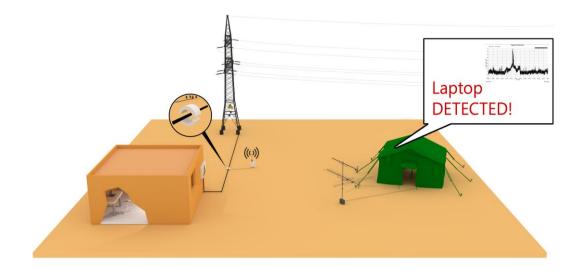
- 2 Electrical Device Data
- 3 Generating Realistic Simulated Data
- 4 Classification Algorithms
- 5 Performance Assessment
- 6 Conclusions

Introduction

Introduction

- Electrical devices unintentionally inject signals onto the mains power supply
- Can measure current using commercially available equipment designed for EMC testing
- Time series produced by various devices are visually distinct when switched on or off
- Allows identification of devices
- Deduce the "pattern of life" of equipment
- Applications:
 - Smart metering
 - Intelligence gathering

https://nl.aliexpress.com/item/Broadlink-SP2-UK-Standard-Smart-Home-Wireless-WiFi-Remote-Control-Electrical-Smart-Plugs-Sockets-by-app/32796081850.html https://freepricecompare.com/tag/uk-smart-metering/

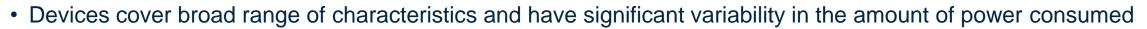


Electrical Device Data

Newtons 4th Power Analyzer &

Measurement Set Up

- Measurements of several devices were made:
 - Compact fluorescent lamp (CFL)
 - Cathode ray tube (CRT) television
 - Laptop and charger (2 different models of charger)
 - Power drill
 - Desk fan
 - Filament lamp
 - Flat screen television
 - Halogen lamp
 - Light emitting diode (LED) lamp
 - Nokia and Samsung phone chargers.

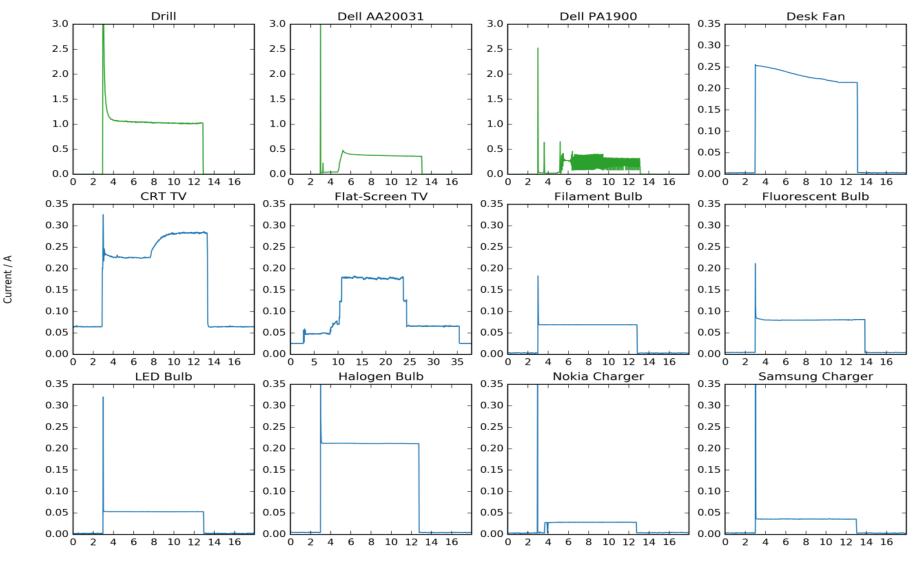


- Root mean-square (RMS) current signals measured at sample rate of 50 Hz
- Data recorded for the cycle: power off, power on, power off
- Signals recorded with a consumer unit typically used with building electrical supplies and a 15 m extension lead
- Measurements representative of what could be obtained in the field with a passive measurement device

