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I Plan

| Advanced Sensor Processing based on Koszul Information Geometry

» Geometric Matrix CFAR/STAP for (very) slow targets detection in clutter
» Complex-Valued CNN & Covariance-Matrix-Valued HPDNet for Micro-Doppler ATDR
» Tracker parameters tuning by Deep Learning for fracking hyper-maneuvering targets

any way, in whole ol

» Multi-Agent Reinforcement Learning for Sensor Resources Management for tracking
hyper-maneuvering targets

ent of THALES - © 2021 THALES. Allrights reserve

> Multi-Sensors Collaborative Tracking by Distributed Auctions for fracking in saturating
scenario (swarm, fleet of targets, ...)
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I Plan

) | Modern Sensor Processing based on Symplectic Model of Information
. > lie Group Based Equivariant GCNN for Adaptive Doppler Clutter Map

> Lie Group Based Frenet-Seret IEKF (Invariant Extended Kalman Filter) for fracking
hyper-maneuvering targets
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> Lie Group Based Target Recognition on Kinematics for Drone/Birds Classification

> Souriau Symplectic Model of Information for Lie Group Statistics and Machine Learning

- Entropy as Casimir Function in Coadjoint Representation

- Koszul-Fisher Metric on Lie Group

- Covariant Maximum Entropy Density (Gauss Density) on Lie Group
- Lie Groups Machine Learning

THALES
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I From PASCALINE Machine to HPC or Geometric Integrating Machines

Geometric & Symplectic
Integrators based on Lie
Group Algebra

(Intrinsic Computation without
coordinates)

'4’76/
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I Al/Machine Learning Evolution: ALGEBRA COMPUTATION STRUCTURES

e ALGEBRA

Ber(X) = det{A) det(D - CA 'B) !
Berezian Determinant

— ALGEBRA

Vectors space, commutative

_ maftrix operations, eigen-analysis
TR R ALGEBRA

Boolean logic digital circuits
using electromechanical relays
as the switching element.

s



I Rational to Use Lie Groups for THALES Machine Learning Applications

Lie Group is

orin part

ed.

Simple ®
(natural principles

as foundations of
Geometry)

ny way, in wh \

Lie Group uses
all Symmetries of
your problem

Lie Group is o
Coordlnate Free
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Lie Group
preserves
invariance wrt all
transformations

Lie Groups Time
Serie Captures
Intrinsic Time
Dynamic (e.g.
Movement)
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I Lie Group
| GROUP (Mathematics)

A set equipped with a binary operation with 4 axiom:s:

> Closure Va,beG thenaebeG

» Associativity Va,b,ceG then (a.b).c — a.(b.c)
> Identity Jee G suchthateea=aee=a

» inverfibility  VaeG,3beG such thatbea=aeb=¢e

] LIE GROUP

» A group that is a differentiable manifold, with the property that the gt
operations of multiplication and inversion are smooth maps:

VX, Yy €G then ¢:GxG — G then ¢(x, y) = Xy is smooth

> A lie algebra g =T.G is a vector space with a binary operation calle
the Lie bracket [.,. I X T — @ that safisfies axioms:

lax+by, z]=a[x,z]+b[y,z] ; [xx]=0; [x,y]=-[y,X]
Jacobi Identity: | x,[y,z] |+ z.[x y]|+| y.[z.x]]=0

OPEN

7 [x y]=xy— yx for Matrix Lie Group
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Lie Groups Tools Development: From Group to Co-adjoint Orbits
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Lie Group & Statistical Physics

Jean-Michel Bismut — Random Mechanics

Jean-Marie Souriau — Lie Group Thermodynamics, Souriau Metric
Jean-Louis Koszul — Affine Lie Group & Algebra representation

Harmonic Analysis on Lie Group & Orbits Method
Pierre Torasso & Michéle Vergne — Poisson-Plancherel Formula
Michel Duflo — Extension of Orbits Method, Plancherel & Character
Alexandre Kirillov — Coadjoint Orbits, Kirillov Character

Jacques Dixmier — Unitary representation of nilpotent Group

Lie Group Representation

Bertram Kostant — KKS 2-form, Geometric Quantization
Alexandre Kirillov — Representation Theory, KKS 2-form
Jean-Marie Souriau — Moment Map, KKS 2-form, Souriau Cocycle
Valentine Bargmann — Unitary representation, Central extension

Lie Group Classification

Carl-Ludwig Siegel — Symplectic Group

Hermann Weyl — Conformal Geometry, Symplectic Group
Elie Cartan — Lie algebra classification, Symmetric Spaces
Willem Killing — Cartan-Killing form, Killing Vectors

Group/Lie Group Foundation

Henri Poincaré — Fuchsian Groups

Felix Klein — Erlangen Program (Homogeneous Manifold)
Sophus Lie — Lie Group

Evariste Galois/Louis Joseph LaganggrSHtiAnh;(E S
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I Structuring Principles for Learning : Calculus of Variations

ﬁean-l\/lichel
: Bismut

i : Souriau
; Joseph Simeon Henri Cartan

: Pierre Louis Denis Poincare

i Lagrange Poisson :

 Pierre y LOUI? _ BT

‘ide Fermat MVaubertuis »

Random
Nz Mechanics
Souriau
Moment
Poincaré Map,

Cartan Souriau
(Euler) Integral || Symplectic
Poincgré Invariant 2 Form,
Equation Lie Groups
hermodynamics

(Euler) Poisson
_ Lagrange Bracket,
Maupertuis's  Equation Poisson Geometry
Fermat's principle principle of Structure

of least time least length | T H /<L ES
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I Bedrock of Symplectic Theory of Information Geometry

Jean-Marie Souriau (ENS 1942) Jean-Louis Koszul (ENS 1940)
THALES

Building a future we can all trust
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I J.M. Souriau Book « Structure des systemes dynamiques », 1969

J-M. SOURIAL | Introduction of symplectic
geometry in mechanics

Structure | Invention of the “moment map”

deS | Geometrization of Noether's
S)'StémCS theorem

J.-M. Sourias dynamiques

| Barycentric decomposition

Structure of maitrises de mathématiques theorem

Dynamical Systems

st i | The total mass of an isolated

Sately S5 Setamd dynamic system is the class of
£ Crnnar f cohomology of the default of

G M Tuywnsn

Tt fien equivariance for the moment map

- Lol PO | Lie Groups Thermodynamics
Birkhduser I DUNOD UNIVERSITE (Chapter IV)

http://www.imsouriau.com/structure des systemes dynamiques.htm
http://www.springer.com/us/book/9780817636951 T H ALES

| 11 OPEN we can all trust



http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm
http://www.springer.com/us/book/9780817636951

I SOURIAU 2019
| SOURIAU 2019

SOURIAU 2019

hitps://www.youtube.com/watch?v=beM2pUK1H70

- % Internet website : http://souriau2019.fr

{¢ . T

In 1969, 50 years ago, Jean-Marie Souriau published the
book "Structure des systéme dynamiques", in which using
the ideas of J.L. Lagrange, he formalized the "Geometric
Mechanics" in its modern form based on Symplectic
Geomeitry

21 THALES. Allr

Chapter IV was dedicated to "Thermodynamics of Lie
groups” (ref André Blanc-Lapierre)

pted, publ
1 CONS¢ hv’\HéLti © 20

:» Testimony of Jean-Pierre Bourguignon at Souriau'19? (IHES
> director of the European ERC)

Jean-Marie SOURIAU

and JEAN-MARIE SOURIAU
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http://souriau2019.fr/
https://www.youtube.com/watch?v=93hFolIBo0Q&t=3s

I UK Study on Souriau Work: Andrew Beckett (Maxwell Institut, Edinburgh)

HOMOGENEOUS SYMPLECTIC SPACES

AND CENTRAL EXTENSIONS
MAXENT2022

ANDREW BECKETT g
(WoRK WITH JOSE FIGUEROA-O'FARRILL)

y
abe iy,
(- .1_.‘_'-.

MAXWELL INSTITUTE GRADUATE SCHOOL, < aes

UNIVERSITY OF EDINBURGH D FMAYWELL INSTITUTE FOR
MaATHEMATIC AL SCIENCES

p e rHALES

e we can all trust
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I Geometric Structures of Information, SPRINGER

Geometric Structures of Information

> https://www.springer.com/us/book/978303002519
9

Frank Nielsen FEditor

Paper on Jean-Louis Koszul

GeOmet”C » Barbaresco, F., Jean-Louis Koszul and the

Elementary Structures of Information Geometry,
Stru Ctu reS Of Geometric Structures of Information, pp 333-392,
SPRINGER, 2018

I n fo rm ati O n » hitps://link.springer.com/chapter/10.1007%2F278-

3-030-02520-5 12

4;_ Springer e T H /\ L E S
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https://link.springer.com/chapter/10.1007/978-3-030-02520-5_12

Koszul Book on Souriau Work:
The Little Green Book

s
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Koszul Book on Souriau Work:

The Little Green Book Jean-Louis Koszul
Yiming Zou
Jean-Louls Koszul - Yiming Zou

Introduction to Symplectic Geometry

Forewords by Michel Nguiffo Boyom, Frédéric Barbaresco and Charles-Michel Marle

This introductory book offers a unique and unified overview of symplectic geomet-
ry, highlighting the differential properties of symplectic manifolds. It consists of six
chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic
G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the
differential properties of graded symplectic manifolds of dimensions (o,n). It is a useful

L
reference resource for students and researchers interested in geometry, group theory, I nt rOd u C t I O n to
analysis and differential equations.
Symplectic

lE

2) Sclence Press C;\! Sorros
4 Begng e i rlnbtf



file:///C:/Données/T0004940/ex-Bureau/IHES 2016 expose/Presentation IHES/Introduction to Symplectic Geometry.mp4

INFORMATION GEOMETRY, SPRINGER JOURNAL
https://www.springer.com/mathematics/geometry/journal/41884

Special Issue:

Affine Differential Geometry and Hesse Geometry:
A Tribute and Memorial to Jean-Louis Koszul
Submission Deadline: 30th November 2019

Jean-Louis Koszul (January 3, 1921 — January 12, 2018) was a French mathematician
with prominent influence to a wide range of mathematical fields. He was a second
generation member of Bourbaki, with several notions in geometry and algebra named
after him. He made a great contribution to the fundamental theory of Differential
Geometry, which is foundation of Information Geometry. The special issue is dedicated to
Koszul for the mathematics he developed that bear on information sciences.

Both original contributions and review articles are solicited. Topics include but are not
limited to:

- Affine differential geometry over statistical manifolds

- Hessian and Kahler geometry

- Divergence geometry

- Convex geometry and analysis

- Differential geometry over homogeneous and symmetric spaces

- Jordan algebras and graded Lie algebras

- Pre-Lie algebras and their cohomology

- Geometric mechanics and Thermodynamics over homogeneous spaces

Guest Editor:
Hideyuki Ishi (Graduate School of Mathematics, Nagoya Univel§tyj=] /A L E S

OPEN
Building a future we can all trust




I Main Concepts behind Symplectic Model of Information Geometry

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part

or disclosed to a third party without the prior written consent of THALES

- © 2021 THALES. Allrights reserved.
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STRUCTURES Q’*ﬁ?
. Geometric Structures
. Lie Groups Structures
. Poisson & Symplectic Structures

Information Structures GEOMETRIC SCIENCE
OF INFORMATION

/_

INVARIANTS

Koszul-Souriau Fisher Metric
Souriau Gibbs Density

Souriau Moment Map CALCULUS OF VARIATION
Representation Theory & Coadjoint 1. Poincaré-Cartan Integral Invariants
Orbits 2. Euler-Poincaré Equation

3. Souriau Maxwell Principle

SSPD Conference, London, 13th-14th September 2022 OPEN

COORDINATE FREE

Fréchet Barycenter

Natural Gradient & Fisher Metric
Natural Langevin Dynamics
Geometric & Symplectic Integrators

PN~

ENTROPY

1. Invariant Casimir Function in Coadjoint
Representation

2. Legendre Transform of Log Laplace
Transform

3. Maximum Entropy Probability Density

THALES

Building a future we can all trust



Towards Lie Group & Symplectic Machine Learning

Dee
Neural @ Natural L P
. Networks Perceptron Deep Langevin earning
- McCulioch & Pifts Learning Dvnamics on Lie Group
¢ (networks of Y Deep network
© binary  neurons Rosenblaft . Facebook's Alcan = FACEBOOK & MILA ¢ grehitecture fo Machine
< cando logic), compu"r.e.s learning perform fociol propose Natural learn more o0 .
“ Donald Hebb capabilfies 5 recognlthon s Gradient with appropriate Lie S Learnlng on
~  (Hebbian synaptic = dccurate as Stochastic roup features for
© plasticity) I.tO) ~ ==z oms Oy gl human&ofher © f - Langevin Gradiem. gcfioﬁ)’\ recognition .C: Homogeneous
" Nomert  wiener o~ | e 3 ?555'&2‘?&?523 o | onnolivier& = ¥ e zuricn, ku Q  Symplectic
. - o= 3 Gaetan M
: (cybernetics) '\7 g aeran Marced Leuven) Manifold

{

Caron)
a—fy— uy—. of Lie Group

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part

Dartmouth 2 Deep Leamning| |ic Grou co-adjoint
: : Natural g On Graph~ P Orbits
convention Gradient £| Natural - = Machine (Jean-Marie
% -  E— ininformation ~ © | &|Gradient —| racesook & N Learning Souriau model)
£ vq,, Geometry [RI ORSAY Lab 8 UCLA extend Deep Semi-supervised

f 'J Framework, RIKE infroduces Robust Learning on and nuclear

g introduces Natural Natural Gradient Graph. learning

E T o . I — Gradient based on for Deep Learning Convolutive frameworks based
. Fisher Information (Yann Ollivier & Network on Graph on Lie group

8 s o — Matrix Gaetan Marceau- (Xavier Bresson, ...) Theory (Fanzhang
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I Supervised & Non-Supervised Learning on Lie Groups

Geodesic Natural Souriau-Fisher Metric ‘

on Coadjoint Orbits

Extension of Fisher Metric for Lie
Group through homogeneous
Symplectic Manifolds on Lie

Gradient on Lie Algebra

Extension of Neural Network
Natural Gradient from Information
Geometry on Lie Algebra for Lie
Groups Machine Learning

Souriau Exponential Map

on Lie Algebra

Exponential Map for Geodesic

Group Co-Adijoint Orbits Natural Gradient on Lie Algebra
based on Souriau Algorithm for
Matrix Characteristic Polynomial

Frechet Geodesic Barycenter

© 2021 THALES. Allrights reserved.

