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SSPD Conference 2022 - Welcome 

Dear Colleagues, 

 

We warmly welcome you to this year’s SSPD Conference, our second hybrid conference. This event is the 

11th conference of the Sensor Signal Processing for Defence series and provides a chance to present, 

listen to and discuss the latest scientific findings in signal processing for defence.  

 

We are privileged to have our two keynote speakers, Frédéric Barbaresco from Thales Land & Air 

Systems, France and Lieutenant General Tom R Copinger-Symes CBE, Deputy Commander UK Strategic 

Command. The SSPD 2022 conference also welcomes our invited speakers; Lance M. Kaplan, ARL, Simon 

Godsill, University of Cambridge, Jon Spencer, Dstl. 

 

A welcome also extends to our panel speakers from Defence, Industry and Academia and the presenters 

of scientific papers presenting their novel research through live oral presentations. We look forward to 

some interesting debate and discussion throughout the conference. 

 

We would like to take this opportunity to thank the speakers, reviewers, session chairs and the technical 

committee for their contribution to this event. 

 

We hope you enjoy our conference. 

 

 

Mike Davies 

Steve McLaughlin 

Jordi Barr  

Gary  Heald 

 

Chairs, SSPD 2022 

 

 
Technical sponsorship is provided by IEEE Signal Processing Society. Proceedings will be submitted to the 

Xplore Digital Library. The conference is organised by the University Defence Research Collaboration (UDRC) 

in Signal Processing, sponsored by the Defence Science and Technology Laboratory (Dstl) and the 

Engineering and Physical Sciences Research Council (EPSRC).  
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Sensor Signal Processing for Defence Conference 2022 Programme 

 

Location: IET: London Savoy Place / Link to online conference sent in an email to delegates 

Note all questions and answers will be managed using Zoom chat. The questions in the poster 

session will be managed using https://www.sli.do/ – the code for the main conference is #SSPD22 

and the password will be sent in an email to delegates. 

Tuesday 13th September 2022  

8:30 to 9:00 Refreshments 

 

Session 1 – Applications and Implementation – Chair – Mike Davies, University of Edinburgh 

9:00 Introduction and Welcome to Day 1/Session 1 – Mike Davies, University of Edinburgh. 

9:10 – 10:10 Defence Keynote Speaker: Information Challenges in Multi-Domain Integration, Lt Gen 

Tom Copinger-Symes CBE, UK Strategic Command. 

10:10 – 10:40 Invited Speaker: Dealing with Epistemic Uncertainty in Information Fusion Systems, 

Lance Kaplan, ARL. 

10:40 – 11:05 Automatic Approximation for 1-Dimensional Feedback-Loop Computations: a PID 

Benchmark, Yun Wu1, Yun Zhang1, Anis Hamadouche1, Joao Mota1, Andrew M Wallace1, 1Heriot-

Watt University. 

11:05 – 11:35 Refreshments 

11:35 – 12:00 Efficient Joint Surface Detection and Depth Estimation of Single-photon Lidar Data 

using assumed Density Filtering, Kristofer Drummond1, Dan Yao1, Agata Pawlikowska2, Robert Lamb2, 

Steve McLaughlin1, Yoann Altmann1, 1Heriot-Watt University, 2Leonardo. 

Session 2 – Panel Discussion and Lightning Posters – Chair – Jordi Barr - Dstl 

12:00 Introduction and Welcome to Session 2 – Jordi Barr, Dstl  

12:00 – 13:00 Panel Discussion: Open Source intelligence 

13:00 – 13:30 Lightning Poster Presentations 

 P1. An Extension to the Frenet-Serret and Bishop Invariant Extended Kalman Filters for 

Tracking Accelerating Targets, Joe Gibbs1, David Anderson1, Matt MacDonald2, John Russell2, 
1University of Glasgow, 2Leonardo. 

 P2. Joint Undervolting and Overclocking Power Scaling Approximation on FPGA, Yun Wu1, 

Joao Mota1, Andrew M Wallace1, 1Heriot-Watt University. 

 P3. State Estimation of the Spread of COVID-19 in Saudi Arabia using Extended Kalman Filter, 

Lamia Alyami1, Saptarshi Das1, 1University of Exeter. 

 P4. Optimal Bernoulli Point Estimation with Applications, Alexey Narykov1, Murat Uney1, 

Jason F. Ralph1, 1University of Liverpool. 

vii



Sensor Signal Processing for Defence Programme           

 

 P5. High Resolution DOA Estimation for Contiguous Target with Large Power 

Difference, Murtiza Ali1, Karan Nathwani1, 1Indian Institute of Technology. 

 P6. Compressive Self-Noise Cancellation in Underwater Acoustics, Pawan Kumar1, Karan 

Nathwani1, Vinayak Abrol2, Suresh Kumar3, 1Indian Institute of Technology, 2University of 

Oxford, 3DRDO, India. 

 P7. Non-Coherent Discrete Chirp Fourier Transform for Modulated LFM Parameter 

Estimation, Kaiyu Zhang1, Fraser K Coutts1, John Thompson1, 1University of Edinburgh. 

 P8. Unsupervised Expectation Propagation Method for Large-Scale Sparse Linear Inverse 

Problems, Dan Yao1, Steve McLaughlin1, Yoann Altmann1, 1Heriot-Watt University. 

 P9. Movement Classification and Segmentation Using Event-Based Sensing and Spiking 

Neural Networks, Paul Kirkland1, Gaetano Di Caterina1, 1University of Strathclyde. 

 P10. Enhanced Space-Time Covariance Estimation Based on a System Identification 

Approach, Faizan Khattak; Ian Proudler1, Stephan Weiss1, 1University of Strathclyde. 

13:30 – 14:45 Lunch and Poster Presentations – There will be an opportunity to view posters either 

online or at Savoy Place (Q & A will use https://www.sli.do) 

Session 3 Networking and Communications – Chair – Steve McLaughlin, Heriot-Watt University 

14:45 Introduction and Welcome to Session 3 – Steve McLaughlin, Heriot-Watt University 

14:45 OMASGAN: Out-of-distribution Minimum Anomaly Score GAN for Anomaly Detection, 

Nikolaos Dionelis1, Sotirios Tsaftaris1, Mehrdad Yaghoobi1, 1University of Edinburgh. 

15:10 Refreshments 

15:45 Fast Trajectory Forecasting With Automatic Identification System Broadcasts, Yicheng Wang1, 

Murat Uney1, 1University of Liverpool. 

16:10 Deep Learning for Spectral Filling in Radio Frequency Applications, Michael Girard1, Matthew 

Setzler1, Elizabeth Coda1, Jeremiah Rounds1, Michael Vann1, 1Pacific Northwest National Laboratory. 

16:35 Closing remarks 

---------------------------- 

19:30 Conference Reception Drinks - IET Savoy Place  

 

20:00 Conference Dinner  
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Wednesday 14th September 2022 

8:30 to 9:00 Refreshments 

Session 4 Machine Learning – Chair – James Hopgood, University of Edinburgh 

9:00 Introduction and Welcome to Day 2/Session 4 – Machine Learning – James Hopgood, University 

of Edinburgh  

9:05 – 10:05 Academic Keynote Speaker: Lie Groups Statistics and Machine Learning for Military 

Sensors based on Symplectic Structures of Information Geometry, Frédéric Barbaresco, Thales 

10:05 – 10:35 Invited Speaker: Signal Processing for Military Communications, Jon Spencer, Dstl. 

10:35 – 11:00 Robust DOA Estimation Based on Deep Neural Networks in Presence of Array Phase 

Errors, Xuyu Gao2, Aifei Liu2, Yutao Xiong2, 1Harbin Engineering University, 2Northwestern 

Polytechnical University. 

11:00 – 11:25 Refreshments 

Session 5 – Panel Discussion – Chair – Jordi Barr - Dstl 

11:25 Introduction and Welcome to Session 5 – Jordi Barr, Dstl 

11:25 – 12:25 Panel Discussion: Should defence be more university friendly or should universities be 

more defence friendly? 

12:25 – 13:25 Lunch 

Session 6 – Radar Sonar and Acoustics – Chair – Gary Heald, Dstl 

13:25 Introduction and Welcome to Session 6 – Gary Heald, Dstl 

13:25– 13:55 Invited Speaker: Points, Particles and Positions: Recent Advances in Distributed 

Processing of Agile Objects, Simon Godsill, University of Cambridge. 