Selection of Devices

Device Signatures

- 12 devices
- 233 time series



Time / s

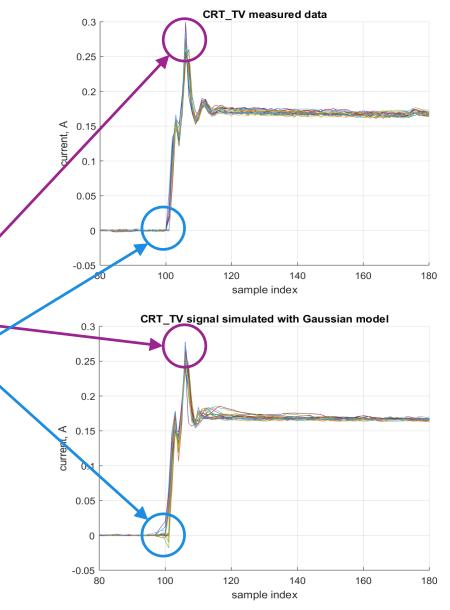
Generating Realistic Simulated Data

Motivation for simulating data

- Measurements were made for devices operating individually
 - Different days to test the consistency of device signatures over time
 - On/off events manually annotated
- Need to analyze data from devices operating simultaneously
 - Number of device combinations is huge
 - Impractical to annotate large amounts of measured data
- Process for simulating device signatures is needed
- Previous simulation based on measurements was developed
 - Analyzes nonlinear variations in time exhibited by each signature
 - Includes local variations in signal amplitude
 - Constructs a statistical model
 - Can be used to generate signals randomly for each device
- Enables possibility of simulating large amounts of data

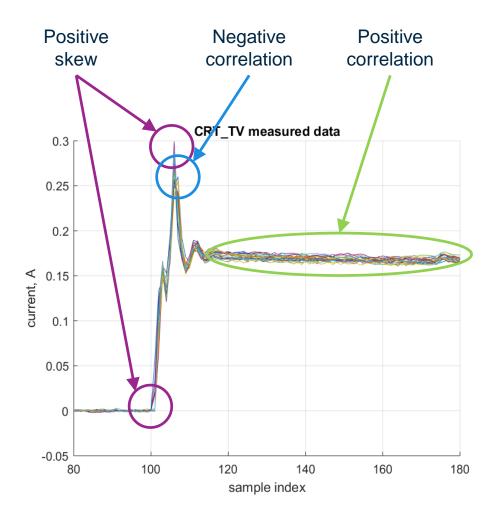
Motivation for improved model

- Previous model
 - Amplitude and time statistics
 - Multi-variate Gaussian probability distribution
 - Reasonable assumption for much of the data
- Gaussian simulated data can't model this properly
 - Some parts of real signals have skewed distributions
 - Real data peak takes on higher values than expected
 - Simulation has significant negative relative current values
- This motivates need for a non-Gaussian distribution



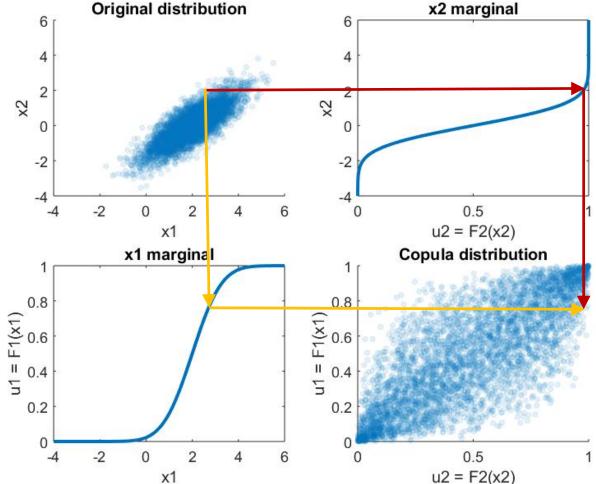
Choosing a suitable model

- Signal characteristics: skewed and correlated
- Skewed data: positive and negative
- Correlated data:
 - Correlations between signal values at different times
- Positive correlations
 - Slowly varying signals likely to be high if previous sample was high
- Negative correlations
 - Sharp spikes in the data often spread over adjacent samples
 - Total constant energy => if one sample is high then adjacent one will be low
- Modelling asymmetric correlated non-Gaussian data is not straightforward
 - Not many suitable probability distribution families exist
 - Possible to model such data using copulas