Souriau Maximum Entropy
Density on Co-Adjoint Orbits

Covariant Maximum Entropy
Probability Density for Lie Groups
defined with Souriau Moment
Map, Co-Adjoint Orbits Method &
Kirillov Representation Theory

by Hermann Karcher Flow

Extension of Mean/Median on Lie
Group by Fréchet Definition of
Geodesic Barycenter on Souriau-
Fisher Meftric Space, solved by
Karcher Flow

5 Symplectic Integrator GLie Mean-S$hift on Lie Groups
preserving Moment Map qul:Jiﬁe with Souriau-Fisher Distance

Extension of Neural Network
Natural Gradient to Geometric
Integrators as Symplectic
integrators that preserve moment
map

| 20 SSPD Conference, London, 13th-14th September 2022

Extension of Mean-Shift for
Homogeneous Symplectic
Manifold and Souriau-Fisher Metric
Space

Learning

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part

or disclosed to a third party without the prior written consent of THA
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I GEOMSTATS: PYTHON Library for Lie Group Machine Learning

Geomstats

https://github.com/geomstats/geomstats

Comasrigens MO My

opEn-pune Python packsgs Ior compatstans sna dabst
TR MOUAEE ety 8 Laarning

bEreecerthony, [ryplnce
cs o musndloedy, The paciosge i organened inbo bass

vhe moduls jesssrey impismsnis conoepty in dfterenful geamatrg, s~ the mecule Jesssirng mplamenty ghat
ey dkpceaters bor daisy on snanfolds

.
To get starbed with geesatwts . 1ee the 2aa
For mory m-gepih appicaicns ol gecarcicy , e The

Tie docureniaton ol gaiciss can b inund on the decumer2abinn webuse
Il you Tedl peoantaty wnalu

plicip riathy £rle SUF Pt

Install geomstats via pip3

P . : E J " » -~ \ "' s “ plgl irazall gecmstata
hal-02536154, version 1

\ https://hal.inria.fr/hal-02536154 '

Geomstats: A Python Package for Riemannian Geometry in Machine 7
Learning

Wi Miolane
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I PYTHON Library for Machine Learning on Manifold and Lie Group

|i Compuiahons and statistics on manifolds with geometric structures

> Initiated by INRIA & Stanford University -, rons L'Orgmiﬁﬁtﬁ E’rize

> Point of contact Nina Miolane ' : ; 2016 « Woman in
: ' Science»

(Department of Stafistics - Stanford Stafistics)

» PYTHON GEOMSTATS Package:

- https://qgithub.com/geomstats/geomstats
- Python Package for Riemannian Geometry
) in Machine Learning

- Paper: hitps://arxiv.org/abs/1805.08308

ESPECIAL SESSION at GSI'19 conference

) Chaired by Nina Miolane & Alice Le Brigant

> www. gsi2019.org
> hitpgéé/cggfggémggp.un|v-ipqlopse.fr/statisﬁcs-geomeiry-qnd-1%B§>Iogy/ THALES PhD Award

13th-14th September 2022

IE 2018

Alice LE BRIGANT THALE 5
T T



https://github.com/geomstats/geomstats
https://arxiv.org/abs/1805.08308
http://www.gsi2019.org/

I Elsevier Handbook of Statistics n°46 « Geomeiry and Statistics »

ol =

statistics 46 = P Cotcad P )

SIERUIC T I SIS Symplectic theory of heat and information

s - Handbook of Statistics s
~ handbook of $ri ) u

geometry

Frederic Barbare

Svailabde online 22 &pnil 2027

https://www.elsevier.com/books/geometry-and-statistics/nielsen/978-0-323-91345-4 T H /\ L E S

https://www.sciencedirect.com/handbook/handbook-of-statistics uture we can all trust
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Contemporary Mathematics and Its
Applications: Monographs, Expositions
and Lecture Notes

Frontiers in Entropy Across
the Disciplines

Panorama of Entropy: Theory, Computation,
and Applications

https://doi.org/10.1142/12920 | November 2022
Pages: 650
Edited By: Willi Freeden (University of Kaisersiautern,
Germany) and M Zuhair Nashed (University of Central
Florida, USA)

World Scientific

Cannbsling Oeas Whngs

https://www.worldscientific.com/worldscibooks/10.1142/12920#t=aboutBook

SSPD C

World Scientific « Frontiers in Entropy Across the Disciplines »
Panorama of Entropy: Theory, Computation, and Applications

Frontiers in Entropy Across the Disciplines
presents a panorama of enfropy emphasizing mathematical theory, physical
and scientific significance, computational methods, and applications in
mathematics, physics, statistics, engineering, biomedical signals, and signal
processing.
Topics include entropy and society, enfropy and time, Souriau entropy on
symplectic model of statistical physics, new definitions of entropy, geometric
theory of heat and information, maximum entropy in Bayesian networks,
maximum enfropy methods, entropy analysis of biomedical signals (review
and comparison of methods), spectral entropy and its application to video
coding and speech coding, a comprehensive review of 50 years of entropy in
dynamics, a comprehensive review on enfropy, entropy-like quantities and
applications, topological entropy of multimodal maps, entropy production in
complex systems, enfropy production and convergence to equilibrium,
reversibility and irreversibility in enfropy, nonequilibrium entropy, index of
various entropy, entropy and the greatest blunder ever.

« Souriau Entropy based on Symplectic Model of Statistical Physics:
Three Jean-Marie Souriau's Seminal Papers on Lie Groups
Thermodynamics (Frédéric Barbaresco)

 Entropy Geometric Structure as Casimir Invariant Function in
Coadjoint Representation: Geometric Theory of Heat and
Information Based on Souriau Lie Groups Thermodynamics and Lie

Algebra Cohomology (Frédéric Barbaresco)
THALES

|2_4
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I Ecole de Physique des Houches SPIGL'20, July 2020

Q@ ERA: === 77

ECOLE DE
: : PHYSIQUE
L'; 'luea 51%{,\_ DES HOUCHES

Joint Structures and Common Foundation of Statistical
Physics, Information Geometry and Inference for Learning

»_ [ hitps://franknielsen.github.io/SPIG-
LesHouches2020/

https://www.youtube.com/playlist2list=PL
J o9ufcrEgwWEXTBPgQPJwAJhoUChMbROTr

Geometric Structures of
£ Statistical Physics,

~ Information Geometry,
© andLearning

a Springer

https://www.springer.com/jp/book/9783030779566
SSPD Conference, London, 13th-14th September 2022
|25

TH/\LES
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International Conference on Bayesianand
Maximum Entropy methods in Science and Engineering

4'|St MaxEnt2022 &=
Conference {j) ==

|26 JULY 18-22, IHP, PARIS




SEE GSI'23 Geometric Science of Information
\P Sept. 2023, Saint-Malo, Palais du Grande Large, France 6" Edition and 10" anniversary

e — — —— ——-— a. —
—— —_——— _—— - ——— e o— -

+ Gmometric S Caometric Scumes Ceometric Schence Crommtre Schemes Geometrc Sthesce

GSI'19 g
ENAC, Toulouse

ALES

re we can all trust
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I SEE GSI'23 Geometric Science of Information
Sept. 2023, Saint-Malo, Palais du Grande Large, France 6" Edition and 10" anniversary

T e Palais du Grand Large
5 g o § .. https://iwww.pgl-congres.com/

~rr Lt I
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European COST Network CallISTA (Cartan geometry, Lie, Integrable
Systems, quantum group Theories for Applications)

(O CostE COSTActions ~  Funding v  COST Academy Fund your network Q =

CUROFTAN COOPIRATION | SIARC" Q-COST

N SOENCE £ TEOHNOLOGY

CA21109 - Cartan geometry, Lie, Integrable Systems quantum group Theories

for Applications (CaLISTA) ~
& pDownloads | MOU: hitps://e-services.cost.eu/files/domain_files/CA/Action_CA21109/mou/CA21109-e.pdf

WEBSITE: https://www.cost.eu/actions/CA21109/

‘ﬁescnphon Symmeftry is a central unifying theme in mathematics and physics. This Action focusses on symmetries realized through Lie groups and Lie algebras. In
waddition o the spectacular achievements in representation theory, and differential geometry, Lie theory is also exceptionally important for the formalization of
§undomen’rol physical theories. CalISTA aims to advance cutting-edge research in mathematics and physics through a systematic application of the ideas and
gzhllosophy of Cartan geometry, a thoroughly Lie theoretic approach to differential geometry. In addition fo making major progress in Cartan geometry itself,
<L(;><:1LISTA aims to develop crucial applications to integrable systems and supersymmetric gauge theories. Quantum groups and their gquantum homogeneous
gs@oces come info the play as a bridge between these topics: quantum groups stem originally from the R-matrix formulation in integrable systems, and their
mogeneous spaces offer prototypical examples of noncommutative parabolic geometries. Parabolic geometry is the first and possibly the most important
cexomple of Cartan geometry, and one of the main aims of CalISTA is to obtain a quantum generalization.
§gjrpnsmg|y Lie theory and Cartan geometry play a role in an exciting new interpretation of the differential structure, and related dynamics, of models for popular
%:Hgorl’rhms of vision like Deep Learning and the more recent Geometric Deep Learning. CaLISTA aims to investigate and improve on these techniques. CaLISTA will
fpérovide essential mathematical models with far-reaching applications, placing Europe among the leading actors in these innovative research areaos.

Action keywords: Lie Theory - Carfan Geometry - Quantum Groups - Infegrable Systems - Vision
THALES

Building a future we can all trust
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I MARIE SKEODOWSKA-CURIE ACTIONS CalLIGOLA

Js0

SSPD Conference, London, 13th-14th September 2022
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geometry of deep Learning
and its Application
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I Plan

: | Advanced Sensor Processing based on Koszul Information Geometry

[ > Geometric Matrix CFAR/STAP for (very) slow targets detection in clutter ]
» Complex-Valued CNN & Covariance-Matrix-Valued HPDNet for Micro-Doppler ATDR
» Tracker parameters tuning by Deep Learning for fracking hyper-maneuvering targets

any way, i Wf \

» Multi-Agent Reinforcement Learning for Sensor Resources Management for tracking
hyper-maneuvering targets

ent of THALES - © 2021 THALES. Allrights re

> Multi-Sensors Collaborative Tracking by Distributed Auctions for fracking in saturating
scenario (swarm, fleet of targets, ...)

This document may not be reproduced, modified, adapted, published, franslated, in
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I Detection of new threats (slow moving targets)
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Spatio-Temporal Digital Measurement (and Polarimetric) of Radar
Electromagnetic Wave

(Polarimetric Covariance Matrix)

_ Space-Time Digital Measurement
(Space-Time Covariance Matrix)

Space Digital Measurement
(Space Covariance Matrix)

Time Digital Measurement
(Doppler Covariance Matrix)

1 , ) .
- - e
l ; — (5 :
" L - N
Wiy .-", 21 Wi

LA K N

e

Vs B Ve Chutter oy

Chuthes

] Digital Measurement of EM Wave ] ] { A A - /\/\ <=

» Polarimetry Measurement => Polar Processing

ta J"

> Time Measurement => Doppler Processing
» Space Measurement => Antenna Processing

» Space-Time Measurement => STAP Processing wocesme™. -5
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I Challenges of Doppler Radar Processing

| Detection of objects in Inhomogenesous Ground Clutter

9 Classical Doppler Filter Banks (or FFT) are not efficient with very
short bursts (<16 pulses) :
e

RS

ny way, in whol

- Low Resolution of Doppler Filters with short Bursts (Low sidelobes / high /N 92l 5
loss, wide filter) w"”

- If Target Doppler is between two Doppler filters, energy is spread on Wi e
adjacent filters. Gain between 2 filters is lower than gain at filter center
("Straddling loss")

- Ground Clutter Energy is not limited to zero-Doppler filter but pollution is
spread over all filters due to poor Filter-Banks Resolution & Doppler side
lobes in case of very short Bursts.

nsent of THALES - © 2021 THALES. Allrights reserv

reproduced, modified, adapted, published, translated, in a
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I OS-CFAR (Ordered Statistics CFAR)

. || Classical OS-CFAR on Doppler Filter Bank

- Range cells u(x)

u) u(x,) u(x, ) u(x,)

2 2

; . Non used

Z; . Environment cells » Distance B
i . Cell under s fest

zo v
[ fmpiance Decision><

£° assessment
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I Challenges of Doppler Radar Processing:Detection in Sea

| Detection of slow targets in Sea Clutter

Sea State | Sea State 3 Sea State S

i L
\ =~

Sca Clutter

> Sea Clutter is highly inhomogeneous

7 - Doppler fluctuation '

- - Time/space Fluctuation

--» Sea Clutter is dependant of |
A

- Sea current Ground Clutter
- Surface wind
- fetch

- Bathymetry

- > Sea Clutter is corrupted by

~ = - Spikes due to breaking waves
22 - “Moutonement”

2021 THALE Ilright

d

nsent of THALES C

pted, publis

i, ¢

Offshore Sea : Close to the Shore
: Sea Doppler Spectrum
(Breaking waves)

- e 1£
= . o —~— : Vitwsre © _
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Doppler Spectrum




in part

Doppler Mean & Doppler Width Variation

fpechogpiee oot 1\
. -

Tovm [ovpwr vy

Real Recorder Sea Clutter

SSPD Conference, London, 13th-14th September 2022

Doppler

Ground Clutter with variable
Doppler Spectrum Width

Sea Clutter with variable
Doppler Mean and Constant
Spectrum Width

Sea Clutter with joint variable
Doppler Mean and Spectrum
Width

Sea Clutter with Constant non zero
Doppler Mean and Spectrum Width

Sea Clutter with joint variable
Doppler Mean and Spectrum

Width
Sea Clutter

Doppler/Range
Spectrum

| Sea Clutter Variations

» Sea Clutter is highly
inhomogeneous

- Doppler fluctuation
- Time/space Fluctuation

» Sea Clutter is dependent of

- Sea current
- Surface wind
- fetch
Bathymetry
> Sea Clutter is corrupted by

- Spikes due to breaking waves
- Mottle (“Moutonement”)
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Median Estimation of Doppler Spectrum Statistics based on Fréchet
Barycenter and Information Geometry versus classical methods

. Fixed Point will select Spectrum I Classical methods for

f i idth ; . .

of maximum wid p-dy 2 estimation of Mean

% 2 I e BT K

P Clutter Doppler spectrum
_Fixed Point) ™ f are based on Multi-

z Median Burg Spectrum \

segment Burg or “Fixed
Point” algorithms using a
sliding window along
range axis. these
approaches suffer of
many drawbacks in case
of non-stationary clutter.

(Geometric geodesic
barycenter)

© 2021 THALES. Al

apted, published, translated, in
consent of THALES - C

| We propose to estimate
Mean Doppler spectrum
by Geometric Barycenter
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Median Estimation of Doppler Spectrum Statistics based on Fréchet
Barycenter and Information Geometry: variation of Doppler Mean

| as “Fixed Point” and Multi-segment Burg algorithms take

into account all neighbor cases with the same weights, | R st o

59 ol swn Normalized Buarg
o O J

the resulting spectrum is artificially widened. On the
contrary, the median-based estimator only depends on

the considered Riemannian geometry in the space of
covariance matrices, and is able to “interpolate” Doppler
spectrum to provide a good estimator of “centrality”.

Muositialisal Peaer (B )

Simulated spectra of neighbor cases
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Median Estimation of Doppler Spectrum Statistics based on Fréchet
Barycenter and Information Geometry: variation of Doppler Width

| we illustrate the good property of geodesic
median L1-barycenter method to estimate
Doppler Spectrum in case of non-stationary for

Normalized frequency
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N
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Statistics Random states in a metric space to characterize the

fluctuation of the electromagnetic signal
For digital measurement of the electromagnetic wave, main question is about the

¢ statistical fluctuations characterization: y - t
» In amplitude: variation of the signal in power ' .
- > On polarimetry: variation of the polarization of the wave l : [
. » Spadtially: variation of the direction of arrival of the wavefront , # '

. ~ » Temporarily: Doppler spectrum variation | : - |

Doppler/Distance Spectrum
Example of the Doppler radar signal relating to the time series of measurements

Measuring the time h L Ty Stationnary == R Toeplitz
series of the digitized r r. -
signal (for a given R =E [ZZﬂ =t ° .| avecr =E [zmzm k}
direction) : oo n
Z, LR A
Z=| :| avec z,eC with r:correlation coefficient used to compute the Doppler Spectrun
Zn n-1 2
- T H /\ LES

Sz(f)‘2 —

‘ure we can all trust

Z rk e;EJ 27tk

k=—(n-1)
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I Simple case illustration: Toeplitz Hemitian Positive Definite 2x2 matrix

| Example with 2x2 Toeplitz Hermitian positive definite covariance matrix:

orin part

2 1 matrix of covariance of a stationnary 2x2 could be coded by « 1 point » on a
product manifold R,*xD (with D Poincaré Unit Disk)

any way, in whole
jht:

- © 2021 THALES. Allrights reserved

iio.| b a-ib det(Q)=h*>—(a+ib)a—ib)

atib det(Q)=h>—(a? +b?)>0 h 50°+/a

gf with a,b eR et he R: h2 > a2 _|_b2 b ﬁirggg?eone
U; Q"'=0 h2>a2+h?
O =h. 1 ’L;- with 4= a_;l'b Doppler Mean - e

S} “ ¢D0pp|er . phase of u ) - S

2 at+b’

== <1 h* > a®+b? _ b

‘ﬂ‘ h2 - Booppier = ArCtaN =] e 5 .
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What are the constraints between the parameters of the covariance
matrix of a stationary (circular) complex signal

| The parameters of a covariance matrix of a time series of a stationary
(circular) complex signal are constrained by:

<
C
=

» Toeplitz Structure (same elements on diagonals) : vn, E[znz:_k ]: r,

) bl |

t of THALE!