13:55 – 14:20 A Polynomial Subspace Projection Approach for the Detection of Weak Voice Activity, 

Vincent W Neo1, Stephan Weiss2, Patrick A Naylor1, 1Imperial College London, 2University of 

Strathclyde. 

14:20 – 14:45 Optimizing Sonobuoy Placement using Multiobjective Machine Learning, Christopher 

M Taylor1, Simon Maskell1, Jason F. Ralph1, 1University of Liverpool. 

14:45 – 15:10 Refreshments 

15:10 – 15:35 Image Quality SAR Refocus of Moving Targets undergoing Complicated Rolling 

Maneuvers, David A. Garren1, 1Naval Postgraduate School. 

15:35 – 16:00 Learning Low-Rank Models From Compressive Measurements for Efficient Projection 

Design, Fraser K Coutts1, John Thompson1, Bernard Mulgrew1, 1University of Edinburgh. 

16:00 – 16:25 LoRaWAN Performance Evaluation and Resilience under Jamming Attacks, Vaia 

Kalokidou1, Manish Nair1, Mark Beach1, 1University of Bristol. 

16:25 Closing remarks 
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Keynote Speakers 

Lieutenant General T R Copinger-Symes CBE Deputy 

Commander UK Strategic Command 

Tom spent his early career with The Rifles on operations in 

Northern Ireland, Bosnia, Kosovo, Iraq and Afghanistan, and in 

operational and strategy posts at the Permanent Joint 

Headquarters and the Ministry of Defence.  

For the past 10 years he has focused on how the Army and 

Defence can make better use of its data and information, 

whether in supporting traditional warfighting or employed as a 

weapon in its own right - especially in the context of ‘sub-

threshold’ competition. This has included command at brigade (1 

ISR Bde) and divisional levels (Force Troops Command - now 6th 

(UK) Div), as well as, in his last post as Director of Military 

Digitisation, leading Defence’s Digital Transformation portfolio. 

In May 2022 Tom was promoted to Lieutenant General, on 

appointment as the Deputy Commander of UK Strategic Command. 

x



Frédéric Barbaresco, THALES KTD PCC SENSING SEGMENT LEADER (Key Technology Domain: 

Processing Control & Cognition), THALES Land & Air Systems, Meudon, FRANCE 

Senior THALES Expert in Artificial Intelligence at the Technical 

Department of THALES Land & Air Systems. SMART SENSORS 

Segment Leader for the THALES Corporate Technical Department 

(Key Technology Domain "Processing, Control & Cognition"). 

THALES representative at the AI Expert Group of ASD (AeroSpace 

and Defense Industries Association of Europe). 2014 Aymée 

Poirson Prize of the French Academy of Science for the application 

of science to industry. Ampère Medal, Emeritus Member of the 

SEE, and President of the SEE ISIC club "Information and 

Communication Systems Engineering". He is French MC 

representative of European COST CaLISTA (Cartan geometry, Lie, 

Integrable Systems, quantum group Theories for Applications) 

(https://www.cost.eu/actions/CA21109/). General Chair of the following events: the "Geometric 

Science of Information" international conferences (https://franknielsen.github.io/GSI/), MaxEnt’22 

conference at Institut Henri Poincaré (https://maxent22.see.asso.fr/), Ecole de Physique des 

Houches SPIGL’20 in July 2020 on « Joint Structures and Common Foundations of Statistical Physics, 

Information Geometry and Inference for Learning » (https://franknielsen.github.io/SPIG-

LesHouches2020/) and FGSI’19 Conference “Foundations of Geometric Structures of Information” in 

February 2019 at IMAG “Institut Montpellierain Alexander Grothendieck” 

(https://fgsi2019.sciencesconf.org/). CIRM Luminy Seminar organizer of TGSI’17 “Topological and 

Geometrical Structures of Information” (http://forum.cs-dc.org/topic/361/tgsi2017-presentation-

organisation-abstract-submission). Guest Editors of Special Issues "Lie Group Machine Learning and 

Lie Group Structure Preserving Integrators". Author of more than 200 scientific publications and 

more than 20 patents. 

Abstract: Lie Groups Statistics and Machine Learning for Military Sensors based on Symplectic 

Structures of Information Geometry 

In a first part, we will present pioneering THALES Sensors/Radars algorithms: Geometric Matrix CFAR 

based on Jean-Louis Koszul’s Information Geometry and its extension for STAP, Complex-Valued 

Convolutional Neural Networks and Covariance-Matrix-Valued HPDNet for Micro-Doppler ATDR, Lie 

Group-based Convolutional Equivariant Neural Network from Geometric Deep Learning for Doppler 

clutter map, IEKF (Invariant Extended Kalman Filter) Frenet-Serret Tracker based on Lie Groups for 

hyper-maneuvering targets, Tracker parameters tuning by Deep Learning and finally, Multi-Agent 

Reinforcement Learning for Radar Task Scheduling and Active-Track/TWS collaborative Resources 

Management. In a second part, we will present Avant-Garde tools using statistics on Lie Groups for 

different sensors applications (detection, tracking and recognition). From French Jean-Marie 

Souriau’s Symplectic Model of Statistical Physics and Russian Kirillov’s Representation Theory of Lie 

Groups, we will introduce Gaussian statistical density for Lie Groups defined as Maximum Entropy 

Gibbs density on coadjoint orbits though moment map. This Symplectic model of Information gives 

new geometric foundation for Entropy, defined purely geometrically (and no longer axiomatically) as 

Casimir Invariant Function in Coadjoint Representation. We will conclude with new perspectives 

opened by this new Symplectic Theory of Heat and Information. 

xi



Invited Speakers 

Lance M. Kaplan, ARL 

Lance M. Kaplan received his undergraduate degree at Duke 

University in 1989 and a PhD degree from the University of 

Southern California in 1994, all in Electrical Engineering. H  e held a 

National Science Foundation Graduate Fellowship and a USC 

Dean’s Merit Fellowship from 1990–1993.  Dr. Kaplan previously 

worked at the Georgia Tech Research Institute (1987-1990) and 

the Hughes Aircraft Company (1994-1996).  He was a faculty 

member in the Department of Engineering at Clark Atlanta 

University from 1996-2004.  Currently, he is a team leader in the 

Context Aware Processing branch of the DEVCOM Army Research 

Laboratory (ARL). Dr. Kaplan serves as VP Publications for the IEEE 

Aerospace and Electronic Systems (AES) Society (2021-Present) 

and as VP Conferences for the International Society of Information 

Fusion (ISIF) (2014-Present). Previously, he served as Editor-In-

Chief for the IEEE Transactions on AES (2012-2017), on the Board 

of Governors for the IEEE AES Society (2008-2013, 2018-2020) and on the Board of Directors of ISIF 

(2012-2014). He is a Fellow of IEEE and of ARL. His current research interests include 

information/data fusion, reasoning under uncertainty, network science, resource management and 

signal and image processing. 

Abstract: Dealing with Epistemic Uncertainty in Information Fusion Systems 

Information fusion is basically the weighted averaging of data from different sources where the 

weights are inversely proportional to the uncertainty for the data sources. Generally, the uncertainty 

is aggregated from likelihood models to characterize the probability of the unknown states in light of 

the observations.  In many fusion systems, the likelihood functions are presumed to be known, but 

in practice they must be machine learned via a calibration process. In Army applications, there can 

be little training data to accurately learn these likelihoods. This talk will address the epistemic 

uncertainty as a second-order uncertainty about the likelihoods in cases where very little training 

exists.  Specifically, the talk will highlight new methods to compute error bars around probabilistic 

outputs of Bayesian and neural networks.  Furthermore, it enables new paradigms for establishing 

prediction sets of feasible hypotheses rather than the most likely hypothesis, which can be very 

misleading in cases of imbalance of epistemic uncertainty.   

xii



Professor Simon Godsill, University of Cambridge 

Simon Godsill is Professor of Statistical Signal Processing 

in the Engineering Department at Cambridge University.  