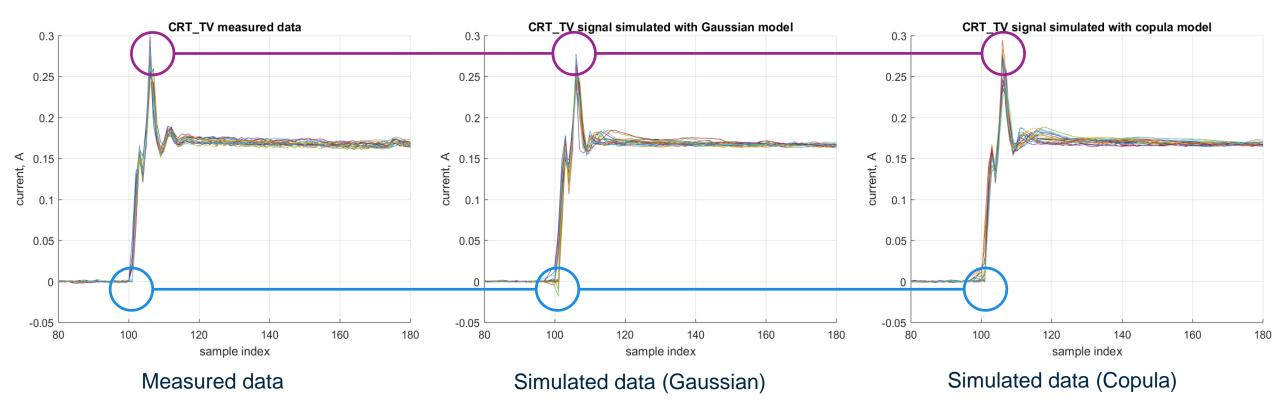


Copulas

- · Copulas allow separate modelling of:
 - Distribution of each dimension "marginal"
 - Distribution of correlations between dimensions "copula"
- Copula properties:
 - Multivariate distribution function
 - Support on the unit hypercube $[0,1]^d$
 - Uniform marginal distributions for each dimension
- · Sklar's theorem
 - If H is an arbitrary multidimensional distribution function
 - With one-dimensional marginals F_1, \ldots, F_d
 - $H(x_1, ..., x_d) = C(F_1(x_1), ..., F_d(x_d))$
 - For some copula C, which always exists.
- Freedom to choose different distributions for each dimension
 - Including distributions from different families
- Important for signal-modelling task
 - Use non-Gaussian distributions for skewed data (beta distribution)
 - Model correlated data (Gaussian copula)



Simulated data comparison

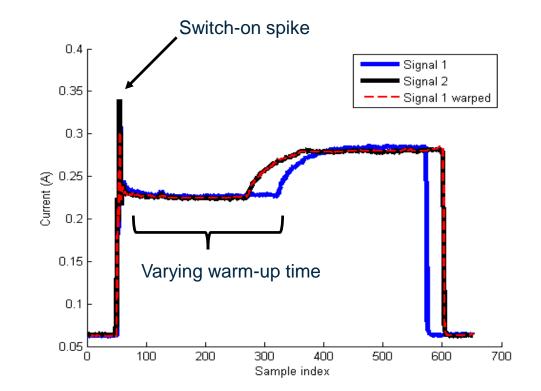


- Copula-generated signals:
 - Are realistic compared to measured data
 - Have higher fidelity than those Gaussian-generated signals

Classification Algorithms

Baseline classifiers for comparison

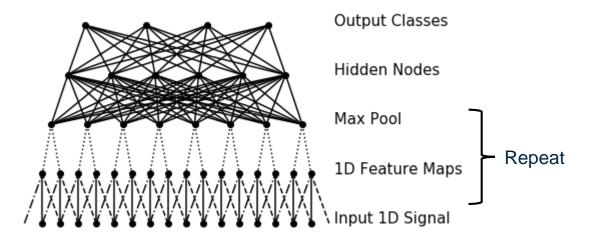
- Correlation classifier
 - Nearest neighbour type of classifier
 - Computes cross-correlation function between pairs of signals
 - "Distance" is inverse of peak of correlation function
 - Deals with linear shifts in time
 - Fast: $O(n_t \log(n_t))$ per comparison*
- Dynamic time warping (DTW)
 - Nearest neighbour type of classifier
 - Computes DTW distance between pairs of signals
 - Deals with linear and non-linear shifts/scales in time
 - Slow: $O(n_t^2)$ per comparison*
- Total computation speed
 - Training: effectively zero (just store the data)
 - *Test: $O(n_{train})$