Py

3

|

oY B

g BIFOR
|—“*

I\F*

I

I\F*

» Hermitian Structure: Otto Toeplitz
R* =R, With +transposed & Conjugated

» Positive Definite Structure (positive eigenvalues) :

4 vZeC" ,Z'RZ>0 and 4 >0 i=1..n with det(R,—1/)>0
TH/\LES
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Trench/Verblunsky Theorem (Partial Iwasawa Decomposition) Toeplitz
Hermitian Positive Definite Matrix

| Structure: Toeplitz Hermitian Positive Definite THDP

) All THDP matrice are diffeomorph to the Product space : (Py, g4..... 14,)eR*XD,, :

- P, is a scale parameter (Radar signal power)
-y are “shape” parameters (Shape of Spectrum) called réflection/Verblunsky coefficients

@:THDP(n) » R xD"*
R, H(PO,,ul,...,,un)
with D={zeC/|z|<1}
ﬁ> The following Block decomposition is related to Partial Iwasawa decomposition:

ublished

ed,

R — 2] o, AL A = A ny Aé:i
n = B
o AL R +o AL AL n

0 1
-1 21 -1 -1 (-)
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I Trench/Verblunsky Theorem and Cholesky Decomposition
X

: | Block Structure build iteratively: SAB

R — ., a4 A
n ]
o AL Ro+a ALAL

Generation of (André-Louis) Cholesky Decompc

any way, in whole ol

) 2021 THALES. All rights reserve

consent of THALES - ©

o
I
3
s

adapted, publis

A.L. Cholesky

Q = (a R )‘1 — QY2 oz (Cholesky Arillery officer killed during
n n-mn n f 1st World war)

1 O -

1/2 2 n—1 Computing

Qn =,/1— ‘,un ‘ 1/2 MachineDact
An—l Q n— yle

A. Cholesky, Sur la résolution numérique des systémes d’équations

linéaires, Manuscrit, Fonds A. Cholesky, Archives de I 'Ecole THALES
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I Fisher Metric & Entropy Hessian Metric of “Information Geometry”

| We consider as metric, hessian of Entropy:

>Enfropy:  S(R,) =log(detR:*)-log(z.e)
- » By using Block structure, and determinant lemma given by: det{p q+J= p.det(Q—qq°)

— — _ _ q Q
e B A | @bl

— A D -1 — A A+
a, AL Ro+a ALAL
Il = i ki leg (1 —.'1:..1‘-.]. ik Ennstanien)

‘ S (ﬁn) = _nz_l(n B k) |Og b_ ‘ﬁk ‘2 ]_ n Iog [72'.6.'30] I_E;<omple of 1942 E. K&hler paper \

hyper-abelian case)

5 —1
P =a,

] Entropy is pqrqmeierlzed by Estimators of Verblunski parameters:
o= m - m.) =E[R w4 .. un_l]T]

25 2 B _
Iﬁ SSPD Conference, London, 13th-14th SCprcm@@lﬁ 01 i j m



I Robust Reflection coefficients estimation by Regularized Burg Algo.

| Complex au’roregresswe parameters A = [ (m

a(”)]T and reflections

- coefficients {u, },N _, are computed by Regularized Burg algorithm from pulses

y
- © 2021 THALES. Allrights r

. of each radar burst: {z(k)}*,
f, (k) =by (k) = 2(k) , k=L,...,

Forn=1to N-1
(k) by (k=1) +2. Zﬂ‘”) Al gl
77 = — k n+1
" n n-1) |
" Z |fn l(k)| +|bn (k- 1)| +225‘ ) alg 1)‘
— N k=n#1
with ,B(”) = y(27)*(k —n)°
For k=1to n-1
alV =1 -
algn) algn D i, aén;l)* ’ {fn(k) = fn—l(k) + U, -bnj(k -1
am — I b, (k) =b, ,(k=1) + z,.f, (k)

N
N, P, =%.Z|z(k)|2 and al®” =1
k=1

John Parker Burg
(Stanford University)

THALES

Building a future we can all trust



I Regularized Burg Algorithm Properties

a Non-regularised

E Burg Algorithm

i (model order : 9)
_ '!" S rr':'—l

T | 1 Burg Algorithm

(> (4 ) | AN || (model order : 9)
S B B !
l b i - . i 2 frequencies |
L o e |

Non-regularized

wipde & F TR

Truncated Model Order

Regularized

Régularized of Max Order

ls0



I REGULARIZED BURG ALGORITHM RESULTS

. N .
Non-regularized Regularized A=[X"X+pa, ] X" x
fory = , AziAk_X+_X:é
¥ v
then A® (z)=2z" +Zn:@ ZzN—k — Q(n)(z)

k=1
Set y=y""z et =" = Q(Y)=Yy"+D> 5.y
k=1

LimQ,(y) = y"+38, = rl=p""e’" with 5, = pel?

' Non-regularized
{ A
o

nioat B ¢ W S ‘u bel ot 14 ) (N
e s {1l :i;:.’&',lb';"]..k[':f:];““t,'i,lff‘w. ;M‘.;lx;q,'.l AL

Regularized
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I Normalized Median Burg Algorithm
| Normalized Median Burg Algorithm

- » Normalized Burg estimation on 3 cases

» Median of normalized reflection coefficents

-~ » Normalized GLR detector L)
E v = o ) ml
ES lum+1 Ile-l—l A (b)
Ejg /um+1
SZ Cases distance

gé ——-l"

. Celues, de gande

. Coiules de
[t
. Caliyle s sy e DiEtECIEUC
| Dedcision

i S ‘\
p(0)F X1z

or dicclaced ta A third narty withaiit the nrinr written conce

This document may not

GLRT(z)= max - -
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I Mauvurice Fréchet : Geodesic Barycenter in Metric Space

THALES
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I Fréchet 1943 Seminal Paper (Clairaut Equation)

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole {
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Etwdy des densitéy distingudes. Appelons (provisoirement, dans ce mémodre)
densitd distingsife, toute densité de probabilité f{r, #) telle que la fonction

@ L fix, 8
[

{40) # = +.. .
Jr [E— 1 ) lf{: 8)
soit indépendante de 6.

Powr ces demeités distmgubes, on va pouvoir déterminer la forction inimi-
sante BN - ois &) et étendre au cas des petits échantillons la comparabon des
meéthodes d'estimation faites par divers auteurs dans le cas des grands échantillons.
1l vaut donc la peine de chercher la forme générale de fix, #) pour cette catégorie
de variabbes.

de §. En appelant h{r) cette fonction, on voit qu'on a 'identité de Ia forme

{47) AlE) ﬁ Lflx, 8 = hix)—#

I g =1,
Iud-:lenmml;. pudsqoe, d'apeds (32}, L(9) est positil, I en résulie aussi que

i-r"{ I:[!m aussi positif, Fisher metric
O peut d'aillears précser d'ane manbete phis difecte que par (50), le choax

des fonctions m(#h, ki(s), [(F): om piwd premdes ariiirairemecnt hiz) o () °)
ot alory w{lf) ext déferming por (500 0w mbme mieix par wae fermule repliciie.
En effet, {50} peut s'écrire

o o
e = — j"a-rqluul-ru dx.

Doomons-pous alors arbittairement h{x) e [{x) et sont 5 ane vanable arbitraine:
I Tomctios

Foiisii A
sern ung fonctlon positive coneue que nowus pourrons représenter par o™ On
voiy glogs que pfd) sers défini par

b —p= i) o

e 1
ol A = 0. On £ tle
)] peut considérer 0]

B{0); ot 2= L f(x, 8) = no™(8) [hix) — o).

comme la dérivée seconde d'une fonction

Par suite L j (%, 8) — g Lh(x) — 8] — p(8) 5t une quantité indépendante
de & que nows pouvons repreésenter par Ix).

Ainsi toute densité distinguée, fx, 8), cst de la forme
I{:r ‘:' = g [Nial = o & m {0 4 i

(55} #=#§ —yls'} Legendre-Clairaut
cest-i-dire une Cuation de Clairast, La sodution p* = constante réduirait fi{r, ),
d'aprés (48} & une fonction indépendante de #, cas oit le probléme n'aursit plos
de wefid, w est dofc donné par la schution singulitre de (55), qui esf unique e
g'obtient £n climmant 5 entre g = # £ = 121} et @ = (5} ou encoe endre

Sim
g¥i=m = [ pohia Tl gy g

L1

f:"“*’“ [hix) — 8] d¢ = 0.

(55his)
Si l'on vewt, m(#) et domnt par la relalion
= ,—#r}:nmﬂm dx

ol £ et dosng en fonclon de 8 par 1a nebatbon implicite [ gghis).




I Mean of structured covariance matrices: Fréchet Barycenter

]| Distance between 2 covariance matrices is given in metric space of Product
- Manifold R*xD,, (via Poincaré distance in the Unit Disk):

BN RS R RS R e |

0 i

% with 5i _ lull_:l’lIZ

1-m 1#. 2
3 The mean is then defined as the geodesic cFréchet entroid which minimises

the sum of the squares of the geodesic distances:

TR——
0,barycenter’ Hi barycenter )j—1 /

ArgMin Z dP [( P, barycenter {,U. barycenter},\l:[) (ﬁo ks {ﬁi k }-[\i_l )]

IDO median’ {/Ul medlan}I ) k=1

ced, modified, a
prior wr\"fen

produ

not be re

ent ma
df o a third party without the

f! The computation of the Fréchet barycenter is calculated by the Hermann
" Karcher Flo
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I Karcher Flow to compute geodesic Mean or Median
| Karcher Flow

» Fom Euclidean Case to Manifold Case by exponential map for MEdian

X, — M, -1
=t k exp,, (X,)
Z || — M ” m,,, = e)(pmn t z : r_nl
“ < lexpam, (x|
Euclidian
?L-lma—nu S SSPLID s o, el e L [RRTT / Rlemannlan

Hicemsnnipn Costor of bas sed

Tangen s fo Geodesics are normallzed
in Median Case

Starting from an arbitrary point on the Manifold
Compute the geodesics from this point to the N points and the tangent
vectors (normalized)
Sum of all the Geodesics tangent vectors (normalized)
on, 13ih-14ih Sepfember 24 Move the point on the manifold in the direction of this sum vector s(via

SSPD Conference, Lon

Is6

the exponential map



Karcher flow for the Fréchet barycenter in the Poincaré unit disk:
Computation of reflection / Verblunsky coefficients

. _ h Ky n { } _ HMyn— Wi,

W, = avec I/ < = =

1 ) ynllzz:ll; |'uk,n| |’u|'”| : Hiomn 1_luk,n'Wn
5 e®®" -....

_ /umedian,n + Wn

lumedian,n+1 _ *

r , Lonci®
|Z L LT - 1+/umedian,nwn s
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Doppler spectrum "median" by the computation of the Fréchet

barycenter on the coefficients of reflection / Verblunsky in the unit disk
Median Geodesic Barycenter of Doppler Spectrum

Ewolution Spectre Median

dB

sl PN ‘;..; il \ #M“’
AP NGRS R
EOBT s

. .;;__,_._.- :‘-._‘:1_7‘ L g ........ o “’. J ‘-'ﬁ-.;,\ \!,"‘\‘llh By
X RSB RERY Robustness to

P N e ......... ........ ........ ......... ~' oultliers AK
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I Median Doppler Spectrum Estimation: Preserves Discontinuities

e W

Semlated spoctra of a clutter

i
§ - P
3. .
Simvulated Data

;,

%

‘ ‘

£

2 4

High Doppler Resolution ’
(Reflexions/Verblunsky coeff Doppler Median Spectrum
mm by Frechet Barycenter .

VoY N ="

OPEN o
Building a future we can all trust

, 13th-14th September 2022
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I Comparaison between Doppler Specirum Mean and Median

s Raw Doppler
J ™ Spectruml
ol uh “'t !
Tl
| | 11 LI Al

Doppler
5 axe

o _Discontinuitoes are
not preserved

Perturbation by
Outliers values

B8 23 a8 3E8H

1 190 140 160 1B

THALES
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Normalized Burg (+ Regularization)

| Initialisation

1 ea [f (n)=x
E 2 . =
¢ Pﬂ=—z |x,,] Forl<i<N_etl<n<N, " "
i anﬂwr i=1k=1 bm{.n)zxm
<
¢ | iteration
qué I M i
g 2 - 5 ﬂ 1|r|n " F'
5 | Z E -1 I YZ al I al i | _ .
2 g = | i 121w II,__ (nlf+lb, __ 1|r1—l]| 1-x 3Uﬂ1l—x_l—lngll+.tj £ oo wupeos
g estimationni,, 2= B,:x |+ = W.=8, ||z
g =g A 2':‘ 1—.:'.'- |I|
3 Nm—mrzlm j
é ezl
g™ | fd=" [l
o [ |
- - f aln)=f, e n+iih, (a1
3 P =(1-la. [P : ={" #1i a2 =ji Forl=i=N_ etm+l=n=N, '
é m |!‘l||-| e | z . 3 I-‘.‘ L] I-i. L) Ib LnIl-lhl.“_l-lrr—]l'l'".“r-l-h_l
: Sl Lo B Ly
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I Burg Reflection Coefficients Median

| Computation of Median

X 1 — 1,
»; !*li,medr'arr: argm1 Z Ll,!ii .a; d(HnHz)—Elﬂg ) w, —u,
fé 1—-u,u,
J Iteration

X
+
3

=

o, (z) |
wh& 147w “’--=Z E_E:}| En::kE;l!':N '|m1_{zkl]]::ll

kER,

Critere arrét

L. w,
[

yﬂi"_

w,|

]

§é xﬂfl:q:' .'(r{-}’ﬂ*lj
THALES
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I Deetector based on median covariance matrix
% | 2 types de détecteurs ont été testés:
» Normalized GLR Detector (classical GLR Detector, normalized to be independant of
amplitude): test for Different Doppler values
[p(8) = 2P

GLRT(z) = max - ~ p(@) = (1,e%79, ..., e2in(d—1)T
fe[—0.5:0.5( (Z+E_lz)(p(9)+2—1p(9))

~ » Geometric Detector: Information Geometry Fisher Rao Distance between reflection

Coefficient between cell under test and Median values of Ambiance
L

AR(2) = ) (M — k)d(f(2). f.amd)

k=1

THALES
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I MATRIX Geometric CFAR

V*maxj T T L
i | i) l ik ii gt " Classical OS-CFAR:
SLT T - H "'E'q; a‘e' T Law Doppler Resolution
) L High Doppler Resolution

& R Tl ';.'”‘1""'". -, il l'*: "-L'L,‘- T (Maximum Entropy Model)
| | (use of Covariance matrix)