He is also a Professorial Fellow and tutor at Corpus 

Christi College Cambridge.  He coordinates an active 

research group in Signal Inference and its Applications 

within the Signal Processing and Communications 

Laboratory at Cambridge, specializing in Bayesian 

computational methodology, multiple object tracking, 

audio and music processing, and financial time series 

modeling. A particular methodological theme over 

recent years has been the development of novel 

techniques for optimal Bayesian filtering and smoothing, 

using Sequential Monte Carlo or Particle Filtering 

methods.  Prof. Godsill has published extensively in 

journals, books and international conference 

proceedings, and has given a number of high profile invited and plenary addresses at conferences 

such as the Valencia conference on Bayesian Statistics, the IEEE Statistical Signal Processing 

Workshop and the Conference on Bayesian Inference for Stochasrtic Processes (BISP). He co-

authored a seminal Springer text Digital Audio Restoration with Prof. Peter Rayner in 1998. He was 

technical chair of the successful IEEE NSSPW workshop in 2006 on sequential and nonlinear filtering 

methods, and has been on the conference panel for numerous other conferences/workshops. Prof. 

Godsill has served as Associate Editor for IEEE Tr. Signal Processing and the journal Bayesian 

Analysis. He was Theme Leader in Tracking and Reasoning over Time for the UK’s Data and 

Information Fusion Defence Technology Centre (DIF-DTC) and Principal Investigator on many grants 

funded by the EU, EPSRC, QinetiQ, General Dynamics, MOD, Microsoft UK, Citibank and Mastercard. 

In 2009-10 he was co-organiser of an 18 month research program in Sequential Monte Carlo 

Methods at the SAMSI Institute in North Carolina. He is a Director of CEDAR Audio Ltd. (which has 

received numerous accolades over the years, including a technical Oscar). 

Abstract: Points, particles and positions: recent advances in distributed processing of agile objects  

In this talk I will discuss models developed under the SIGNeTS project for agile motion of objects. I 

will describe new motion and observation models based on point process theory and Levy processes, 

as well as new advances in Gaussian process models for nonparametric modelling of motion, and will 

further discuss methods for distributed processing of sensor data using these models, as well as 

inference about target detection rates and clutter rates. The methodology is probabilistic and 

implemented using combinations of particle filtering and variational methods. 

 

 

xiii



Jon Spencer CPhys FInstP, Dstl Comms & Nets Programme Chief Scientist 

Jon is the Chief Communications and Networks Scientist at 

the Defence Science and Technology Laboratory (Dstl), part 

of the UK Ministry of Defence. Jon leads the delivery of 

communications research spanning all military domains from 

subsea to space, focusing on develop  ment of next-

generation and generation-after-next resilient systems to 

enable information driven operations in the most 

challenging environments. 

As lead scientist for the Communications and Networks 

programme Jon coordinates research to develop and 

demonstrate the advanced concepts that will enable 

Information Advantage in the contested environments of the 

future.  Working with allies and partners from UK industry 

and academia we are investing in research both to bring 

forward the military capabilities essential for future 

operations and to stimulate the development of skills and facilities in the supply chain.  

The work is wide ranging. It stretches from fundamental physical research into the propagation 

environment; maturing novel communications concepts such as Quantum communications; 

developing new ideas for networking in very congested and dynamic environments through to 

developing the architectures needed to enable rapid integration and adaptation. 

Jon has been active in the development of tactical communications and networking capabilities for 

25 years, both in government research and in industry where he led a number of successful product 

developments. Jon is a Fellow of the Institute of Physics. 

Abstract: Multi-Spectral and Multi-Modal Underwater Acoustic Imaging 

Communications and Networks are fundamental enablers to military capability. This talk will explain 

some of the fundamental threats and technical challenges faced when delivering communications 

and networks capability for military operations. UK Ministry of Defence has recently announced a 

significant investment in communications and networks research to address these challenges and an 

overview of that programme will be presented along with opportunities to contribute. Access to 

appropriate signal processing techniques is essential to this and the talk will discuss some of the 

signal processing challenges to enable covert and overt communications.  
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Automatic Approximation for 1-Dimensional
Feedback-Loop Computations: a PID Benchmark

Yun Wu, Yun Zhang, Anis Hamadouche, João F. C. Mota, Andrew M. Wallace
School of Engineering and Physical Sciences

Heriot-Watt University, Edinburgh, UK
{y.wu, y.zhang, ah225, j.mota, a.m.wallace}@hw.ac.uk

Abstract—The analysis and optimization of computational pre-
cision is crucial when using approximation in hardware imple-
mentations of algorithms. Mainstream methods are based on
either dynamic or static analysis of arithmetic errors, but only
static analysis can guarantee the desired worst-case accuracy. In
this paper we describe an automated approach to estimate the
arithmetic binary representations and compare the computational
sensitivities for 1-dimensional feedback-loop algorithms, enabling
both customized floating-point and fixed-point approximation by
affine arithmetic.

Using typical benchmarks for iterative Proportional Integral
Derivative (PID) control, an automated approach has been de-
veloped to obtain the appropriate approximation for both the
exponent and mantissa of floating-point, and the integer and
fraction parts of fixed-point signals. This reduces the circuit
area and power consumption of an FPGA implementation. For
the approximate PID controller implemented on a Xilinx FPGA
platform, we were able to reduce area and power, as compared
to standard uniform bit-widths, by 62% and 27% on average
respectively.

Index Terms—Approximate Computing, Affine Arithmetic, PID
Controller, Field Programmable Gate Array

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) enable cus-
tomized bit-width for algorithm approximation. In order to
reduce the area and increase the speed, the numerical repre-
sentation must be chosen carefully to meet the design require-
ments. In resource constrained systems [1], the challenge is to
select a less precise representation that reduces area and power
consumption, while maintaining algorithmic performance.

Finding the optimal precision is NP-hard, whether for static
or dynamic analysis. It is has been claimed that offline, static
analysis provides a overly conservative estimate [2]. To estimate
the precision in bit-width, some works have focused on empiri-
cal learning from the signal or data variation during simulation
[3], while others have focused on analysis of the signal and data
uncertainty during processing [4], [5]. The latter approach has
shown more accurate estimation of arithmetic bit-width, using
either Interval Arithmetic (IA) or Affine Arithmetic (AA) [6].

However, previous research on automated bit-width estima-
tion has been applied to simple feed-forward linear functions

Yun Zhang is a visiting scholar at Heriot-Watt University, from the
Faculty of Information, Ocean University of China. This work is supported
by EPSRC Grant number EP/S000631/1 and the MOD University Defence
Research Collaboration (UDRC) in Signal Processing.

such as simple polynomials [7], the Discrete Cosine Transform
(DCT) (8× 8) [5], and small (2× 2) matrix multiplication [4].

PID control is widely adopted in robotics and autonomous
systems in both the commercial and defence sectors. We
investigate a more complex procedure, proportional, integral,
derivative (PID) controller, which stabilizes open loop systems
by a feedback mechanism [8]. We have implemented an embed-
ded PID controller on an FPGA to reduce power consumption
and gain better performance. Previous authors have determined
the required precision heuristically [9]–[11]. In this paper, we
apply automated approximation of precision to PID benchmarks
( [12]) using AA, addressing a problem with considerably more
complex computational uncertainty than previous work.

Contributions. We summarize our contributions as follows:
• We develop a framework for automated estimation of

precision for feedback-loop computations.
• We evaluate the results of our estimates of precision using

established PID benchmarks.
• We demonstrate the approximated PID on an FPGA and

demonstrate significant resource/power savings.
In Section II, we briefly introduce Affine Arithmetic. In

Section III, we briefly discuss embedded PID implementations
and present our method for modeling the iterative error and to
estimate precision. Using the PID controller benchmarks, we
demonstrate the effectiveness of our approach in Section IV.
Conclusions are given in Section V.

II. AFFINE ARITHMETIC

Affine arithmetic (AA) is one of many proposed models
for function self-validation, which overcomes the explosion
of errors in standard Interval Arithmetic (IA) [6]. In AA, the
uncertainty of variable a can be represented as

â = a0 +
n∑

i=1

ai · ϵi, (1)

where each ϵi is an interval [−1, 1], and each ai is the partial
deviation. The term ai ·ϵi represents the uncertainty on a caused
by some underlying uncertainty i. By using the form in Eq.(1),
it not only captures the correlations during computation, but
also realizes the symbolic error cancellation of uncertainties.