Deep learning classification

- Convolutional neural net (CNN) model
 - Robust to linear and non-linear signal variations in time
 - Structure inspired by VGG-16 image recognition architecture
 - (Convolution Max Pool)× n_l Dense Dropout Softmax
 - Adapted to 1D signals
- CNN model characteristics
 - Architecture search found optimum values
 - Number of feature maps/filters $n_f = 32$
 - Number of max pool layers $n_l = 6$
 - Number of hidden dense nodes $n_h = 32$
 - Resulting network has 28,364 parameters
 - Zero padding at signal edges (signal remains same length)
- Training regime
 - Adam optimizer
 - Categorical cross-entropy loss function
 - 100 training epochs

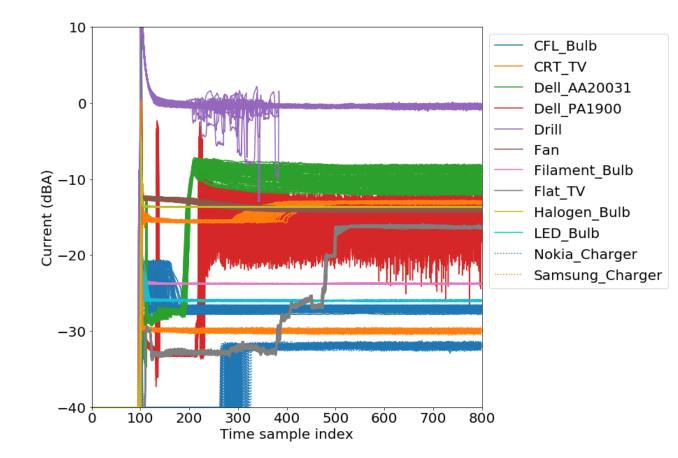
Layer Type	Filter size	#Filters or nodes	Activation function	#Parameters
Conv1D	3	n _f	ReLU	128
MaxPool1D	2	N/A	None	0
Repeat the above two layers $(n_l - 1)$ times				$3104(n_l - 1)$
Dense	N/A	n _h	ReLU	12320
Dropout	N/A	0.5	None	0
Dense	N/A	n _d	Softmax	396



Performance Assessment

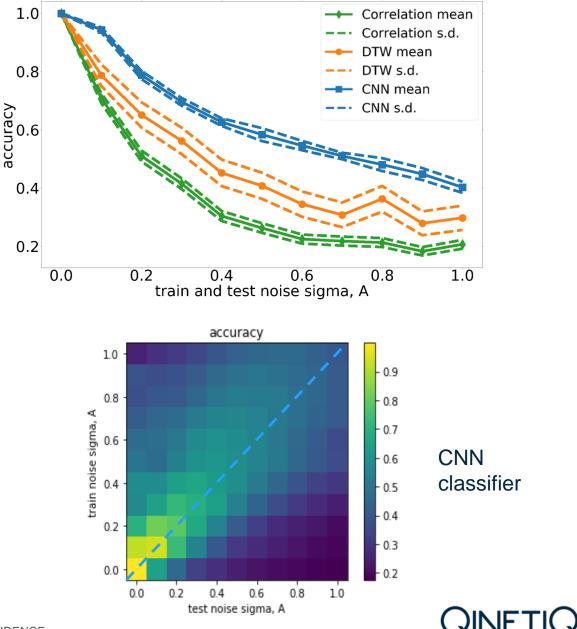
Experiment setup: data and classifiers

- Signals simulated for each of 12 devices
 - 200 switch-on event signals per device
 - 800 time samples per signal (16 s @ 50 Hz)
- Data split into training (70%) and test (30%) sets
 - 1680 total training examples
 - 720 total test examples
- Three classifiers applied to the data
 - Correlation classifier
 - Dynamic time warping (DTW)
 - Convolutional neural net (CNN)
- Effect of simultaneous devices analyzed
 - Add zero-mean white Gaussian noise
 - Varying standard deviation



Effect of noise on classifier accuracy

- 10 Monte Carlo runs
 - "Random" guess accuracy is 0.08 for 12 devices
- Experiment 1: Same train and test noise power
 - Noise-free data can be perfectly classified
 - CNN has best performance as noise is increased
 - DTW has middling performance
 - Correlation is worst
- Experiment 2: Different train and test noise power
 - Investigated for CNN only
 - Performance best when noise power is same
 - Large drop in accuracy for large mismatch in noise
 - Asymmetry:
 - Better: Trained with noise, tested with noise-free data
 - Worse: Trained noise-free, tested with noisy data
 - Need to train classifier in a variety of noise environments