(1
e
V-max{ ..’1';  Spee
s— V'max
. OS-HDR-CFAR Iy

Ly
6 SSPD Conference, London, 13th-14th September 2022 V' m qx
| ~



&

Probability of Detection

Optlmun optlmorum
Matrix Geo. CFAR

Classical 0S-CFAR
| o

" ?‘u

o= Proba Det. —80% 7 X """ """ »

03 _.: ........ I N : B : -. ..... , e ........ - ...... +
g : : . : : . . s

02 F: e ........ ........ E - - ‘ ......... ........ ; ...... =

01 }b-------2 B e T S AR S " : deeeenen 4 ........ e
Proba Det. —2% NL: ' : 5 : : t
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Extension to the spatio-temporal measurement of the eleciromagnetic
wave: Toeplitz-Bloc-Toeplitz matrix structure
| We consider a vector of spatial and temporal measures

OPEN

'~ - | Digital Space-Time
: Measure
1
: [z v?.. [z v? [z E. | (Space-Time
7 | covariance matrix)
: z! “?1 EIII Wi 2! ‘?[41 M
b L I: Time index
| o -1 o -1 -1 ii" - - -
! . - - : 1| j: Spatial index
(R S N | — S JdH =
Wi Ll TR N wo L — +
| : R E|zz" |
| R, R, .- R, )
== ° . : — Rl
Rp n+l R.l I.:ao - . = Fi-p’n Ry R,=V| i |with V =
| : < R, RrT R, R,
Ry R Rg_

S 0
o J, . :
J, 0 - 0

THALES
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I Extension to Toeplitz Block Toeplitz Hermitian PD Matrices

| Considering Toeplitz-Block-Toeplitz Matrices :

R, R, R,
A Rp n+1 R.l I.?O . R : — F\:p’n Rn
' : . . R R, R,

| Ry R R |
. e o J,
_ Ry : T 0
_v| i V= .
R, =V| : with o J,
| R g, o 0

Efficient Inversion of Toeplitz-Block Toeplitz
Matrix

SSPD Conference, London

MATI WAX anm THOMAS KAILATH, FELLOW. IEEE
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I Extension of the Trench / Verblunsky theorem to the case of Hermitian

Toeplitz-Bloc-Toeplitz Positive Definite Matrices

| Positive Definite Hermitian Toeplitz-Bloc-Toeplitz matrices can be
parameterized by Matrix Verblunsky coefficients:

R | % an Ay with et =- ATA e,
P o, A, R;’ln + o, A, AL A
v | i N+ R N NG R and /&n = = An_l -l—A:.
:R — an An - ann An - p,Nn n Op
1‘ p,n+1 . Rp,n-An Rp,n An

a diffeomorphism ¢:

@ :TBTHPD _ —> THPD, =xSD"*

R (R, Al,..., A" %)
with SD ={Z e Herm(n)/zZ* <1}

| 1 SSPD Conference, London, 13th-14th September 2022 OPEN

| Extension of the Trench / Verblunsky theorem to the matrix case: Existence of

THALES
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I Coding Space-Time Data in Siegel Poly-Disk

{zl,...zp,..., Z,, }S?m{{zl,...zp},{zp+1,...zzp},...,

>

Time series {R,..R,_,} as TBTHPD matrix

R, R

R" R
Ry p = :1 '.O :
_R;—l R1+

‘ Matrix Verblunsky/Trench Theorem
(R, AL, AT} with A eSD={Z/2Z" <1}

I:\)N—l_

R,
RO

ERE

212y Zp Zm
[ [T LT TP
l )

RORl 2 RN—l
b4 }
Matrix Autoregresswe Model |
Vb v
R, A" 4 A

TH/\LES

all trust




I Metric of Information Geometry: Hessian of Potential

. | Entropy defines a (Kahlerian) potential whose Hessian provides a Riemannian
¢z metric for Verblunsky matrix parameters:

5(Rp n )— log (det R, )+ cste = —Tr (Iog R,. )p.+ cste

— gl] o Hess[¢(Rp n)]

| The "Toeplitz-Bloc-Toeplitz* structure allows to express the entropy only by
the Verblunsky parameters about spatial information and of a matrix RO
iIncorporating the Doppler information (time information) as previously
studied:

nsent of THALES

U
'E
>
a
o
2
Q

— n—1

D(R,,)=> (n—k).log det[l, — A A" |+ n.log[z.e.det R, ]
‘ k=1

| The Hessian of Entropy will provide the following metric:

ot =nrefRear P S tomel(n, A A aan(, - A AT anc ]

I FIMN\LLL D
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Extension of homogeneous bounded symmetric domains: Siegel
Upper half-space and Siegel disk

F .--'_'r'-.'ul-| y T e = ;-r'-'r'-.-, A - *r} _11.-1"’:
Poincaré Upper half Plane W — z—1 Poincaré Unit Disk
Z+1

_dx+dy? dz|°

ds’ > > 2 ‘dw‘z
y y ds‘ = -
ds® = y*dzy 'dz’ (1_“"" )
with z=x+iy andy >0 ds® = (1—vvw*)_1dw(1—vwv*)_ldw*
Siegel Upper Half Space W =(Z il Z+il)™ Siegel Unit Disk

ds? = “dzy dZ
S Tr (Y ZY Z ) ds? :Trl(| —WW+)_1dW (| _W+VV)_1dW+J

with Z = X +1Y
THALES
Iﬁ X = Herm(n1 C) and Y = HPD(n, C) we can all trust



Extension of homogeneous Bounded symmetric domains: Siegel

Upper half-space and Siegel disk

Siegel Upper Half Space
SH,={7Z=X +iY € Sym(n,C)/Im (%) =Y > 0}
det(R7Y> R, R7V? — A0 )=

d2(R1,R2):Zlog2()Lk) Y >0

a*(2,.2.)= S tog* 1+ V2 )/ 1= 7))

£, (R W NOR)

ds? = Trace[(R_ldRy]

- - ds* = 1r(y "(dz)y '(dZ))
C.L. Siegel X
Z, X iV
R(Zl Z ) (Z Z )(Zl Zz )_1 (Z o Zz XZ *Zz )_1
det(R(Z,,Z,) - AI)=0
THALES
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Siegel Disc Automorphism
> Automorphism of Siegel Disc SD,, given by :

e, @ =1 2,2:) (22N 252) (252,

> All automorphisms given by :
VW e Aut(SD,),3U €U (n,C)/W¥(Z) =Ud, (Z)U'
» Distance given by:

vZ W eSD,.d(Z,W)=1 |Og[1+H(Dz (W)HJ

2 \1-|@, W)
» Inverse automorphism given by :
G=01-2,z;)*2(1-22z,)"* =(z-2,)1 —z:z)"

{z — D;H(2) = (GZ§ + 1) G +2zg)
—

. with G =(1 -2,25 " =(1 - 252, )" THALES




I Iterated Computation of Median in Siegel disk

Initialisation : W,_,..o0 =0 and {W,,,... W, ., }={W,,...wW,}
Iterate on nuntil |G, ||. <&

W, , =U, e™re®r = H,_ =U, e™ =W, e =e Z,anne_ > with:
Syn =1/2. Iog(F)klln2 (Pk_ilzpk nF)k_ﬁ/z)l/2 Pkl/nz) with B, =W, W, |
Gy =7, D Hy, with {U|H | <&
k=1
k=l
Fork =1,...m then W, ., = @4 (Wkn
Wk,n+1 — (I _(3n(3:)_1/2 kn -G )(I +V\/kn) ( (3:(3n)1/2
Wmedian,n+1 = (GG: + I) (G +Gn) Wlth G — (I _GnG:)I/ZWmedian n(I _G+G )_1/2
TH/\LES
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I Coding of Digital Electromagnetic Wave Statesin RxS'xD™ ' xSD"™*

Space-Time Information:

(Fo A A1) THPD, S
SD = {Z [ 77 " < | } R x Poincaré Polydisk x Siegel Polydisk
Ro _>(|Og(PO),/,l1,.__,/,[m_l)e RXDm_l | | e
D = {z /22" < 1}

Spatio-Doppler Coding € Rx D™ xSD"™*
-+ Digital Electomagnetic Wave Code € RxS*x D™ xSD"™

—
| >

! , <1 T il 1 S e
. So So ¢ = —arctan —ZJ /L0 a%y,
> = | S, COS 27 COS 2¢ 2 i — e YA Y
Ay S = = _ avec - IR
3, S, COS27SIn 2¢ 1 S, N L N
: T =—arctan \2 L L7
2 2 .
; 1S3 | Spsin2z | | 2 /Sl +5
=" -
: A
- - - 1 Polarimetric Information: 3
Polarimetric Coding € Rx S R.XS!

|—Oriented Ellipse



I Poincaré geometric modeling of polarization states
| Polarization state representation by a point in a complex plane

» Polarisation Ellipse

Ev O] | A@1)e>" pei({cowﬁ —sin q{cow} 2 S
M = = i, (t) = . N f \"‘\\ A ;v » !
Ey , () A/(t),el(py sing cos¢ ||isint [ f// Wiy \’
- 7 . angle of ellipticity characterizing the elongation (the shape) \ /" // A / X
- ¢ characterizes the inclination of the ellipse L_f,// \
> Jones Matrix: < %
(&) ) —-
T E(E, ,Ep ) {Jﬂ 3, s
o M*=M /™ * 2 =
E(E,, .E EQE ) Jp I
( M.x M’y) M'y‘ . ¢ = —arctan S—ZJ
> Stokes Vectors: So Iy +J2 So S,
-~ |, J,—J, S, COS 27 COS 2¢ 1 S
: S = = = . 7 == arctan| ——
S, 2Re(J,,) | | s,cos2zsin 24 2 s =
Iz SSPD Conference, London, 13th-14th September 2022 _S3_ __ 2 Im(J;;EN)_ i SO Sin 22_ | SOZ Z Slz + 322 + 332 —_




I Poincaré geometric modeling of polarization states

| Spherical coordinates

> Onthesphere: (24,2r)

» Northern hemisphere: right polarisation
= » Southern hemisphere: left polarisation
5; F Left Circular Polarization
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I Segmentation/classification of Polatrimetric states

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part

or disclosed to a third party without the prior written consent of THALES

- © 2021 THALES. Allrights reserved.
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Pierre Formont (ONERA PhD):
Segmentation of Polarimetric Data

Segmentation based
on distance from
Information
Geometry

SCM - GM



I Plan

| Advanced Sensor Processing based on Koszul Infformation Geometry

- » Geometric Matrix CFAR/STAP for (very) slow targets detection in clutter
[ » Complex-Valued CNN & Covariance-Matrix-Valued HPDNet for Micro-Doppler ATDR ]
-~ > Tracker parameters tuning by Deep Learning for tracking hyper-maneuvering targets

y, in whole ol

w

Y

» Multi-Agent Reinforcement Learning for Sensor Resources Management for tracking
hyper-maneuvering targets

ent of THALES - © 2021 THALES. Allrights reserve

> Multi-Sensors Collaborative Tracking by Distributed Auctions for fracking in saturating
scenario (swarm, fleet of targets, ...)
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I Drone Recognition by Radar Micro-Doppler Signature

* Drone Radar Micro-Doppler Deep
Learning

» Use of Radar simulator to learn on
Hybrid data (simulated and real data)

» Micro-Doppler time/frequency
spectrum

« Complex-valued CNN

« Fourier fransform is a convolution by 90040944104
the Fourier atoms. We can learn a R RRERERR T | ——
Fourier-like complex filter bank.

* HPD nevural networks

« Covariance matrix has HPD (Hermitian
Positive Defnite) structure

« Statistical analysis of manifold-valued /o v Al A | !l ‘M ! ] '
o
|

data : Information Geometry

OPEN




I Fully CNN, SPDNet/HPDNet Architecture and Complex Processing

| Adaptation for SPD/HPD matrix

‘é L™ - il vt |-
<
[¢)
i Y
c;
2 1 ' v
5
BTN SN BPENe
T T ¥
lassill o [ PR P i Lassifl
L L] L)

| Adaptation for Complex convolution & Fully Convolution
Network (time axis)

This document may not be reproduced, modified, adapted, published, franslated, in
N R
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I SPDNET & HPNET

Tools on SPD manifold: Manifold mappings

Tools on SPD manifold: |.'|r|;_:1=-|1'r space

Mapping operator from manifold to tangent space, and its inverse:

iT{-‘.M} 1 1 1 1
=" SEL ¥5 € Tg. Expg(5) = G2exp(G™25672)62 £ M
3 = Logg (P)

| WP e M, Logc(P) = G2 log{G PG 2)G! € Tg.

‘\P = Expe(S) M

: ; SPDNet architecture
Exp and Log manifold mappings

Machine Learning consequence

Possible 1o implement learming methods in o Ewclidean setting on
the tangent space of some given reference paint,
—¢ Code FHiemannian method using projection and the Euclidean
method. — Choice of reference projection point.

Succession of o =
F ; P B bilinear layers (BiMap); ‘" * 'S
[P Loy 48 P i : o '*'f y W activations (ReEig) p oM (M)
o F T Final manifold: transformed to Euclidean space (LogEig).
s : ’ -il:.‘. -r#r.f
4 I AMLES

r OPEN
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I Drone Recognition by Radar Micro-Doppler Signhature: Results

| Validation on NATO Database

» 10 classes (7 drones and birds)

Validatsoo accurncy: S IT207792207793
11 1]

A Sl ettt ot e et g e el e otct

s A
S0 4 Wm
& _

f-

)
1
e
N 4 e Ty ey
Validat

THALES
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Performances

Haw

_I':i'l'.'l'll."-r-. e, < ; ol Coiv g - Gl _L SOF TNet vs individual models
S I — S TR 211,01
FourierNet Perfermance comparison of first- and second-order models on radar data
Covarisnce Covarianpses Corsrinmoe
. ' : Lo T e L IO AN .
SPDMNet 0264054 9154074 BBE4£3.06
ottt | N | HPDMNet | 0443076 01.8+080 8&7.1%+111
¥ ! ) -|- FTCH 03.9+044 9341121 B43+25]
Clasif 1 Cloasi & Cluaslf ar Fourieriet 004017 99.2+1.12 874104
| ) | SpectroSPD [ 05.1 £ 049 90104082 B46+340
L F L R LT SOFTMet 5+ 016 9721090 939074
SPDNer SpectpasPD SOFT et
HFF Dot

Com paring SPD architectures

Performance of SPDMet, DAMMNet and SPDNetBMN on the NATO dataset o | e S
LR — e
Kodel SPDMet R TYTI P CPDONeEN 5 S ey - "‘\’.
Mormalization BarMorm Farfdarm BatchMioem Ti-:'_"-' s .' —— . -
Acturscy TEE% £ 081 T9.9% £ 119 BO.3% £ 055 82.3% £ 0.80 AN MK [(xa}

W TRAL e

Acc. (10% data) | 60.01% £ 00T T38% L0256 T02% £ LT4 T9.M £ 0.05 v i

Performance of models in function of the amount of synthetic radar data

—+ DAMMet and SPONetEN largely outperform SPDNet. SPD-based models experience a smoother degradation than the deep
FTCM
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I Fully CNN, SPDNet/HPDNet Architecture and Complex Processing

N Key takeaways

Sculpting deep architectures to the data can yield effective,
relatively lightweight models.

SPD-based methods are very lightweight yet not necessarily
competitive.

SPD-based methods seem very robust to lack of data, due to
the information-geometric prior.

Normalization schemes seem to systematically improve SPD
networks.