Addition and subtraction in AA can be expressed by

â± b̂ = (a0 ± b0) +
n∑

i=1

(ai ± bi) · ϵi, (2)
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while multiplication with nonlinear terms can be approximated
as

â·b̂ = (a0·b0)+
n∑

i=1

(a0·bi+b0·ai)·ϵi+(
n∑

i=1

|ai|)·(
n∑

i=1

|bi|). (3)

There have been many efforts to create fast and efficient AA
implementations, such as libaa [13], libaffa [14], YalAA [15],
and hafar [16]. The latest YalAA library in C/C++, supports
most mathematical functions. Given the lower and upper
bounds on elementary functions, YalAA can use Chebyshev
interpolation to approximate non-affine functions. Hence, for
each input data, an interval must be pre-defined to allow further
range analysis.

III. PID CONTROL USING AFFINE ARITHMETIC

Embedded PID implementations on FPGAs have used var-
ious levels of precision. Lima [9] evaluated various bit-width,
fixed-point PID implementations using repeated simulation to
achieve optimal precision. Kocur [10] used a specific low
precision for a PID on an FPGA constrained by the allowable
bit-width of the DAC/ADC interface. Recent research on more
complex PID controllers with neural network self-tuning [11],
[17] also considered specific bit-width fixed-point implemen-
tations, determined heuristically to satisfy the performance
requirements.

In our work, we present automated precision design of a
PID controller applied to benchmark designs using arbitrary bit-
widths for both floating- and fixed-point binary representations.
In Fig 1, the control flow for a set of PID benchmarks plant
models uses pre-defined AA variables.

∫ ∙ dt

d/dt

∑ ∑ 
eaa(t)

paa(t)

iaa(t)

daa(t)

X(t) uaa(t)
Plant

yaa(t)

-
+

+

+
+

Ki

KpKp

KdKd

Fig. 1: PID Control Flow using AA
The PID controller assumes that the target system state,

X(t), is known as prior knowledge. We use the YalAA library
[15] as the foundation of the AA computations. The interval
of the AA output is used to derive the posterior information
for determining the binary representation of floating-point and
fixed-point arithmetic.

With reference to Fig. 1, the control variable uaa(t) is based
on the difference between a function of the error between the
desired system output state X(t) and the current output state
yaa(t), having proportional, derivative and integral terms.

uaa(t) = Kpeaa(t) +Ki

∫
eaa(t)dt+Kd

deaa(t)

dt
, (4)

where Kp, Ki, and Kd are the controller coefficients of the
proportional, integral and derivative paths. The plant (system)
model to be controlled by the PID is represented commonly
by a transfer function (TF), taking the division of the given
system output state Y (s) over the control input U(s) using
Laplace transforms.

A. Iterative Uncertainty

The targeted iterative uncertainty comes from the approxi-
mate precision, which is mainly caused by the propagated error
of the arithmetic operations during the feedback link as shown
in Fig. 1. The approximate precision uses the truncated bits of
the fractional arithmetic representation, where the overflow or
the saturated bits of the integer arithmetic representation are
guaranteed by the given accuracy of the chosen bit-width. We
focus on minimizing the bit-width of the mantissa and fraction
bits for either floating-point or fixed-point arithmetic corre-
spondingly. The posterior error information is obtained through
AA computation of an iterative PID plant controller, where the
interval of the output is used to adjust the proportional precision
within a certain tolerance.

From the interval analysis of the computational outcome by
AA, the guaranteed upper and lower bounds of each term in the
PID controller are derived, e.g. [lb, ub]. The difference between
the lower bound lb and upper bound ub is adopted as the range
of potential computational error since AA provides a tighter
outcome. Eq.(5) links the the interval to the precision error

|υ − υ̂

υ
| ≤ ω, (5)

where υ = (ub− lb)/2 is the derived output interval from AA
computation, υ̂ is the approximated value after adjusting the bit-
width, and ω is the targeted relative error threshold (10−3 in this
work). The corresponding bit-width adjustment is introduced
in the next section, where Eq.(5) is used as the criterion to
determine the precision.

B. Automated Bit-Width Adjustment

Adopting the output interval, the binary representations of
both floating-point and fixed-point arithmetic are adjusted auto-
matically, maintaining sufficient bits in the exponent and integer
parts and truncating the mantissa and fraction parts. Fig. 2
shows the overall design flow from application kernel through
bit-width estimation to accelerator generation for the Xilinx
FPGA platform.

This assumes that the application kernel, the PID controller
in our case, is given by the algorithm developer as a C++
template, which can be applied to arbitrary arithmetic types.
Calling the YalAA library, the affine arithmetic data type is
adopted and the application is computed with the pre-defined
interval of the affine arithmetic data. The AA based control
process provides a tighter interval of the application outcome,
which is used to estimate the required bit-width as described
in section III-B1 and III-B2. With the estimated bit-width, the
application kernel is transformed into custom precision and syn-
thesized using the Xilinx tool-set to generate the description of
the hardware accelerator. The entire process is fully automated
with the exception of the user input application kernel.

1) Floating-Point: The typical floating-point binary repre-
sentation has three parts: sign, exponent, and mantissa, where
the single precision floating-point value of υ, using 32 bits, can
be represented as Eq (6).

υfp = (−1)S ×M × 2127−E , (6)
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Fig. 2: Automated Design Flow

where S has 1-bit, M has 23-bits (bwm) and E has 8-bits
(bwe).

To determine the bit-width, the binary representation of υ is
truncated for both the exponent and mantissa to an approximate
value υ̂, fulfilling the condition of Eq. (5).

υ̂fp = (−1)S × M̂ × 2(2
( ˆbwe−1)−1)−Ê , (7)

where M̂ and Ê are the estimated exponent and mantissa with
the new bit-widths ˆbwm and ˆbwe respectively. Algorithm 1
describes the process to derive ˆbwm and ˆbwe, as well as Ê
and M̂ .

Algorithm 1 Floating-Point Bit-Width Estimation
Input: υ

Output: M̂, Ê, ˆbwm, ˆbwe

1: ˆbwe ← argmin ˆbwe
((2

ˆbwe−1 − 1)− (127− E)) > 0

2: ˆbwe ← ˆbwe + 1

3: Ê ← (2
ˆbwe−1 − 1)− (127− E)

4: ˆbwm ← argmax ˆbwm

∥∥∥υfp−υ̂fp

υfp

∥∥∥
1
≤ ω,

5: M̂ = (M >> ˆbwm)&(2(
ˆbwm+1) − 1)

2) Fixed-Point: The typical fixed-point binary representation
has three parts: sign, integer, and fraction, where a fixed-point
value of υ can be represented as Eq (8).

υfxp = (−1)S × (2I + 2−F ), (8)
and S has 1-bit, I has bwi bits and E has bwf bits.

Similarly, the binary representation of υ is truncated at both
the integer and fraction parts into the approximate value υ̂,
fulfilling the condition of Eq. (5).

υ̂fxp = (−1)S × (2Î + 2−F̂ ), (9)
where Î and F̂ are the estimated integer and fraction parts
with the new bit-width ˆbwi and ˆbwf respectively. Algorithm 2
describes the process to derive ˆbwi and ˆbwf , as well as Î and
F̂ .

IV. EXPERIMENTS

Using a PID benchmark with various plant models, our
approach to automated approximation has been evaluated. We
derive firstly the system state model from the transfer function

Algorithm 2 Fixed-Point Bit-Width Estimation
Input: υ

Output: Î, F̂ , ˆbwi, ˆbwf

1: ˆbwi ← argmin ˆbwi
(2

ˆbwi−1 − I) > 0

2: ˆbwi ← ˆbwi + 2

3: ˆbwf ← argmax ˆbwf

∥∥∥υfxp−υ̂fxp

υfxp

∥∥∥
1
≤ ω,

4: F̂ = (F >> ˆbwf )&(2(
ˆbwf+1) − 1)

as shown in Table I, and build the PID control process using
Eq. (4) using the C++ templates. This is considered as the
application kernel for both the later affine arithmetic compu-
tation and hardware accelerator generation. Note that the aim
of this work is not to optimize the PID controller itself but the
computational precision of its iterative control process. Hence,
the optimal control coefficients Kp, Ki, and Kd are assumed
to be given.