0.95

0.90

0.85

0.80 0.75 0.75 0.70

0.65

0.60

0.55

Ó

20

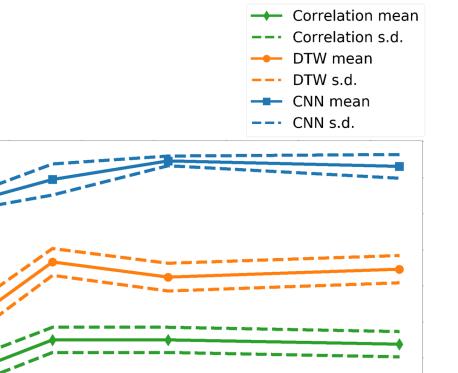
40

60

training samples per class

Effect of training data size on classifier accuracy

- More data => better model
- Accuracy measured as function of training set size
 - Noise level of 0.1 A used for train and test
 - Three classifiers tested
 - Performance increases rapidly with training set size
 - Plateaus after 32-64 training samples per class
- Small data situation (1-2 samples per class)
 DTW outperforms the CNN
- CNN gains largest benefit from training data
 - Outperforms other classifiers with four or more training samples per class



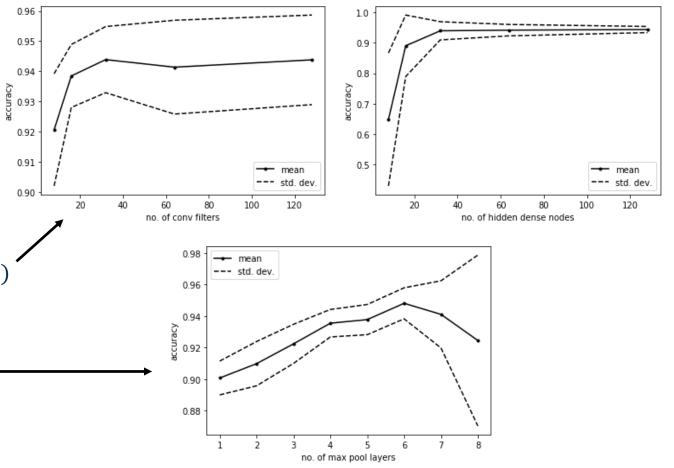
80

100

120

CNN structure sensitivity analysis

- One network structure parameter varied at a time
- · Other parameters held at optimum values
 - Number of feature maps/filters $n_f = 32$
 - Number of hidden dense nodes $n_h = 32$
 - Number of pool layers $n_l = 6$
- Gaussian noise added (standard deviation 0.1 A)
 - Added during training and testing
 - Ensures some robustness to noise
- Weak dependence on filters (n_f) and hidden nodes (n_h)
 - As long as parameters are above minimum threshold
- Moderate dependence on layers (n_l)
 - Using 7 or 8 layers starts to lead to overfitting
- Structure should be useful in range of situations
 - Not over-trained to this specific data set



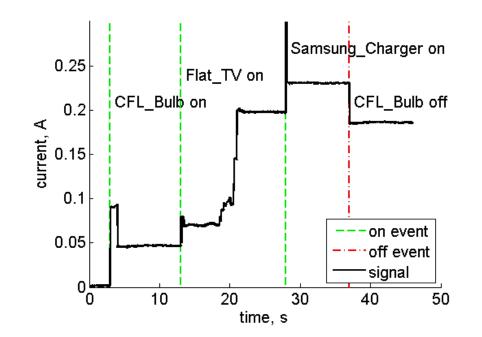
Conclusions

Conclusions and further work

- Sophisticated data simulation process has been designed
 - Can generate unlimited amounts of single-device event data
 - Used to test classifier performance as a function of training data set size or noise level
- CNN classifier developed
 - Maintains fair accuracy even with noise levels of 1.0 A
 - Better than the DTW and correlation classifiers
 - Only 4 examples per class required to outperform other classifiers

• Further work

- Simulation enables creation of long time series
- Multiple devices operating simultaneously
- Annotated switch-on or off events
- Analyze signal detection algorithms
- Test using data from a real building



QINETIQ