Combining deep nets with SPD nets allows to build a highly
performing and robust learning model, harnessing most input

representations of the data. THALES

we can all trust



I Plan

| Advanced Sensor Processing based on Koszul Infformation Geometry

» Geometric Matrix CFAR/STAP for (very) slow targets detection in clutter
- » Complex-Valued CNN & Covariance-Matrix-Valued HPDNet for Micro-Doppler ATDR
[ 2 Tracker parameters tuning by Deep Learning for fracking hyper-maneuvering tqrgets]

1y way, in whole o

lated

ent of THALES - © 2021 THALES. Allrights reserve

» Multi-Agent Reinforcement Learning for Sensor Resources Management for tracking
hyper-maneuvering targets

> Multi-Sensors Collaborative Tracking by Distributed Auctions for fracking in saturating
scenario (swarm, fleet of targets, ...)
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I State of the art: Castella regulation process

3 «  [etection ’

—— Ground truth .

E Tracker output

el

"

o y

Low process noise

High process noise

-
e =

- L & - =
— [ o —— "
T [ =

.
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An Adaptive Two-Dimensional
Kalman Tracking Filter

F.R. Castella
IEEE Transactions on Aerospace
and Electronic Systems, 1980

Fig. 1. Tracking lon singhe cooedinale,
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Flight Mechanics Simulation
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I NNAKF Algorithm

- NNAKF: A Neural Network Adapted Kalman Filter for Target Tracking

S. Jouaber, S. Bonnabel, S. Velasco-Forero, M. Pilté
IEEE ICASSP 2021

any way, in whole orin
ed.

© 2021 THALES. Allrights reserv

[, PTNIP Loty

ent of THALES -

ed, adapted, published, translated, in

arty without the prior written cons

ument may not be reproduced, modifi

or disclosed to a third p

This doc!

THALES

SSPD Conference, London, 13th-14th September 2022 OPEN o
|94 Building a future we can all trust



I NNAKF versus Castella Performances

Filter Position (m) Altitude (m) Speed (m.s™') Heading (°)
KF 39,91 16,47 2,86 5,09
Castella 21,05 16, 58 1,86 3,48
NNAKF 18,61 12,98 1,48 2,69
Filter Position  Altitude Speed Heading  Average

Castella | —18,76% + 0,67% —34,97% -31,63% —21,17%
NNAKF | —28,17% -—21,71% —48,25% —47,15% —36,19%
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I Performances Comparison

docum

Filter Position (m) Altitude (m) Speed (m.s™!') Heading (°)
. Oradle 15, 50 8,73 0,44 0, 52
. KF 19,19 35, 49 3,75 7,71
~ Castella 44,33 35, 60 2,75 6, 10
. NNAKF 41,89 32, 00 2,37 5,31
. IMM20CT 37,25 28,61 1,75 1,21
©  IMM+NN 20 CT 35, 58 27,20 1,63 3,56

This
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I Plan

: | Advanced Sensor Processing based on Koszul Information Geometry

it » Geometric Matrix CFAR/STAP for (very) slow targets detection in clutter

» Complex-Valued CNN & Covariance-Matrix-Valued HPDNet for Micro-Doppler ATDR
» Tracker parameters tuning by Deep Learning for fracking hyper-maneuvering targets
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» Multi-Agent Reinforcement Learning for Sensor Resources Management for tracking
hyper-maneuvering targets

> Multi-Sensors Collaborative Tracking by Distributed Auctions for fracking in saturating
scenario (swarm, fleet of targets, ...)
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I Context and objectives

| Multi-function radars (MFR)

> Must optimize the performance of many tasks in

- parallel and in real time

- Search task: maintain coverage of surveillance
space to maximize detection probability

- Tracking tasks: estimate and predict each target’s

state with a given level of precision Cb

- Tasks issued by a command & conftrol center:
missile uplink, kill assessment, etc.
» Tasks have a common limiting resource: antenna
time budget

- Dwells must be scheduled on a common fimeline

- In overload situations, the lower-priority dwells must
be delayed/abandoned due to time constraints

T—HﬁI:'ES
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I Context and objectives

: | Objectives R

» Enhance tracking with adaptive revisit interval

(Rl) and adaptive beamwidth (BW)
- Made possible in recent years by digital
beamforming in phased-array antennas

- Could help fracking difficult targets
(hypermaneuvering, hypersonic, reactive)

- Currently one BW for all dwells, one fixed Rl for : |
each frack <ﬁ>

» Handle overload more efficiently
- More likely to happen due to swarm attacks
- Current approaches using rule-based heuristics can be hard to adapt
» Coordinate search and tracking
- Could use search for reacquisition of lost targets when possible
- Instead of using time-consuming reacquisition patterns
» See how reinforcement learning (RL) can help with all of this THALES

SSPD Conference, London, 13th-14th September 2022 OPEN
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I System architecture

| Multi-function radar

m —

© 2021 THALES. Allrights reserved

Waveform Waveform Waveform \4
parameters parameters parameters

Environment

Command & Track Request Search Request
Control Generator Generator
Radar

) returns
Receiver <
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I System architecture

| MFR as a multi-agent system

<}
2
Q
2
=
o}
3
>
]

o
o}
z
2
o
ko)
<
«
|
4
<
T
=
I
o
~N
©

» Mulfiple conflicting tasks within the > Advantages:
radar point to a multi-agent structure

- One agent per tracked target

— Each frack must decide which
dwells are adequate for its target’s
position/velocity estimation

— In this sense, each track constitutes
an independent subproblem Track

- Search is considered an artefact (i.e. not Request Track 1 Track 2
an agent, but a resource) Generator

— No autonomy: search dwell maps
are precomputed and only Dwell List |
Search Track

represent a fixed list
dwells dwells

Explainability
Extensibility (tfo radar networks, etc.)
Simpler to integrate domain constraints
Simpler optimization

— Tracks = instances of same problem
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I System architecture

vhole or in part

ted, publishe

| Objective of a tracking agent

<
v
e}
=
<
T
=

» Parameters to optimize: revisit interval (Rl) and

beamwidth (BW)

Objective: minimize the target’s state
estimate error covariance (EEC) Py, i.e. the
uncertainty over the target’s frue state x;, as
evaluated by the Kalman filter

EEC increases predictably as time since last
revisit increases

» The opfimal BW (in terms of SNR) should

depend on the prediction error x;, — ( )

No model to predict the effect of a dwell on
EEC, must be learned

SSPD Conference, London, 13th-14th September 2022
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Initial
State Prediction
X0 . X.[ki)l = Axy + Buy
Py t k+1 =APRAT + C{rs)
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Innovation
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I Radar task scheduling

| Formalization

rt

» Foreach dwelli eI

- We know the earliest and latest possible execution start times T! and T.,., the ideal execution time T.,,, and the
shortest and longest possible durations Lt .. and L.,
- As a measure of priority, via threat model — EEC aggregation, we can define :

2021 THALES. Allrights reserved

— A drop cost ¢},, based on predicted EEC increase if this dwell is not executed
— A duration cost ¢}, based on how much EEC would degrade if dwell was shortened (narrower beamwidth)

— A delay cost €}, to penalize divergence from T},
- We want to know whether to schedule the dwell (s = 1), and if so at what execution time ti, or to drop it (d! = 1)

This document may not be reproduced, modified, adapted, publishe anslated, in any way, in whole or in pai
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I Radar task scheduling

orin par
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| Resolution methods

» Heuristics (EST, EDF): fast, but do not take priorities info account

» Mixed integer programming: returns the optimal solution — given enough time...
- Complete formulation:

min E L O + (1 — 8" )07,
(13}

5.5

Py
¢ <7y

t'+ L' < Thnas viel
b =28 =1

0. =15, -t

nv <23 =g" =gl
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I Radar task scheduling

o}
a
o}

| Monte Carlo Tree Search

» Model-based method that explores a search tree

- Root = empty schedule

- Leaf = complete schedule with cost ¢,

- Backpropagation: Cy(s,a) = min ,/Cy(s’,a’)
- Selection: a, = argmaxi Uls,, a)), Uls,a) x

e Selaction == Expansion =—> Backpropagation \

Ol ®, )

Repeat until rollout number limit or runtime
limit is reached

P priori (for example: HCLR heuristic)

SSPD Conference, London, 13th-14th September 2022
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P.[.s-,-,ﬂ} L & {1 _ ”r}
Iﬁ number of visits

Resulting policy: w(s) = argmin ,/C,(s,a’)
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I Radar task scheduling

¢ || Monte Carlo Tree Search
- > Problem : with this tfransition function, the same complete schedule can be
reached through different paths
-
(1
| ———N ===
] mE___ BECCC
] [ | ] | | .
S B ™
£5 ==

EE-_C
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I Radar task scheduling

¢ || Monte Carlo Tree Search

» Solution: structure our search free as a Branch-and-Bound tree

- By allowing already visited actions, each leaf can only be reached once
- Branches can be pruned based on existing solutions
- If aleafisn't a complete schedule, its derived branches can be pruned

. / \
-
]

10X1- / \ 10XX- }(1100/ \ xxmo/ \xxx
| llﬂ)(ll ‘ xlxl / \ X1 XX-
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I Radar task scheduling

i || Reinforcement learning for MCTS

» AlphaZero

- Learn the MCTS prior with a neural network

- Mutual improvement: the neural network guides MCTS, whose results correct the
network's predictions

s —» MCIS [— n(a,s) —

A

— Planification

s’ P(a,s")
v :
v v

Neural )
— = — Learnin
§ —> network P(a,s) = n(a,s) eda g

—
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I Radar task scheduling

i ] Results
- » Experiments on a synthetic 120007 —m- thnge(Lg‘St‘f o15)
—— aafar 201 Existing methods
benchmark 10000 4 ~®- MCTS+RL (Gaafar 2019)

> Choosing an adequate transition - ;gLTZ“EU”St‘C} ours
function has more impact on 8000 1 Optimal
performance than choosing the
actual decision algorithm

- Our heuristic finds near-optimal 4000 -
solutions in a fraction of the time
required for tree-search methods 2000 -

6000 A

Average cost

0 10 20 30 40 50
Number of tasks
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I MFR Radar Resources Management

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part
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or disclosed to a third party without the prior written consent of THALES

Ul

Functional Architecture

Data Processing

Kinematics

—P Detection —>
A
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Resources Management

Waveform Search Dwell
Design Generator

Track Dwell . .
Generator L 4 Priorisation Lo SCheduler

Environnement
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I Multi-Agent RL for MFR Radar Management

| Functional Architecture

Data Processing Resources Management
Kinematics —> Waveform Search Dwell
Model Design Generator
—P Detection Lum g Tracker Lopme 2 Agent RL —>
A

2021 THALES. Allrights reserved
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RL Actions selection for Beam update rate and Beamwidth

| RL Agent Structure

Track

Requeste

d
Cone
Accuracy —

m Selected Task
Search B

Max Visibility - Schedvuled
Delay C : i Dwell
Constraint one Beamwidth Selection we
Waveform Selection

—

Visibility

- ©2021 THALES. Allrights reserved.
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I Plan

| Advanced Sensor Processing based on Koszul Infformation Geometry

» Geometric Matrix CFAR/STAP for (very) slow targets detection in clutter
» Complex-Valued CNN & Covariance-Matrix-Valued HPDNet for Micro-Doppler ATDR
» Tracker parameters tuning by Deep Learning for fracking hyper-maneuvering targets

any way, in whole ol

» Multi-Agent Reinforcement Learning for Sensor Resources Management for tracking
hyper-maneuvering targets
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> Multi-Sensors Collaborative Tracking by Distributed Auctions for tfracking in saturating
scenario (swarm, fleet of targets, ...)
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I Context & Problem statement

| Context

© > Active-fracking with cooperation of up to i
2 radars ,,.

» Load Balancing

» Resilience o

| Problem statement

» Given aradar configuration, allocate at k
best resources

» When coupling radars, ensure to provide -«
additional information if possible

» Centralized vs Decentralized coordination k
» Standby phase ignored *

THALES
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Radar & Target Models

or disclosed to a third party without the prior written consent of THALES - © 2021 THALES. Allrights reserved.
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Directed radar Targets have a straight-path model with occasional
change of direction and constant velocity

Information:;

Radar load = %
L

T; = cst
D; x R

SNR = cst

Overload limit unrealistic
(goal: explore limits of
the radars)

Tracking uncertainty
determined by a
Kalman Filter

Additional information (2nd
radar):c« sin 6

THALES
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I Ceniralized Optimization Problem Formulation

© 2021 THALES. Allrights reserved.
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Mono-Sensor Allocation : || + | 7| constraints.

2-Sensors Allocation: [T1? - | 7| + | F| + |Z| constraints

4
InaXZCz'j * Xij [ max Zf'”ﬂ * Wik
i.j i 7.k
8:6.s gt -
(P1): ¢ Z% <lvjeJ (C1) wik; = Tagi; Ao, ¥ (i k) € T2,
j (P2) : ¢ > wy; < 1,¥j€ J(C2)
:L‘ijE{O,l},V(i,j)EIXj i

Z':'J_,l ; ['r."l.rrj T Lo — ”'4’1_,1] = Lr,~

Sets : F

Wi e I(L)
(zarij. zo,,) € {01} ¥ (i,j)e T x T
wir; € {0,1} ¥ (i.k) € I?,Vje J

e 7 : Set of cardinality radars|Z| = N,

Y ey LaYied (L) Vi e J(Aig)
e J : Set of cardinality tasks|J| = Ny
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I CBBA: A Decentralized Sealed Auction Algorithm

. D | Consensus Based Auction Algorithm, a
v 2 phase algorithm:

ed

Consensus reached ! » Bidding phase

any way, in whole or in pa

» Consensus phase

2

g

8
5
<
1)
]
g
<
<
T
=
o
N
g

£1:8 ] Bidding phase:
» Each Agent evaluates its bid for given

tasks
» Bid based on utility

consent of THALES - C
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[:_:'/ ty: ] Consensus phase:
1s «
Lotk > Send bid to neighbors
» Update maximal utility from others
knowledge
. » Send updated information until consensus
ty: @ is reached
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I Adaptation of CBBA to radars and dynamism

. || Bids are made for a particular time :

» Data synchronization: attach timestamp to each knowledge
» Data update is performed according to « Update Rules Table »
;}é o o o o o o o I imansmiitey  The vocipdem (redar  Sctlon talen by |
. | Diminishing Marginal Gain constraint i ke e ) thisks e v
‘ k i o g oy = pdato
> Biased utility to ensure « . K i s o
: CBBA _ Cij pron ipelae
2 Cij(bi) E flij{bi & b:] {D}JG] -> ﬂgj = m i i b schuangrel
P ' lf fi, k] Fln: e
: : o e e 2o e wh
. > Adding a task is always less profitable nee L :ualf'.' T
~ thanto be dedicated to a given set of oo e e
ok B et
> Prevent a radar to track all targets if itis e “I.."”
.. possible =& Load Balancing = A e e
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I Multi-sensor Allocation with CBBA

. || Algorithm operates in closed loop and re-executed periodically :

> 15t phase: CBBA bid step for Main Allocation
- Utility is proportional the surface of the Kalman uncertainty ellipse
> 2ndphase: CBBA consensus step for Main Allocation

- Radars update their knowledge for Main Allocation
- Start/continue tracking on targets with winning bids (as Main)
- Eventually release opftional target tracking

> 3@ phase: CBBA bid step for Optional Allocation
- Utility is proportional the surface of the intersection the Kalman uncertainty ellipses
> 4th phase: CBBA consensus step for Optional Allocation

- Radars update their knowledge for Opftional Allocation
- Start/continue tracking on targets with winning bids (as Optional)

THALES
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I Demo
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I task allocation for radar network (TRT work with Distributed Auctions)
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I Results : Centralized vs Decentralized approaches

| Performance of Decentralized approach higher than theoretical 50%
;:  performance guarantee (greedy algorithm)

rights reserv

| Load more evenly distributed for Decentralized approach
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| Resilience aspect

» From « star-like » communication network (cen’rrolized) to ad-hoc
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I Plan