A. Affine Arithmetic Computation

The developed kernels are executed by calling the YalAA
library to produce the interval information of the system
outcome. To adopt the YalAA library, we need to set up an
initial interval for each input variable to be updated in the
PID control system. We record the differential error term eaa,
all control feedback terms paa, iaa, daa, pidaa and the system
output yaa for later analysis, where we set the initial intervals
of paa, iaa, daa, pidaa to [0, 2] and eaa to [-1, 1] empirically.
Using affine arithmetic through the YalAA library, we generate
both the affine form of the variables as well as its final interval
outcome, which can be used as the variable interval information
to estimate the bit-width in Section III-B1 and III-B2.

Table I records the resulting intervals of the PID controller
for nine benchmarks, marked as c1-c9, using affine arithmetic.
Using AA to execute the PID control process, the final intervals
are tightened to small ranges. eaa and paa are generally similar,
but the other variables are different for the different system
models. The interval of the control output pidaa and the system
output yaa converge within similar ranges.

Using the approach of Section III-B, each term can be used
to estimate a set of bit-widths for both floating-point and fixed-
point arithmetic. The maximum widths for all the estimations
are chosen as the final values.

B. Controller Performance

Using the estimated bit-width, the control performance is
evaluated by executing at the given precision for the nine PID
benchmarks in Table I. Fig. 3 shows the control performance
of the approximated PID controller on various plant models,
zoomed-in on the later iterations to show more detailed perfor-
mance comparisons.

Single floating-point (32 bits), marked as fp32, is used
as a baseline for full precision. The custom floating-point
(fp), and fixed-point (fxp) are marked with their corre-
sponding bit-width number. Since S is always 1 bit, only
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TABLE I: AA outcome for PID Parameters ([lb, ub])
Plant Transfer Function eaa paa iaa daa uaa yaa
c1: 1

s+1 [-0.001705, 0.001238] [-0.001705, 0.001238] [0.384654, 0.387893] [-0.007070, 0.003848] [0.997140, 1.006484] [0.998771, 1.001712]
c2: 1

(0.1s+1)(s+1) [-0.010378, 0.020331] [-0.010378, 0.020331] [0.352566, 0.359014] [-0.036406, 0.014746] [0.994849, 1.016622] [0.979850, 1.010305]
c3: 1

(0.01s+1)(0.1s+1)(s+1) [-0.002425, 0.001583] [-0.002425, 0.001583] [0.365121, 0.370106] [-0.009494, 0.005258] [0.996281, 1.007964] [0.998431, 1.002432]
c4: 1−0.1s

(s+1)3 [-0.006933, 0.006462] [-0.006933, 0.006462] [1.183874, 5.947544] [-0.002716, 0.004606] [0.999921, 5.001432] [0.993552, 1.00691]
c5: 1

(0.1s+1)e
−s [-0.004284, 0.008109] [-0.004284, 0.008109] [1.314815, 1.349334] [-0.004763, 0.002516] [0.982410, 1.004009] [0.991915, 1.004271]

c6: 1
(0.1s+1)2 e

−s [-0.005145, 0.011130] [-0.005145, 0.011130] [1.400613, 1.443956] [-0.006247, 0.002888] [0.980136, 1.004560] [0.988901, 1.005131]
c7: 100

(s+10)2 (
1

(s+1) +
0.5

(s+0.05) ) [0.004182, 0.005610] [0.004182, 0.005610] [5.336462, 15.987360] [-0.000419, 0.000166] [0.091070, 0.271908] [0.994390, 0.995820]
c8: 1

(s+1)(s2+0.2s+1) [-0.071520, 0.004774] [-0.071520, 0.004774] [8.021174, 8.025332] [-0.000687, 0.008533] [0.999168, 0.999939] [0.995228, 1.071478]
c9: 1

(s2−1) [-0.000135, 0.000082] [-0.000135, 0.000082] [-0.201893, -0.201722] [-0.000092, 0.000159] [-1.000015, -0.999961] [0.999918, 1.000134]
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(a) c1:{bwe = 6, bwm = 13},
{bwi = 6, bwf = 19}
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(b) c2:{bwe = 6, bwm = 13},
{bwi = 7, bwf = 17}
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(c) c3:{bwe = 6, bwm = 13},
{bwi = 8, bwf = 17}
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(d) c4:{bwe = 6, bwm = 14},
{bwi = 7, bwf = 17}
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(e) c5:{bwe = 6, bwm = 14},
{bwi = 6, bwf = 16}
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(f) c6:{bwe = 6, bwm = 13},
{bwi = 6, bwf = 17}
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(g) c7:{bwe = 6, bwm = 16},
{bwi = 8, bwf = 20}
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(h) c8:{bwe = 6, bwm = 14},
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(i) c9:{bwe = 7, bwm = 13},
{bwi = 6, bwf = 25}

Fig. 3: PID Benchmarks: the performance on each test case is shown. The bit widths are those calculated by Algorithms 1 and
2. In general, a smooth and rapid convergence to the target solution is preferred.

the bit-widths of the {exponent(bwe),mantissa(bwm)} and
{integer(bwi),fraction(bwf )} are shown in Fig. 3.

The control process assumes signal sampling at 0.01 second
intervals, which is also the update interval of the PID controller.
By giving the normalized target reference signal as 1, the itera-
tive control process stops at a convergence error of 10−3, where
all benchmarks are convergent after at least 600 iterations.

As shown, for floating-point, the estimated exponent bwe is
6 bits for all cases of c1-c8 except c9 with 7 bits, while the
estimated mantissa bwm varies between 13 and 16 bits. The
estimated integer bwi varies between 6 to 8 bits, while the
estimated fraction bwf varies between 16 to 25 bits.

The larger the number of iterations, the more uncertain is

the computational approximation, which tends to require larger
bit-width to maintain accuracy. For example, c7 has the largest
bwm and bwf bit-width, 16 and 20 bits respectively, given the
largest number of iterations for all the benchmarks. Similarly,
c4, and c8 have more iterations, and larger bwm and bwf , 14
and 17-18 bits relatively. Another observation from the AA
based control flow is: the larger the variation of the parameters
and the smaller the intervals, the larger the bit-width of fraction
bwf tends to be, such as for c1, c4 and c9. Due to the non-linear
representation of the floating-point representation, the mantissa
bwm varies less than bwf for all the benchmarks.

Generally, by considering the relative error of approximated
control flow based on AA, our approach can achieve automated
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precision estimation in terms of the bit-width with iterative
computational uncertainty. The automated accelerator genera-
tion is then implemented based on the estimated precision.

C. Hardware Accelerators

Table II shows the resource utilization and dynamic power
consumption of automatically implemented PID controllers
for the baseline single floating-point fp32 as well as custom
floating-point fp, fixed-point fxp with corresponding precision
in Section IV-B. Typical usage of logic elements on the FPGA,
such as Look-Up-Tables (LUT), Registers (Reg.), and DSP
blocks (DSP48e) are recorded, as well as the system clock
frequency in MHz and the power consumption in mW.

TABLE II: PID Accelerator Cost and Performance

Case
LUT Reg. DSP48e

Freq. Power
(MHz) (mW)

fp32 fpx fxp fp32 fpx fxp fp32 fpx fxp fp32 fpx fxp fp32 fpx fxp
c1 1624 868 508 2782 1557 729 10 4 10 554 455 430 291 236 225
c2 1746 939 598 2942 1650 745 10 4 12 497 481 432 285 241 228
c3 1938 1048 704 3304 1979 914 16 8 18 506 484 415 305 248 238
c4 2456 1582 1001 3982 2496 1240 15 6 27 471 470 409 314 265 256
c5 1558 839 1232 2651 1437 835 8 4 6 489 500 359 273 238 223
c6 1969 1071 664 3304 1979 746 16 8 14 462 473 431 295 253 232
c7 2072 1404 1175 3401 2355 1212 16 8 37 482 448 386 303 260 266
c8 1771 1058 628 2975 1725 793 10 4 15 442 462 448 276 242 235
c9 1704 988 965 2911 1691 1035 10 4 24 552 471 393 294 241 247

With automatically estimated precision, the resource cost
and the power consumption are both significantly reduced. On
average, compared to the baseline, about 46% of LUT, 40%
of Registers, and 55% of DSP are saved across the estimated
floating-point cases. On average, about 62% of LUT and 73%
of Registers are saved for the estimated fixed-point cases, but
about 63% more DSP blocks are used. This might be due to the
nature of the fixed-point Accumulated Logic Unit (ALU) for
DSP blocks on the Xilinx FPGA, where the tool-set tends to
use more DSPs to accelerate fixed-point computations. Besides
the resource cost, the clock frequencies of all the implemented
PID controllers are slightly reduced, on average by about 15%,
and the power consumption is reduced by about 27%. However,
we stress that the design is not yet fully optimized for hardware
performance.

V. CONCLUSIONS

We have presented an automated framework for optimal
precision estimation for both floating-point and fixed-point
binary formats, leading to custom accelerator generation on an
Xilinx FPGA platform. Through experiment, we demonstrate
the completeness of estimated precision for a one-dimensional
iterative application, a PID controller, with parameter interval
analysis through AA computation and constrained precision
decision based on the relative error of parameter intervals. The
implemented approximate PID controller on the FPGA leads
to significant reductions in both resource cost and power con-
sumption, by as much as 62% and 27% respectively, compared
to the usual, baseline single floating-point implementation,
while there is a minor speed reduction in clock frequency.

Further exhaustive hardware design optimization would im-
prove the final performance results. Our work is potentially
applicable to multiple dimension iterative applications, such as
multi-variable PID controller and iterative solvers of convex
optimization, with more complex computational uncertainty.
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Abstract—This paper addresses the problem of efficient single-
photon Lidar (SPL) data processing for fast 3D scene recon-
struction. Traditional methods for 3D ranging from Lidar data
construct a histogram of the time of arrival (ToA) values of
photon detection events to obtain final depth estimates for a
desired target. However processing large histogram data volumes
over long temporal sequences results in undesirable costs in
memory requirement and computational time. By adopting a
Bayesian formalism, we combine the online estimation strategy
of Assumed Density Filtering (ADF) with joint surface detection
and depth estimation methods to eventually process SPL data on-
chip without the need for histogram data construction. We also
illustrate how the data processing efficiency can be increased by
reducing the set of unknown discrete variables based on poste-
rior distribution estimates after each detection event, reducing
computational cost for future detection events. The benefits of
the proposed methods are illustrated using synthetic and real
SPL data for targets at up to 3 km

Index Terms—Single-photon Lidar, Bayesian estimation, De-
tection, Ensemble estimation, Assumed Density Filtering.

I. INTRODUCTION

Single-Photon Lidar (SPL) is a promising technology that
has found many applications in different fields such as au-
tonomous vehicles [1], agriculture [2] and defence [3]. Three-
dimensional (3D) scene reconstruction using SPL data benefits
from the key advantages, including the use of low-power, eye-
safe laser sources [3], picosecond timing resolution allowing
greater surface-to-surface resolution at ranges up to 200 km
[4] or imaging in extreme conditions, such as fog/smoke [5]
or underwater [6], [7].

SPL systems are based on time-correlated single-photon
counting (TCSPC) [8]–[10] methods, which record a time of
flight (ToF) value for a each detected photon corresponding
to the time between the emission of light pulses from the
Lidar laser source and the detection event occurring at the
receiver. A detection event associated with a desired target
occurs when a photon travels from the laser source to the
target and is reflected off that target back to the receiver. A
depth estimate of the target can then be calculated from this
recorded ToF. However, this depth estimate can be adversely
affected by background detection events, which result from
ambient illumination and dark counts. The depth estimate is
improved by repeating the pulse emission and photon detection
process to acquire a sufficient number of target detection
events relative to the number of background detection events.

Advances in single-photon avalanche diode (SPAD) array
technology, resulting in the acquisition of data at video rates
or higher [11], [12], have put greater interest on processing the
data at real time speeds to obtain reliable 3D reconstructions
of target scenes. However, traditional 3D scene reconstruction
methods [13]–[17] can suffer from a computational bottleneck
due to their reliance on the construction of ToF histograms.
These methods require histograms to be built pixel-by-pixel
before the estimation and then process the large data volume
over long temporal sequences, leading to large memory costs
and computation times.

In a previous histogram-based method [18], the pro-
cessing speed was improved by collectively detecting ob-
jects/surfaces and treating some unknown model parameters as
discrete rather than continuous random variables. This method
also provided conservative posterior uncertainties. Alternative
methods have recently improved the efficiency of 3D scene
reconstruction using on-chip online processing methods. A
more recent algorithm [19] compresses the SPL data by using
sketches that can be computed in an online fashion. However,
this online method suffers with having to determine the
surface detection and depth estimation sequentially, and only
provides the point estimates of unknown parameters, without
uncertainty quantification. Another method [20] adopts an
approximate Bayesian estimation strategy based on Assumed
Density Filtering (ADF) [21] to find the approximating poste-
rior distribution of the depth of moving surfaces. The mean and
variance of the approximating distribution directly provide the
point estimate of the depth and its uncertainty quantification.

This paper combines the online estimation strategy of ADF
as described in [20] and our previous work [18] on depth es-
timation using ensemble estimators, to propose a novel, pixel-
wise, online processing method for joint surface and depth
estimation from single-photon Lidar data using ensemble es-
timators. We employ ADF for online processing, overcoming
the need to build ToF histograms. The method is compatible
with on-chip processing. We look to reduce computational
costs when processing future detection events by using the
posterior distribution generated after each detection event to
help reduce the number of discrete unknown parameter values.

The remainder of this paper is organized as follows. Section
II recalls the statistical observation model used for SPL and
describes the proposed method for ensemble estimation with
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discrete parameter reduction. Results of simulations conducted
with synthetic single-pixel SPL data and real data are pre-
sented and discussed in Section IV. Conclusions are finally
reported in Section V.

II. BAYESIAN MODEL AND RELATED WORK

A. Bayesian model

In this paper, for a 3D scene observed by the SPAD detector,
we consider a sequence of N binary frames with duration
T , such that at most a single detection event is recorded per
binary frame in each pixel. Since our method processes pixels
independently, we derive all the equations for a single pixel,
omitting pixel indices. The observations consist of a set of
K ≤ N photon time of arrival (ToA) values in y = {yk}Kk=1

associated with each detection event, such that yk ∈ (0, Tr)
where the repetition period of the laser source Tr = T [22].
Given the unknown target depth d, the probability density
function for a photon ToA, yk, for a given pixel is given by

f(yk|d,w) = w h0

(
yk − 2d

c

)
+ (1− w) U(0,Tr), (1)

such that c is the speed of light. The variable w represents
the probability of the detection event being associated with
a photon returning from the target surface, while (1 − w) is
the probability that the detection event is a noisy detection
event. The function h0(·) is the normalised Impulse Response
Function (IRF) of the Lidar system which can be approximated
by a Gaussian profile N (2d/c, s2), and U(0,Tr) defined on
(0, Tr) represents a distribution of noisy detection events. This
can be a non-uniform distribution, for example as a result of
pile up effects from high ambient illumination conditions or
imaging in high scattering media. However for simplicity we
assume this to be uniform in this work.

Assuming the dead-time of the SPAD detector is negligible,
the joint likelihood of the K detection events can be given as

f(y|d,w) =
K∏

k=1

f(yk|d,w). (2)

Suppose for now that the target detection probability w is
known, and that the depth parameter is assigned the following
Gaussian prior distribution

f(d) = N (µ0, σ
2
0). (3)

Using f(d) and the joint likelihood in (2), the posterior
distribution of d is given by

f(d|y, w) =

K∏
k=1

f(yk|d,w)f(d)∫ K∏
k=1

f(yk|d,w)f(d)dd

. (4)

The posterior mean and variance of d can be computed
analytically (although often at a significant cost in a real-
time context), assuming that w is known [18]. However, w is
unknown in practice and needs to be estimated as its value can
have a dramatic impact on the quality of the depth estimate.