_ |.Modern Sensor Processing based on Symplectic Model of Information
> Lie Group Based Equivariant GCNN for Adaptive Doppler Clutter Map ]

> Lie Group Based Frenet-Seret IEKF (Invariant Extended Kalman Filter) for fracking
hyper-maneuvering targets

Q
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s $

any way, in wh
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> Lie Group Based Target Recognition on Kinematics for Drone/Birds Classification

> Souriau Symplectic Model of Information for Lie Group Statistics and Machine Learning

- Entropy as Casimir Function in Coadjoint Representation

- Koszul-Fisher Metric on Lie Group

- Covariant Maximum Entropy Density (Gauss Density) on Lie Group
- Lie Groups Machine Learning
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I Motivations

o P

| Conventional Deep Learning weaknesses:

? Lack of robustness

’§> Do not use the native geometry of inputs

any w

>Geometric-Informed Algorithms as remediation

- © 2021 THALES. Allr

- Emerging technologies with already successful applications (e.g., AlphaFold@DeepMind) b DeepMind

apted, published, translated, in
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| Deep learning requires large amounts of training data and numerical simulation
requires a perfect knowledge of the underlying physics:
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>Physics-Informed NN allows for: Physics Informed Neural Network

Error on the knowledge

ay not be reproduced, modifi

- » More frugal learning 3 0 @ o1l o1l ,

%‘ ’z/ /7 \; 2 4 ‘\Q ~ / ] /// ul YR =YL

- » Discovering hidden physics x TS ;g*/‘,le”u‘:;\ax —
£ o t @ @G ~~_ Error on the data
. » Reuse the knowledge of similar tasks ~- J—.
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I Geometric-Informed NN: Technological progress

| Equivariant Neural Networks ¥ N

¢}

» Create relevant synthetic datasets T F

» Compare the use of equivariance mechanisms with
data augmentation o

S Design new convolution operators on hyperbolic
spaces (Poincaré Disk)

100

95 -

- 90 B w——— T .
o =
. 2 |
S 857 —e— Classic
3 b=
: 2 75 | —— 32
° e Reference
; ?U T T T T T W L) R
2z 5 10 15 20 25 30
£5 Augmentation factor MNISTimage on the sphere Projected image
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I Geometric Deep Learning & Robustness

| Geometric Deep Learning generalizes CNN . ' @ «

j » Equivariance to other tfransforms than translations

IS ‘, €
Q @

» Operates in the native geometry of the data

¢ | Robustness is empirically improved

> Native geometrical robustness is achieved by-design 7
» Studies show that local robustness is also improved ; Esteves, 2017
G | A rigorous analysis is however lacking
: i] J > Need for proper metrics fo be defined
ﬁ: R p— J] e » Stochastic framework to be specified on native spaces of the data
_ | Analysis outputs could help further increase robustness
o Lz FTTN : > Refine the choice of the underlying equivariance
x - (75 5 ._.\, » Use adversarial training for a well chosen distribution of perturbations
£5 ' .\_ﬂ/g )

Calinon et al, 2019 OPEN T H /\ L E S

SSPD Conference, London, 13th-14th September 2022
| 127 we can all trust



Applications for Sensors

Image processin
I g p g View from FishEye Camerq

» Conventional + Fish-Eye images (patent pending)

» Investigate Hybrid approaches (AAAI-MLPS21)
- LAS/TRT collaboration(IRS'21, GSI'21)

Contrails observation with skyimagers

© 2021 THALES. Allrights reserved

¢ | Temporal signal processing
» Radar signal processing //% "-?'
- LAS/TRT collaboration(IRS'21, GSI'21)

Pathological radar clutter classification,

' [P o
. . Cabanes et Al, 2019

Equations de Maxwell-Vlasov

af, v, of,
- v/ |E = n) ™ 0
&f CLzeln v, "l & o0 ° °
B (828 | Simulation
) 1
L

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in part

or disclosed to a third party without the prior written consent of THALES

l Ve phane [ .

T.B ’

Y » Solving Partial Differential Equations (LRASC infernship)
Sy > Also applicable to Hamiltonian systems

Hu et al., 2020 TH/.\LE S
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L

Toward Deep Learning for Contrails Detection by Fisheye Camera

| Several possible applications of DL for contrails study

129

>
>

» |dentification (vs. regular clouds)
» Tracking (originating planes)
» Properties analysis (altitudes, speeds etc.)

» Classification depending on radiative impact

Use of tailored Deep Learning algorithms

» Operating in Fish-Eye geometry for image processing

Embed corresponding equivariant layers
Couple with physical models and meteorological data where appropriate
It
'—{ Fealuw Featae od-o Fautain featue famt e Moo Hdde
“‘: '::p.f."'-,‘J' :;:;‘)':\-\s ;‘:;: wiy LR NQI‘ 1 '\.&Jll n ::“ AL} x"" b :ll‘l“ :0:- 'lllln"
| l‘ u‘-

-~ = Mas inn
| Corwolutiord  Max pocling  Sowweitiond Convelsont Yoy karme
e | 124wt 26X At 363 harmed o) eme
- Mar poc' g
» 1) el

v.v'm-rl
=l wli berrel

SSPD Conference, London, 13th-14th September 2022 OPEN

CloudNet: Ground-Based Cloud ClassificationWith Deep Convolutional Neural Network, Jinglin Zhang et al.

Contrail study with ground-based
Cameras, U. Schumann et al.

THALES
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SU(1,1)/U(1) Equivariance in Poincaré Disk

| Fish-eye lens have hemispherical view

» Several projection methods exist, with corresponding distortion

4 Infroduce a stereographic projection onto the Poincaré disk

» Project the hemispherical view onto the Poincaré disk D? from the south?-chamoviansky. sasic Focts on

Hyperbolic Geometry and its

pO | e Applications

> Images can be represented as a signal f: D? - R3

Build SU(1,1)/U(1) equivariant convolutional layers
» Non-compact group ®

> Synergy with the analytics being developed for radar Doppler signal
Qrocessing M. C. Escher, Circle Limit lll

— _ | ﬁ 2 2 SU“ ]) acts on the Poincaré Disk by
SU(1,1) = = L Bl>°=1,a,B€C ’

az+f

_J|a 0 2 } o7 =
U(l) - {[0 CY:I' |a| - 1! arﬁ E (C ga,ﬁ 4 ﬁ_Z+ (7

or disclosed to a third party without the prior written conseWALES - © 2021 THALES. All Weserved

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part

.'.>-
I B F°% b b S

SSPD Conference, London, 13th-14th September 2022 OPEN .
|13O Building a future we can all trust



I Motivations for Doppler Radar Processing

| ML techniques have successfully been used for Doppler signal
processing

» Classical algorithms such as CNN and LSTM operating on Doppler
signatures

- . 1
h—
™ Rahman, S etal [2018)

R

1 THALES. Allrights reserved.

» Geometric Learning operating on complex covariance matrices

- D. Brooks et al, 2019
- Y. Cabanes et al, 2019

ritten consent of THALES - © 202

| Target here robustness to noise (e.g., thermal noise, clutter,

etc.)
» Robustnessis a challenge for Deep Learning (e.g., adversarial P
attacks) i’
ML algorithm

» CNN are locally robust to translation of 2D images

Covariance matrices manifold

» Want to generqlizg geomeiric; robustness to algorithms operating Robustness property: fo(To)=fa (Ty) VIy,T; € H,
on complex covariance matrices. with o and I “close enough”

THALES

Building a future we can all trust
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2D-Convolution and Translation Equivariance

5 K:7Z? - R convolution kernel
vx €2, Y =U*xK)(x) = z K(x—=yIy) I: 72 - R is the functional representation of the image
Ly: translation operator for h € Z2, so that L,(f)(x) = f(x — h)

| Feature maps built from convolution kernels transform
consistently with the original image translation

Lpp(x)=(LplI * K)(x)

I CNN success for image processing tasks comes from this
equivariance property, combined with the use of local
filters, weights sharing, and pooling steps.

| Convolution definition can also be seen as a discretized
integral

W) = U *K) () = f K (x — )I(y)dxdy

R2

- We want to generalize to other transforms than
franslations

Originalimage Convolution feature map
with Sobel filter

THALES
|1_32 we can all trust



I Group Actions

H | Group theory provides the mathematical tools to deal with structured transforms
' » Transformations are represented by elements g of agroup G

» Transformations g € G act on the data X as g o X

| Examples of Groups of 2D-plane transforms

» Translation group R?: T, @gz Ty = Tyyy, for x,y € R?

Evariste Galois 1811 -1832 Sophus Lie 1842 -1899

» Rofation group SO(2): Ry, Dso(z) Re, = Re, ,. for 61,6, € [0,2n] and 6, , = 6, + 6, [27]

» Special Euclidean group SE(2): Hye, ®se2) Hye, = Hry y+xre,, (SE(2) = R? x SO(2))

)

: | Examples of actions on a single image

//TeG eT' =

=

/
'-”7_.’,_-—/

— —
A very powerful theory exists for groups /

of continuous transforms (Lie Groups)

\

THALES
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Generalized Convolution

| Convolution operator can be generalized to generic groups of transforms

K:G - R convolution kernel
Vg € G, = *x~ K = K(h™1 W dub (h f:G - Rinput feature map
g lpG (g) (f G )(g) -[G ( g)f( ) H ( ) Ly: franslation operator for h € g, so that L,(f)(g) = f(h™tg)
u%: Haar measure of the group G

| Feature maps built from generalized convolutions are equivariant to the corresponding group action

Ly (g)=(Lnf *¢ K)(g)

*
!
I
i
I
I
i
;

LRI

OPEN

Equivariance of an SE(2) convolution operator

- Kernelisrotated and 2D convolution is performed

as usual

- Astack of 2D feature maps is obtained, indexed

by the rotation angle
- Rotation of the input translates into a shift in the
stack of feature maps

THALES

we can all trust



I Motivations

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part
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l13s

| The deployment of a radar could be alleviated by an automated

recoghnition of pathological clutter

» Build a Machine Learning (ML) algorithm to identify specific clutter characteristics
from their Doppler spectrum fluctuation

ML techniques have successfully been used for Doppler signal processing

» Classical algorithms such as CNN and LSTM operating on Doppler signatures

» Geometric Learning operating on complex covariance matrices
- D. Brooks ef al, 2019

- Y. Cabanes et al, 2019
fo
| Target here robustness to noise (e.g., thermal noise) ML algorithm
> Robustness is a challenge for Deep Learning (e.g., adversarial attacks) Covariance mafrices manfold
> CNN are locally robust to translation of 2D images Robustness property: fy(Tg)=f,(y) VI, Iy € HF, with

. . . . I, and I} “close enough”
» Want to generalize geometric robustness to algorithms operating on

complex covariance matrices.

THALES
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Radar Doppler Signal Classification

X1,1 Xiz v Xip . . . . 7 .
- Represent signals by covariance matrices ,_|: Ty ‘.,_mm.m, Hyperbolic embedding in a product space of Poincaré Disks
?, 8 Pulses emitted i Xif€C Burg algorithm
o5
58 { —

c2 n—1
s
54 ﬁ RY x
it}
'; < Trench/Verblunsky
o~ St theorem
28 Manifold of THPD matrices
5O of dimension n
’g m The Dopplerinformation
i % can be representedin D!
ST
2% i Thrmal rdss Mol
8% Achieve increased -
Q 2 e
3g ™ e " L robustness e
5 6 e ™ o " o e R —p—
2 § ] -\. -\. — T
T h h -
S5 # A o i, Y .
-5 ' § = .
S o { L1 SU(1,1) ah 1 B oan =
g2 . . » . . ' } ”
ER=E. action ;
3 = - | = - |
o2 | [ —» | | ¥ ¥
o3 J .Ii ir
8¢ !
° g L L )
2 ’3 N i % ¥y 4
g€ " P " 1 am | i
€o ’
co - - - - ' il
£3 = o = = o = = -
52
338 (TR ) [ ~ y PLI— |
33 . . . . . N = ] T F]
oD SU(1.1) is not compact & D is not Euclidean - challenging set-up Sl v B
.
= O
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H See Yann Cabane’s talk SP.2 on Thursday
I Mo d e I I n g A p p ro q C h “Multidimensional Statitionary Times-Series Machine Learning for Radar Clutter Classification”

I Anchorin Cabanes et al., 2019

¢ » Process the data cell-by-cell
; » Signal considered to be a stationary, zero mean, autoregressive Gaussian process
i Pulses emitted
- —— .
g8 X321 X3 ™ : Temporal axis
vu X = . . . n = number of pulses
n=10
Distance axis -

p = number of cells

| Consider the autocorrelation matrix of each cell

» Stationarity assumption makes R;,, Toeplitz Hermitian Positive Definite (THPD)

Xll rO rl . rn—l
o Lo . .
X, =| : R, = E[xixﬁ]= T with r = E[Xm,ixm—k,i:l
. . . 1
%o r ror
L "n-1 1 0 |

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part
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H H See Yann Cabane’s talk SP.2 on Thursday
H yperbo I I C E m b e d d I n g “Multidimensional Statitionary Times-Series Machine Learning for Radar Clutter Classification”

M. C. Escher, Circle Limit Il

Parallel lines in D

| Several models of hyperbolic geometry exist

¢ » Use the Poincaré disk model D = {z € C/|z| < 1}

% > Poincaré disk is endowed with a non-Euclidean metric pyp

j _ Zy — Zq

< Z4,Z,) = 2tanh T — \
i p]D)( 1 2) 1 — Z_122

| Embed THPD matrices into a product space of Poincaré disks

ﬁrg ulgori*m

n-—1
ta n-1 TJ%R”;XHD
amm) R X .x X . (% i=1
Trench/Verblunsky I =@y tn-1)
\ J
|

theorem

Manifeld of THPD matrices
of dmension n

The Depplerinformation
can be represented in D"t

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part
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> Work with rescaled autocorrelation matrices and only focus on reflection coefficients
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I Group Action, Homogenous Space and Representation

o]
a

| Consider the Special Unitary Group (Lie group) ;¢ 1y - {ga,ﬁ _ [; g Nal? — |82 = La,p e d
» SU(1,1) is both a group and a manifold

.. ] Poincaré disk can be endowed with an action of SU(1,1) #

» Acts transitively with o through Mobius transforms (isometries)

)
> <
«
rf
5
<
T
=]
IN

ed, in any wo

» Poincaré disk is an homogenous space D =~ SU(1,1)/U(1)

at

20!

az+f

ga,ﬁ°2=ﬁ—z+& U(1)={[g g],|a|2=1,a,ﬁE(C}

ent of THALES - ©

apted, published, transl

I SU(1,1) acts on Fock-Bargmann Hilbert spaces FB, —_—

10
10

0.5

» Through the UIR representation p” of SU(1,1) on FB,

0.0
08

-0.5

-1.0

[p"(9ap) (N = ;_an(gc;i? ©z) (=0 regularrep.) -
(«~P2) .

| Considered THPD matrices can be seen asn — 1 coset elements

0.6

o
O
&
H
o
S
e
5
2

not be reproduced, mod

o a third party

10 04

05

02
0.0

-0.5

0.0

, » Target local robustness with respect to SU(1,1) action

kS Y 0 1 1 0 1

» Use liffing to use generalized convolution within a G-CNN architecture _
THALES
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I SU(1,1) Equivariance and G-CNN

| Use of equivariant convolution operator on D
> D is not Euclidean = use an adequate kernel

» Localization allows weights sharing and integral definition

vz €D, Y°(2) = (f *p ke)(2) = J [p" () (ka)1(2)[p" ()~ (1 (Op)du (R)
h

EBD (z,M)

- © 2021 THALES. Allrights reserved

kg (Z) = iég (lOgD(Z)) iég: R? - C IOgD: D - R? (Riemannian Logarithm)

Bp (M) = {h e SU(l,l)l pD(h 0o0p,z) < M} p": representation of SU(1,1)
on FB,

| ¢ operator are then used to build convolution layers

Polydisk . X Output layer
coordinates  Lifted layer Projection layer

Group-convalution layer Group-convolution layer O

Pointwise Pointwise .

nan-linearity, non-linearity,
THPD matrix poolingetc. poolingete. ()
. v .
O, .
Hyper Bnp, ! )

embe dﬁ ng W, Ve,

(Burg's algorithm) O

| 140 SSPD Conference, London, 13th-14th September 2022 OPEN
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X r X
SU(1,1) L
|| action || |
| ) | ] |
Fa "\-\. F o
T, T,
SU(L,1) l sU(,1)
convolution convolution
e
i SU(1,1)
1 : action ==
—>

Equivariance of SU(1,1) convolution with a Gaussian Kernel
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Numerical Considerations

- © 2021 THALES. Allrights reserved

14

| Computing our convolution operator is generally challenging

> SU(1,1) is not compact

| Can consider a Monte-Carlo approach

> Estimate with y§(z) = -, [p"(g) ()] (D) [p"(9)*(H](0p), Where  g; ~uPo @

» Can use a torus parameterization (Poincaré disks as sections) Sampling with Carton Size of the evaluation grids across layers

parameterization of SU(1,1)

> Buty™tl(z) =X (Y" *p K)(2)-> evaluation grids are dependent across layers

» Exponential memory complexity with respect to depth

Distance of 0y, to the horocycle &(z, b)

| Canleverage on Helgason-Fourier (HF) Analysis ;
v
> HF transform is defined on € x D for function f:D —» Cby f(p,b) = [ f(2)e~P<=P>dm(z)
and an inversion formula exists
> Convolution theorem holds true (regular rep.): f *p k(p,b) = f(p,b) x k(p, b)

» 3integrals computation but can use a constant evaluation grid across layers >
polynomial complexity

» Expand kernel functions on a functional basis (Bekkers, 2020) and precompute HFT.

THALES

Building a future we can all trust
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Experimental Proof-of-Concept

Goal: assess robustness wrt. o

| Provide a POC of our approach
> Work with simulated data (n = 10) Z= VARY?x+

-«
GC

bradar

> Consider simple architectures N(,G"’ with one convolution layer with two filters

modeled as a small MLP

Benchmark with a Fully Connected NN N,/ ¢ operating on the complex
reflection coefficients (= same # of parameters)

- © 2021 THALES. Allrights reserved

> Average over 10 testing instances T, to smooth-out the statistical noise

| Consider training and evaluation with different

Aocmary LT

Confusion matrix of M,%° on Ty

1§ —

values of o
> NIG'O significantly outperforms ;¢ on T, as o increases
> Robustness depends on the representation p”

» Cadlibrate p on the targeted perturbation

->Promising results from both accuracy and
robustness standpoints

SSPD Conference, London, 13th-14th September 2022 OPEN
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Evaluation of M and M€
frained with several values of
o on several testing set T,
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Radar Clutter Classification on Real Data

| Preliminary work on real data recorded in Saint-
Mandrier (FRANCE)

» Consider the labelling obtained through the clustering by
Cabanes et al. (2019)

- © 2021 THALES. Allrights reserved

7 :

77000 R

1 AR
7R

Ground map of Saint-Mandrier

Average power map Clustering labels (Cabanes et al, 2019)

| POC observations are confirmed in real world

» Our SU(1,1)-CNN achieves 80% accuracy while a
comparable FCNN only reaches 60%

or disclosed to a third party without the prior written consent of THALES
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I Plan

) | Modern Sensor Processing based on Symplectic Model of Information
.. > Lie Group Based Equivariant GCNN for Adaptive Doppler Clutter Map

> Lie Group Based Frenet-Seret IEKF (Invariant Extended Kalman Filter) for tfracking
hyper-maneuvering targets

any way, in whole

) 2021 THALES. All rights reserv:

consent of THALES - ©

o
I
3
s

> Lie Group Based Target Recognition on Kinematics for Drone/Birds Classification

> Souriau Symplectic Model of Information for Lie Group Statistics and Machine Learning

- Entropy as Casimir Function in Coadjoint Representation

- Koszul-Fisher Metric on Lie Group

- Covariant Maximum Entropy Density (Gauss Density) on Lie Group
- Lie Groups Machine Learning

ksl
>
a
o
9
Q
o}
ke}
o}

o
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Kalman Filter on SE(3) Lie Group (Thales/Mines ParisTech Pilté PhD):
IEFSKF: Invariant Extented Frenet-Serret Kalman Filter (1/3)

Loty b [teid e

: ]| The state based on Frenet-Serret Model P i S
> the state is X; = (R, X, Ve, Te, Uy ) Cff;’f,‘“ U J i |
] The kinematic Model TN - .

© > The kinematic model is based on the Frenet-Serret frame evolution, and on the fact that the target
is not allowed to slide during turns:

X; y Aty ; dug y
E=Rt(vt+wt) —Rt(a)t+wt)x, 0O+w t’dt_0+wt’E=O+Wt

With v, = [ug, 0,0]7 , w, = [14, 0,717, (@)« € R3*3 is the skew symmetric matrix associated to a € R3.

» We can put part of the state (the rotation and translation, dim 6) into a matricial form:

Ry  x; Ri(wp)y v d
Xt = (01’3 1),,ut = ( t01’; X Ot , EXt Xt(ﬂt'l‘Wi{) fj

L keep the other part (dim 3) in vectorial form: z; = (y, e, uy) % =0+ w? p(wJTTE%h
> The cartesian measurement equationis ¥, = X+ Vo (= xp, d + Vi) T H ALES

= we can all trust
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Kalman Filter on SE(3) Lie Group (Thales/Mines ParisTech Pilté PhD):
IEFSKF: Invariant Extented Frenet-Serret Kalman Filter (2/3)

[1] M.Pilté & S.Bonnabel & F.Barbaresco, An Innovative Nonlinear Filter for Radar Kinematic Estimation of

g I |EFSKL Filter Maneuvering Targets in 2D, 2017
[2] A. Borrou & S.Bonnabel The Invariom‘ Extended Kalman Filter as a stable observer, 2016
> Evolution equo’non = Xt(ﬂt+Wt) =0+ w?

- » The y-part of the sTo’re belongs to a mo’rrix Lie group (SE(3)) and the z-part of the state

belongs to a vectorial space.
775 R{I’it j

ij . X —_ 14 — — — ~

>Theerorn. :my =x; XeONdni=2,—z,. . ne=| 9} | = Ve — Ve MINES e

S T - irislech
Nt T — Ty
ne U — Uy

» The update step of the IEKF whenever a measurement Y, is available and t = t,;:

P et MaiTh ol bty

e L a At _ A X A_l L Lo s et ¥ Tl
" . _1 e | Xty —thexp(L (Xt n)) ti e i ! .-f‘ | e BN
¥ '-..__--—-\--:--'\-.,i'| E g 1 il : |
o s Al T zf, = 2, + (%, Yn) i '; -|"I L
I -] -:1I g il . fr—— ..:_ o 5 \
e e J with L, the Kglman gain =, .Y s R ety WL SN -
im “m?‘“ W im me :"\:"\. 0l B B PO W im me :"\:"\. 0l B B PO b B BB osih M BB POD



IEFSKF: Invariant Extented Frenet-Serret Kalman Filter (3/3)
| &t
- > linearized error &, such that nf ~ I+ (§f) .andni ~ &, & =|¢§ |eR®
| 3
St

~ > Linearized error evolution equation : % = A&, + w, with 4, independent of R,, %,

= » The Kalman gain L, is computed by integrating the Riccati equation :

I Kalman Filter on SE(3) Lie Group (Thales/Mines ParisTech Pilté PhD):

d T
— P, =AP;+ P A; +Q;

dt
S, = HP, H" + R{ N,R, fj
- MINES
L, = PthTS 1 PnlsTech

P:_n =g — LnH)Ptn

- Q.is the covariance of the process noise, and N,, is the covariance of the
measurement noise, H is the measurement matrix. THALES
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I Lie Group Model (IEKF) versus Vector Space Model (EKF)

Linear Algebra
(EKF)

Lie Algebra

Kinematic Model
State Prediction

Error definition

Error evolution

Linearized error evolution

Covariance definition

Covariance prediction

SSPD Conference, London, 13th-14th September 2022
| 148

d
axt = f(Xy, we)

d _ ~
Ext :f(Xt)
N :Xt—Xt

dn, .o
E _f(Xt) _f(Xt)

dg =
d_tt= Ft(Xt_Xt) +Q;=F§:+Q;

(F; depend on predicted space)
Py =Var(,)

dP,
WZFtPt'l'PtFt'l'Qt

OPEN

(autonome)
d
f = A& + Q¢
(A, independant of £, R;)

P, =Var($,)

dP,
—— =A4P;+ P A + Q,

dt
THALES
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I Lie Group Model (IEKF) versus Vector Space Model (EKF)
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I Lie Group Model (IEKF) versus Vector Space Model (EKF)
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I Lie Group Model (IEKF) versus Vector Space Model (EKF)

rights reserve
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I Lie Group Model (IEKF) versus Vector Space Model (EKF)

. | Superposition of mean and standard deviation
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I Drone Recognition on Kinematics Signature of their body trajectory

| Drone Kinematics signature

» To improve the classification performance of drones when the Doppler
signature of the blades is more difficult to characterize (blade shrouds,
carbon blades, etc.), in addition to the Doppler signatures, the
kinematic characteristics of the aircraft are considered.

» Tree boosting methods (XGBOOST type) are used by extracting
statistical parameters on the time series of kinematic variables:
> speed / acceleration / jerk on the 3 axes
horizontal velocity module
the 3D speed module
the horizontal 2D curvature
3D curvature

VvV V V VvV V

the logarithm of the forsion of the 3D trajectory

» The classification is made on parameters of order statistics (median,
quantile, L-moments, ...) estimated on the time series of these
parameters.

| 154 SSPD Conference, London, 13th-14th September 2022 OPEN
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Target recognition on Kinematics by Gradient Boosting (XGBOOST)

| Drone/Birds Recognition on Kinematics

> Drone trajectories and Kinematics are simulated by auto-pilot :
g ENAC/TU Delft Paparazzi UAV

» Birds trajectories and kinematics are characterized by GPS
dataset on Birds: MOVEBANK

» Statistics features extraction (ordered statistics, L-moments,
quantiles, ...) from time series of drone : speed / acceleration /
jerk, 2D horizontal speed module, 3D speed module, 2D horizontal Ry e
curvature, 3D curvature, forsion logarithm https://wiki.paparazzivavorg/wiki/Main_Page

:-  » Python time series stafistics: Imoments, tsfresh % Al 1 1

)21 THALES. Allrights reser
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Results for Pdetect=0.9
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Results for Pdetect=0.6

Confusion matrix, normalized
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I Matrix Lie Group SE(3) for Kinematic Data

] 3D trajectory and Frenet-Serret Frame

- 2 When we consider a 3D frajectory of a mobile target, we can -
~ describe this curve by a fime evolution of the local Frenet- o s \‘
Serret frame (local frame with tangent vector, normal vector e T '
and binormal vector). This frame evolution is described by the
Frenet-Serrtet formula that gives the kinematic properties of '?
the target moving along the continuous, differentiable curve 1 <
in 3D Euclidean space R3. More specifically, the formulas o s e
describe the derivatives of the so-called tangent, normal, and -

binormal unit vectors in terms of each other.

d" 2
T T ———
. e ~—
Y
>
.
i
L
Re
1
] £
=3

t 0 « t
d| _ R _ K curvature
—|n|=|-x« 0 y|/n}| with _
dt| _ . y . torsion
) 0 -7 O]lb
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I Matrix Lie Group SE(3) for Kinematic Data

. | 3D trajectory curve

> we will consider motions determined by exponentials of paths in the Lie algebra.
Such a motion is determined by a unit speed space-curve (t) - Now in a Frenet-
Serret motion a point in the moving body moves along the curve and the
coordinate frame in the moving body remains aligned with the tangent t , normal
, and binormal p , of the curve. Using the 4-dimensional representation of the Lie
Group SE(3), the motion can be specified as :

G(t) = LR((;) T(lt) J e SE(3)

> where z(t) is the curve and the rotation matrix has the unit vectors T, ,and b as
columns:

R(t):(f i 6)630(3)

)

|.|59 SSPD Conference, London, 13th-14th September 2022 OPEN I l I A L E S
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I Matrix Lie Group SE(3) for Kinematic Data

. | Time evolution of Frenet-Serret Frame

> If we introduce the Darboux vector @ =yt +xb that we can rewritte from Frenet-

Serret Formulas : di  d db
—oxt , —=@xfi , —=axb
dt dt dt
> Then, we can write with Q is the 3x3 anti-symmetric matrix corresponding to @ :
ﬁ — OR
dt
> We note that dz(t) =t and do _ d7f+ dKB
dt dt dt

» The instantaneous twist of the motion G(t) is given by:

46() g1y [ 0
=S50 0= o

dt
THALES
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I Matrix Lie Group SE(3) for Kinematic Data

. | Instantaneous twist

hel

» This is the Lie algebra element corresponding to the fangent vector to the curve G(t)
. It is well known that elements of the Lie algebra se(3) can be described as lines
with a pifch. The fixed axode of a motion G(t) € SE(3) is given by the axis of S, ast
varies. The instantaneous twist in the moving reference frame is given by

S, =G*(t)S,G(t) . that is, by the adjoint action on the twist in the fixed frame. The
instantaneous twist S, can also be found from the relation:
dG(t)

S, =G ()~

s _g19G _ RT —-R'z)(QR t) (RTQR Rt
° dt 0 1 0 0 0 0

SSPD Conference, London, 13th-14th September 2022 OPEN I l I A L E S
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I Matrix Lie Group SE(3) for Kinematic Data

. | Trajectory as a time series of Matrix SE(3) Lie groups

[ele}

> We can observe that we could describe a 3D trajectory by a time series of SE(3) Lie
group elements:

SE(3) = ﬂg EJ/ ReSO(3),z e R?}

with $O(3) ={R/R'R=RR" =1,det’ R =1}
» Then, the frajectory will be given by the following fime series :

ﬂRl 7 HR g Jr 2 J}esas)“
0O 1|0 1 0 1

THALES
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Fisher Metric and Fréchet-Darmois (Cramer-Rao) Bound

16)
No_ o) 1 0° log p,(2)
R, =E||0-0)\0-6 (& = 0
~elo-dlo-d o101 o), Tean
ds? = Kullback _ Divergence(p,(z), py.q0(2))
z oo (2) W=W(o)
ds; :—_[ p,(2)log o) dz ~ ds? = ds’

ds;_~ >g;d0d] = > [1(0)];d6,dg; =do™.1(6).d6
aylor w ’

" . ] o THALES



Distance Between Gaussian Density with Fisher Metric

1
— 0 T 1
1(0) = ‘; % avec E[(@—@)(G—@) ]zue) et 9:@)

B o
2 Fisher matrix induced the following differential metric

2

. 2
ds? = do".1 (0).do =" 299" _ 2 Kdmj +(d0)2J

2 2 2 \/E

o) o) O

» Poincaré Model of upper half-plane and unit disk
e e w27 (] <1)
J2 Z+i
de|”

165



1 monovariate gaussian = 1 point in Poincaré unit disk

2 dm? m ) Z—1
ds< = > 2. — 4+l = - (Ia)|<1)
O ~ 2 Z +1
Fisher Metric in
Poincaré Half-Plane /= _~——""T—~--\ _
0,

Poincaré-Fisher metric \\“\\ _,.// 2
L o~ e T 1+ 5(0)(1) a)(Z))
2 . y
In Unit Disk . d ({ml,al},{mz,az}) = 2.(Iog 1 5@, o)
dw ’
2
et =k ) 2 with §(0®,0®) = Kool
Lol i




Machine Learning & Gradient descent

2 Information geometry has been derived from invariant geometrical structure
involved in statistical inference. The Fisher metric defines a Riemannian metric as
the Hessian of two dual potential functions, linked to dually coupled affine
connections in a manifold of probability distributions. With the Souriau model, this
structure is extended preserving the Legendre tfransform between two dual
potential function parametrized in Lie algebra of the group acting transitively on
the homogeneous manifold.