B. Previous/related work

When w is unknown, a prior distribution can be assigned
to w. The classical approach considers w as continuous and
the posterior distribution of depth can be derived from the
marginal posterior distribution

f(d|y) =
∫

f(d|y, w)f(w|y)dw, (5)

which requires computing the integral over w. To overcome
this difficulty, as in [18], w is assumed to be discrete instead
and can take a user-defined finite number, M , of values
from {w1, w2, . . . , wM}, whose prior f(wm) (m = 1, . . . ,M )
follows a uniform distribution. Based on this discretization,
f(d|y) in (5) becomes tractable by computing

f(d|y) =
M∑

m=1

f(d|y, wm)f(wm|y) (6)

where f(wm|y) is computed via

f(wm|y) = f(y|wm)f(wm)
M∑

m=1
f(y|wm)f(wm)

, (7)

where f(y|wm) is the denominator of (4) with w = wm.
This depth estimation method provides satisfactory results
and relies on an ensemble estimator as final depth estimate.
However, in (6), the mean and variance of the mth base
estimator f(d|y, wm) and the weight f(wm|y) are computed
by using the whole set y at once, which prevents its application
for real-time depth estimation. In this paper, a new depth
estimation method using ensemble estimators is proposed to
estimate f(d|y, wm) and f(wm|y) in (6) online by Assumed
Density Filtering without the requirement of ToF histograms,
as will be presented next. In contrast to [18], here d is assumed
to be continuous, which simplifies computations.

III. ONLINE DEPTH ESTIMATION USING ASSUMED
DENSITY FILTERING

A. Online estimation of depth posterior mean and variance

Instead of computing f(d|y, w) after having all the observa-
tions {yk}Kk=1, an online depth estimation strategy using ADF
is proposed to obtain a posterior approximation q(d) such that

q(d) ≈ f(d|y, w), (8)

where q(d) ∝ N (µd, σ
2
d) is a normalized Gaussian distribu-

tion. In ADF, the approximated posterior mean µd and variance
σ2
d are found sequentially, after each detection, by minimizing

the following Kullback-Leibler (KL) divergences

q(k)(d) = argmin
q(k)(d)

KL(p̂(k)(d|yk, w)||q(k)(d)), (9)

where yk = {yi}i=1,..k, q(k)(d) ∝ N (µ
(k)
d , (σ

(k)
d )2) and

p̂(k)(d|yk, w) =
f(yk|d,w)q(k−1)(d)∫
f(yk|d,w)q(k−1)(d)dd

, (10)

which is a tilted distribution consisting of the product of
likelihood function for the kth observation and posterior

7



approximation q(k−1)(d) that has been computed from the first
(k − 1) observations. The solution to (9) is given by

µ
(k)
d = Ep̂(k) [d], (σ

(k)
d )2 = Ep̂(k) [d2]− (Ep̂(k) [d])2. (11)

When q(k)(d) is updated at k = K, q(K)(d) provides the
final posterior approximation of the exact posterior distribution
f(d|y) in (4), i.e., q(K)(d) ≈ f(d|y, w).

B. Online estimation of the model evidence

Using the procedure presented in the previous section, the
detection events yk are processed online from k = 1 to
k = K in ADF and the approximating posterior distribution
of d is updated sequentially by only propagating the mean and
variance of q(k−1)(d) from previous frames.

In (10), incorporating each term f(yk|d,w) produces a
normalizing constant

∫
f(yk|d,w)q(k−1)(d)dd that can be

used to approximate the corresponding term of model evidence
in (4) associated with yk, i.e.,

s(k)(w) := s(k−1)(w)

∫
f(yk|d,w)q(k−1)(d)dd

≈
∫ k∏

i=1

f(yi|d,w)f(d)dd,
(12)

where s(k−1)(w) is the approximation of the model evidence
after having observed yk and s(0) = 1. When s(k) is updated
at k = K, s(w) = s(K)(w) provides the final approximation
of the exact model evidence f(y|w) in Eq. (4), i.e.,

s(w) ≈ f(y|w). (13)

These results from the ADF method can then be applied
to the method proposed in Drummond et al. [18] for depth
inference with unknown w. For the discrete w parameter,
w ∈ {w1, w2, ..., wM}, where we allow w1 = 0 to be in
the admissible set of w and M is a user-defined parameter,
we obtain s(w) ∈ {s(w1), . . . , s(wM )}. Finally, the marginal
posterior f(wm|y) can be computed by

f(wm|y) = s(wm)f(wm)∑M
m=1 s(wm)f(wm)

. (14)

C. Final depth estimation using ensemble estimators

As described in [18], the final depth and variance is com-
puted using

{
µ̄ =

∑M
m=1 f(wm|y)µm,

σ̄2 =
(∑M

m=1 f(wm|y)(σ2
m + µ2

m)
)
− µ̄2.

(15)

where {µm = µ(wm)}Mm=1 and {σ2
m = σ2(wm)}Mm=1 are the

sets of means and variances of f(d|y, w) obtained by ADF.

D. Reduction of discrete w parameter list

As stated in the previous subsection, the normalizing con-
stant estimate s(k)(w), and consequently the marginal pos-
terior f(w|yk), is updated after each detection event for all
w ∈ {w1, w2, ..., wM}. As the values of s(k)(w) are can
be computed independently for all w values, the posterior
probabilities for w can be easily calculated and used after

Depth w Time
µ̄(m) σ̄2(m2) (s)

ADF basic
(M = 20)

17.99
(7.67e-3)

5.18e-5
(4.71e-6)

0.22
(0.02)

0.034

ADF basic
(M = 100)

17.99
(7.20e-3)

5.18e-5
(4.96e-6)

0.22
(0.02)

0.133

ADF *
warm-start

17.99
(7.20e-3)

5.18e-5
(7.83e-3)

0.20
(0.01)

0.194

Reduction
mthd. 1 **

17.99
(7.67e-3)

5.18e-5
(7.70e-3)

0.20
(0.01)

0.141

Reduction
mthd. 2 **

17.99
(7.20e-3)

5.18e-5
(7.87e-3)

0.20
(0.01)

0.100

Drummond [18]
(M = 20)

17.99
(6.24e-3)

4.03e-5
(4.60e-5)

0.20
(0.01)

0.012

Drummond [18]
(M = 100)

17.99
(6.24e-3)

4.03e-5
(4.03e-5)

0.20
(0.01)

0.059

cross
correlation

17.99
(7.67e-3)

N/A
(no std.)

0.2
(w known)

0.001

TABLE I: Comparison of the different depth and w estimates
for different methods. Values in brackets represent standard
deviations over 1000 results. The actual value of (d,w) is
(17.99m, 0.2).(∗): this method uses M = 100. (∗∗): these
methods start with M = 100 and warm-start.

.

each detection event. After a number of detection events have
occurred and a probability distribution of w has been computed
on a pre-defined grid, a decision can then be made as to
which w values can be eliminated form the set, based on their
corresponding f(w|y) value.

After the subset W ′ ⊆ {w1, ..., wM} has been determined,
the corresponding f(w′|y) values are re-normalised, such
that w′ ∈ W ′. The future detection events are used to
upgrade the prior distributions corresponding to the remaining
w values to be used for the final output estimations. All the
intermediate variables corresponding to discarded w values are
also discarded, thereby reducing computational cost for future
detection events. In the next section, we will investigate two
methods to prune the w grid.

IV. RESULTS

We first evaluate the performance of the proposed algorithm
using synthetic single-pixel data and then using the real SPL
college tower dataset, provided by Leonardo UK [3].

A. Single-Pixel analysis

We first generate synthetic detection event data, where
K = 1000 detection events are randomly generated from
a normal distribution with mean d = 750 bins = 17.99m.
The spatial bin length is 0.024m, and variance s2 = 50
bins2 = 0.029m2, for T = 2.4×10−7s. This mimics a single-
photon Lidar system whose depth resolution (due to time
binning) is 2.4cm, such that T corresponds to a depth range of
around 36m (the minimum depth being set to 0 without loss of
generality). We set the ground truth signal photon probability
to w = 0.2. Due to the signal randomness when generating
the data, each investigation was repeated 1000 times and we
present the means and standard deviations obtained over the
1000 repetitions.