» Classically, to optimize the parameter @ of a probabilistic model, based on a
sequence of observations Y, . is an online gradient descent with learning rate n, ,
and the loss function |, =—log p(y, / ¥,) :

o, (y,)

0, <0, —n, 00
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Information Geometry & Machine Learning

2 This simple gradient descent has a first drawback of using the same non-adaptive
learning rate for all parameter components, and a second drawback of non
invariance with respect to parameter re-encoding inducing different learning
rates. S.I. Amari has infroduced the natural gradient to preserve this invariance to
be insensitive to the characteristic scale of each parameter direction. The
gradient descent could be corrected by 1(8)™* where | is the Fisher information
matrix with respect to parameter g , given by: T

ol (y.)

0, <6, —nl (‘9t—1)_1 PV
| (H)ZLgijJ 00

. 0*log p(y/9) dlogp(y/6)aologp(y!6)
with g, :{_Eyzp(y/e{ = Byepiyin)
ij ij

06,00, 26 20,

i j
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I Information Geometry & Machine Learning : Legendre structure

| Legendre Transform, Dual Potentials & Fisher Metric

> S.I. Amari has proved that the Riemannian metric in an
exponential family is the Fisher information matrix
defined by:

6 = 0’
' o0 |

» and the dual potential, the Shannon entropy, is given
by the Legendre transform:

with d(6) =—log [ e **'dy
R

ov©0) 1, _ 350

S(n) =(0,7)—®(0) with 7, = v on

| ]69 Tl Al Seminar Series OPEN

+ D(8) Slopg

D) _ D(O)-S(n)
e 6-0

Classical Geometry
(curveis given by a
contfinuum of points)

S(17)={0.n)-®(©)
oD(0)

Plicker Geometry
(curveis given by the
envelop ofits fangents)

~ with aSa—(n)zﬁ and ———=p

THALES



I Notation !

| | use notation as used by Koszul and Souriau which is not the most
classical one

*

Ad; =(Ad_. )

with

(Ad;F,Y)=(F,Ad .Y),VgeGY eg,Feg’

170 mesemiersoe THALES



I Fisher Metric and Souriau 2-form: Lie Groups Thermodyamics

| Statistical Mechanics, Dual Potentials & Fisher Metric

> In geometric statistical mechanics, J.M. Souriau has developed a “Lie groups
thermodynamics” of dynamical systems where the (maximum entropy) Gibbs
density is covariant with respect to the action of the Lie group. In the Souriau
model, previous structures of information geometry are preserved:

|(/3):—Z;q2’ with ®(8)=—log [ e "*“d2 U:M g
_ _ o 0P(B) _ - _05(Q)
$(Q)=(.Q)—@(p) with Q 5 <8 and S 0 <8

Jean-Marie Souriau

> In the Souriau Lie groups thermodynamics model, g is a “geometric” (Planck)

temperature, element of Lie algebra g of the group, and Q is a “geometric”
heat, element of dual Lie algebra g* of the group.

I‘|_7‘| TII Al Seminar Series OPEN T H A L E S



Fisher-Souriau Metric and its invariance

> In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization in
information geometry has been replaced by invariance with respect to the
action of the group. When an element of the group g acts on the element S eg
of the Lie algebra, given by adjoint operator Adg . Under the action of the group
, Ad,(p) . the entropy S (Q) and the Fisher metric | (,B) are invariant:

5| Q(Ad,(8)) |=8(Q)

,Beg—>Adg(,B):> L J

1| Ady(B) |=1(B)

1(B) = ‘“D

with CD(,B)_—Iogje BUENd A

S(Q)=(8,Q)-d(B) with Q—%e and 13_886((?)

172 W se = THALES




Fundamental Souriau Theorem

G

Lie Group Lie Algebra

-
-
-

Dual Lie Algebra !
R /
IB . (Planck) température Ad/g Q

element of Lie algebra

Q ; Heat element of dud Q" Q =Q(Ad, (8))=Ad; (@Q)+6(g)
173 s = THALES



Fisher-Souriau Metric as a non-null Cohomology extension of KKS 2
form (Kirillov-Kostant-Souriau 2 form)

Souriau-Fisher Metric I(ﬁ):[gﬂ} with gﬁ([,B,Zl],[ﬁ,zz])=C:)ﬂ(zl,[,3,zz])
with 6,(2,,2,)=0(2,,2,)+(Q.[2,.2,] )

Non-null cohomology: aditional term from Souriau Cocycle Equivariant KKS 2 form

O(X,Y) =Jrxy;—{Ix:Jy} with J(x):M —a" such that J, (x) =(J(x),X), X g

O(X,Y):axg—R with ©(X)=T,0(X (e)) 0(5,2)+(Q[8.2] )=0
XY = (0(X),Y) p € Ker (:)/3
Souriau Fund tal e
_Equation o?llj.ir:aaér::p ?:::denamics Q( Ad, (B )) = Ady(Q)+0 ( g )

THALES
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Souriau-Fisher Metric & Souriau Lie Groups Thermodynamics:
Bedrock for Lie Group Machine Learning

TEMPERATURE HEAT
In Lie Algebra G In Dual Lie Algebra
gﬂ([ﬁ,zl],[ﬁ,zz]F(:)ﬁ(Zl,[ﬂ,Zz])zo

Gibbs canonical Q8 82 |Og Ie—<ﬂrU (§)>di
M

ensemble az

Ad, () Ad,(@+0(g) 1) =1(Ad(8))=-

a Q

B 0B’

B = Q
Entropy invariant under the
s(Q)=(8,Q)—@(p) action of the group

s(Q)=(£.Q)—®(8)=(0*(Q).Q) - »(®@*(Q))

Logarithm of Partition Function _1
(Massieu Characteristic Function) Q=0(B) = o _ ot P=0 (Qex

I]_75 Tl Al Serninar Series 618 T H A L E 5



Souriau Model of Covariant Gibbs Density

2 Souriau has then defined a Gibbs density that is covariant under the action of the

group: oS oV A
Painss (5) =€ = J‘e_<u (a:),p’)d/1w
M
with @(B)=—log j e VA
M
(&)e Y2,
_0D(p) _ J _

> We cgg)e §>ress ’rhe Gibbs density with respect to Q by inverting the relation
@(ﬂ) u©e+Q) . -
('B . Then Paibbs.o (&)= | ) with =0 1(Q)

176 THALES



Souriau Entropy Invariance

» We observe that Souriau Entropy §(Q) defined on
coadjoint orbit of the group has a property of invariance .

5(Ad;(Q)=5(Q)
> with respect to Souriau affine definition of coadjoint action:
Ad;(Q) = Ad;(Q)+6(g)
> where @(qg) is called the Souriau cocyle.

Q ( Ad g (ﬂ)) = Ad; (Q) +0 ( g ) Casimir Function in | @2

Coadjoint Representation
Invariant under the action

S(Q(Adg(ﬂ))):S(Q) of the Group

H.B.G. Casimir, On the Rotation of a Rigid Body in
177 nemnenee Quantum Mechanics, Doctoral Thesis, Leiden, 1931.

Hendrik Casimir
(Thesis supervised by

Niels Bohr & Paul Ehrenfest)




Entropy as Invariant Casimir Function in Coadjoint Representation

{S.H}5(Q)=0| lad}Q+ @ngj 0

Q

sm@-{ag &) g &

le.e;|=Cle, , Ci structure coefficients

&S oH 6S oH )\ - .
{S,H},(Q)= <Q {8(2 aQD @[%,%)_o . VH:g' >R, Qeu

O(X,Y)=Jry;—{Ix,Jy} where J, (x) =(J(x),X)
O(X,Y)=(0(X),Y) with ©(X)=T,0(X(e))
178 1A sominr e 0(9)=Q(Ad,(B))-Ad,(Q) THALES



Geometric Poincaré-Souriau-Fourier Heat Equation

S -20,0+0| T |=loH), 2, g or-at, The0| T
a o 60 ®Q_2 dtop e  \Q

2 Heat Equation is the PDE for (calorific) Energy density where the nature of
material is characterized by the geometric heat capacity. In the Euclidean case
with homogeneous material, we recover classical equation on density of Energy Og
9, (A ., O oT
Pe _div — Ve |with Pe _cL
ot C ot

Balian, R., Infroduction a la thermodynamique hors-équilibre. 2003, CEA report
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Motivation for Lie Group Machine Learning: Data in Homogenous
Space where a Lie Groups act homogeneously

SU(1,1) ={L; ﬁJ/a,,BeC,

i’
¢ :THDP(n) - R’ x D"

Ry (B ey 1)
R,=(h, s, tt,) R xD™

o |4 =1y

F. Barbaresco, Lie Group Machine Learning and Gibbs Density on
Poincaré Unit Disk from Souriau Lie Groups Thermodynamics and
SU(1.1) Coadjoint Orbits. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019.

With (Dn_l _ DX___)( D) / LNCS, vol. 11712, SPRINGER, 2019
2
9 _ ‘dZ‘ _ *\—1 N L
4S5 incare ——2—(1— 27 ) dz(l—z z) dz

1)
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Matrix Lie Group SU(1,1) for Doppler Data

» The Poincaré unit disk is an homogeneous bounded domain where the Lie Group
SU(T,1) act transitively. This Matrix Group is given by

SU@1) = ﬂs :*J/\a\z “bf=1abe c}
az+b

> where SU(1,1) acts on the Poincaré Unit Disk by: geSU(1,1) = g.z = .
Z+

» with Cartan Decomposition of SU(1,1):

R N

with z = b(a*)_l, al = 1—\2\2)_1/2

+\—1
2 We can observe that z = b(a ) could be co_rlmsidered as action of g € SU(L1)
on the centre on the unit disk z=g.0= b(a*) :

1g1 e so = THALES




Poincaré Unit Disk and SU(1,1) Lie Group

> The group of complex unimodular pseudo-unitary matrices SU (1, 1):

G=SU(L1)= {;‘ :*J/|a|2 “bf =1 abe c}

> the Lie olgebro 0 =su (l 1) is given by:

—Ir
n Ir

with the following bases (ul,uz,u3 eq :

1(0 -l 1(0 1 1(—1 O
u1:_ . 1u2:_ 1u3:_ .
2{1 O 2{1 0 200 1

with the commutation relation:

[Us. U =t [us Uy ] = U, [up 0, | = -y, THALES

182



Poincaré Unit Disk and SU(1,1) Lie Group

» Dual base on dual Lie algebra is named
(Ul,UZ,US)Eg

» The dual vector space g* =gu (l, l) can be idenfified with the subspace of
8l(2,C) of the form:

. Z X+1y 0 1 0 1 1 0
q = . = X +V] . +Z /X, y,2€eR
{—XHY —ZJ (—1 OJ (' 0] (0 —1J }

» Coadjoint action of ge G on dual Lie algebra 5 e g* IS written g§

183 THALES



Coadjoint Orbit of SU(1,1) and Souriau Moment Map

(
L+ 7

J(z)=r

\(1—|z|2)

*

U, +

7—7

(1)

*

u, +

1+]zf .

cO(ru;),zeD

(1_|Z|2)UB/

> J islinked to the natural action of (3 on D (by fractional linear transforms) but
O|Iso1 the coadjoint action of (G on O(rug) =G/K
> J could be interpreted as the stereographic projection from the two-sphere

S?onto ClU :

The coadjoint action of

G=SU (1, l) is the upper

sheet X3 > (0 of the

two-sheet hyperboloid

\
* * L u2 2y 2
]84{§=x1u1+x2u2+x3u3.—x1—x2+x3:r } THALES

Charles-Michel Marle, Projection
stéreographique et moments, hal-
02157930, version 1, Juin 2019



Moment Map for SU(1,1)

> The associated moment map J :D —su”(L1) defined by J(z)u, =J,(z,2°), maps
D info a coadjoint orbit insu”(1,1) .
2 Then, we can write the moment map as a matrix element of Su*(l,l) :

I@)=3,(z.2")u; +3,(2, 2" )u; + 3,(2. 2" )u,

1+‘Z‘2 P 7
-2 1o |
J(2)=p , |EY
7 _1+‘Z‘
-2 1-f2f

. z X+1y 0 1 0 i 1 0
o = . =X +y] . +2 /X,y,zeR
{[—X-Hy A J L—l OJ LI OJ (0 —1]

185 THALES



27

(1-2F) (-2 [ ,7]

27 12 [\ i

(+-2f) (-l
J'e—<3(2)ﬁ>d A(2)

Souriau Gibbs density

e

Paibbs ( Z) =

2 To write the Gibbs density with respect to its statistical moments, we have to

express the density with respect to Q =E[J(z)] (ir g A
» Then, we have to invert the relo’rigcrf)i)egween Q and B, toreplace” |n" —ir /
by B=07(Q)eq where Q= 9vp) _ O(B)eg’ with @(p)=-log J'e'“(z)'ﬂ dA(z2)
deduce from Legendre tranform. % mean moment map is given by: °
1+\W\2 —2wW
(L-p) (2= wf’)
Q=E[J(2)]=E|p . where we D
2W ~ 1+‘W‘
2 2
186 i (1_‘W‘ ) °PE(1_‘W‘ ) | THALES




Gauss Density on Siegel Unit Disk

> The moment map for SU(n,n)/ S (U(n)xU(n)) is then given by:

| —zz*) (1 +zz7) 2z (1 —zz*)"
sy B M zz) ez
2(1,-22") "z (1,+2z7)(1,-22")
> The Souriau Gibbs density is then given with 8,M eg and Z € SD, by:

*

<pn[(|nzz+)1(|n+zz+) —2z+(|n—zz+)_1 ,/3> L= O (Q) eq
) (Z)_ e 2Al-2z7) 'z (1,+227)(1,-227) O=E [.J (Z)]
Gibbs - _<J(Z)'ﬁ>dﬂ =
S!e (2) Q=aq;(ﬂﬂ)=®(ﬂ)eu*

» Gauss density of SPD matrix is given by Cayley Transform with:

-1 +
. Z=(Y-1)(Y+1)_Y eSym(n) THALES



Pathological Clutter Segmentation by Supervized Classification:
Lie-Group Equivariant Neural Networks: G-CNN for SU(1,1) Lie Group

] Ongoing internal work for G-CNN application to radar signal processing

» Represent the Doppler signals as complex covariance matrices

» Embed these matrices into the Poincaré poly-disk [(hyperbolic space]

» Build equivariant conveolution kernels to SU(1,1)

» Hope to improve robustness to sensor noise

'ﬁ”If_l |::| = ﬂn,ﬁ‘ — L'?

U1 -{ﬂ &],luF =1,a,f €|

Pl 1a - 1612 = ap e}

SUfI, 1) acts on the Poincorg Disk by
fokbivs fransform
az + i

Hoap &=

fz+a

P.Y. Lagrave, Y. Cabanes, F. Barbaresco, An Equivariant Neural Network
with Hyperbolic Embedding for Robust Doppler Signal Classification,

International Radar Symposlum IRS’21, Berlin, June 2021
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QUESTIONS: C.R. Rao and SPRINGER Information Geomeitry Journal

tOITORIAL
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Congratulatory message
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