The first two rows of Table I show the results for an initial,
basic method that applies ADF to the method proposed in
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Drummond et al. [18] for M = 20 and M = 100. We
use µ

(0)
d = 0 and σ

(0)
d = 1 × 106 for the ADF initialised

parameters.
The first 50 detection events were then used to ”warm-start”

the ADF method, where Drummond et al. [18] is used to
obtain way-point estimates µ

(50)
d and σ

(50)
d . These are used

as new initial parameters µ
′(0)
d and σ

′(0)
d to be applied for the

remaining detection events to obtain our final results. The third
row of Table I shows how the ”warm-start” method produces
just as accurate depth estimates as previously with improved
w estimates at the same processing times.

While there are many different ways to eliminate different
w values, in this paper we investigate two specific ways on
reducing the set of w ∈ {w1, ..., wM}, where M = 100. For
the first reduction method, we reduce the w parameter list
to a set amount after a defined number of observations. We
define the set R = {80, 60, 40, 20} as the set of values which
define the number of w values to retain based which values
correspond to the Ri largest s(w) values. We also define the
set E = {200, 400, 600, 800} as the number of observations
after which the reduction of the w parameter set takes place,
i.e. the set of w parameter values is reduced to Ri values
at detection event Ei. For the second reduction method, we
remove values of w whose posterior probabilities fall below a
pre-defined threshold γ = 1× 10−4. This method is initiated
after the first 100 detection events after the warm-up. The
fourth and fifth rows of Table I show that with pruning the
w-grid, we can get accurate results quicker. As the second
reduction method was quickest, this method was chosen for
future investigations for the remainder of this paper.

The three bottom rows show the results for the method
proposed in Drummond et al. [18], with M = 20 and
M = 100 and a typical cross correlation method. For the cross
correlation, the w value is assumed to be known (w = 0.2),
which is over optimistic as it is often unknown in practice. The
times presented are the times for processing the histogram data
and do not include histogram construction times.

Fig. 1 depicts µ and σ2 for the ”warm-started” method
using ADF, both with and without w set reduction. The top
and second rows of Fig. 1 illustrate how the estimated depth
variance decreases as K increases (true w set to 0.2). All
plots are restricted to K > 200 for visualisation purposes. It
is worth noting that here with K = 200, the mean depth results
are already accurate. The third and bottom rows illustrate
how the estimated depth variance decreases as the signal-to-
background ratio (SBR), w, used to generate the data increases
(K set to 1000). These plots are restricted to w > 0.1 below
which the means degrade and deviate from the ground truth
drastically in this scenario.

B. Real SPL College Tower data analysis

We now consider the college tower SPL histogram dataset
acquired by Leonardo to illustrate the potential benefits of
the proposed method. The SPL cube consists of 100 × 50
pixels and 5626 time bins, corresponding to an Edinburgh
college tower, taken at ≈ 3km range, originally considered
in [3]. This dataset has SBR ≈ 0.22. For the purposes of this
investigation, we gate this dataset and use only bins between

Fig. 1: Graphic results of depth estimates with (red) and
without (blue) w set reduction with error range plots (black)
for a different number of detection events without (top) and
(second), and for synthetic data with different SBR, w, values
(third) and (bottom). The actual value of d is 17.99m.

bins 2001 and 4000, reducing the number of noisy detection
events and increasing the average SBR to SBR ≈ 0.41.

This gated data is then run using the first 400 detection
events for the warm-starting process to obtain new initialised
parameters for the ADF process, as described previously. The
remaining detection event data was then used for the ADF
process to obtain the final results.

We compare our estimated probability of target presence
map with Sheehan et al. [19] and Drummmond et al. [18]
displayed in Fig. 2, showing the proposed method can lead to
better results than using Sheehan’s method [19] for this scene.
The admissible grid of w is set using M = 100 equality spaced
{wm}m. A target is assumed to be present in each pixel if and
only if f(w > w0|y) = 0.9999.

(a) Sheehan
[19]

(b) Drummond
w0 = 0.02 [18]

(c) Proposed:
w0 = 0.02

Fig. 2: College tower data comparison of probability of
detection results for the methods by Sheehan et al. [19] (a),
and Drummond et al. [18] (b) and for the proposed method
(c), both using w0 = 0.02.
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The estimates of w are used to estimate the target intensity
(number of signal photons I = wK) and the number of
background photons B = (1 − w)K. The mean of f(w|y),
w̄ can obtain the final reflectivity estimates Ī and background
estimates B̄. These results, along with the final mean depth
estimates µ̄ are presented in Fig. 3, where we use w0 = 0.02.

Fig. 3: Final mean depth (left), reflectivity (middle) and
background (right) estimates for the tower data using the
proposed method, for w0 = 0.02.

V. CONCLUSION

In this paper, we proposed an extension to the ensemble
estimator method and produced satisfactory results using ADF
to obtain the posterior distribution profile for the final surface
detection, depth estimation and uncertainty quantification esti-
mates. Furthermore, we were able to further improve efficiency
by eliminating values from the discrete variables depending
on their corresponding posterior distribution profile value. We
note if the SBR is relatively high, the online method performs
as well as the batch-based method. However, having a long
enough warm-up batch is crucial if the SBR is low, and in
extremely low SBR regimes it is better to either use larger
initial batches with better known prior distributions or to not
to perform online estimation. Further investigation would be
needed to define the best warm-up period (tradeoff between
complexity and performance) as a function of the SBR. In the
future we aim to propose a GPU implementation to enable
reliable depth estimation and uncertainty quantification at real-
time speeds. Furthermore, we plan to adapt the framework
to richer approximations of the posterior distributions of d,
allowing for multiple surface detections per pixel.
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Abstract—This paper presents an extension to the original
Frenet-Serret and Bishop frame target models used in the
invariant extended Kalman filter (IEKF) to account for tangential
accelerations for highly-manoeuvrable targets. State error propa-
gation matrices are derived for both IEKFs and used to build the
accelerating Frenet-Serret (FSa-LIEKF) and Bishop (Ba-LIEKF)
algorithms. The filters are compared to the original Frenet-Serret
and Bishop algorithms in a tracking scenario featuring a target
performing a series of complex manoeuvres. The accelerating
forms of the LIEKF are shown to improve velocity estimation
during non-constant velocity trajectory segments at the expense
of increased noise during simpler manoeuvres.

Index Terms—Frenet-Serret, Bishop frame, Kalman filter, Lie
groups

I. INTRODUCTION

Target tracking is the problem of estimating rigid body
motions in 3D space that a target undergoes during motion.
Traditional nonlinear state estimation algorithms such as the
extended (EKF), Unscented (UKF) [1] and cubature Kalman
filters (CKF) [2] use models with changes in velocity or ac-
celeration modelled as Gaussian white noise to track manoeu-
vring targets. Other models such as the Singer acceleration
model [3] are common in industrial radar systems with [4]
providing a comprehensive review. For manoeuvring targets,
a bank of filters are run in a multiple model algorithm such
as the interacting multiple model IMM [5] with a Kalman
filter running each model before fusing the results. Simpler
dynamic models incorporating the kinematics of 3D curves
have been proposed to provide a more general dynamic model
for target tracking. The Frenet-Serret left-invariant extended
Kalman filter (FS-LIEKF) first presented in [6] estimates the
pose χt ∈ SE(3) of a target along with scalar parameters
describing the shape and motion of the trajectory. The Frenet-
Serret formulae are used to propagate the target pose since they
provide a concise means of characterising smooth curves γ, in

this case the target trajectory, in 3D space (γ ∈ R3) through the
formulae in equation (1). The Frenet-Serret equations are an
elegant framework for tracking as they, by definition, describe
the motion of curves. This is beneficial for tracking scenarios
where the observer is attempting to reconstruct or predict a
curved trajectory by propagating a set of equations. With a
set of scalar Frenet parameters, a wide range of curves can
be extrapolated, from simple straight segments to helices and
spirals. ṪṄ

Ḃ

 = u

 0 κ 0
−κ 0 τ
0 −τ 0

TN
B

 (1)

Bishop showed that the Frenet-Serret frame is the not the only
frame that can be readily applied to curves, extending the
Frenet equations to be globally defined [7] with two signed
curvatures rather than a single curvature and torsion. While
the Frenet frame defines the true geometry of the space curve,
with the unit normal vector N pointing towards the centre of
curvature in the osculating plane, the Bishop formulae, shown
in (2), enable us to initialise any starting attitude with the
development equations valid for any frame. This is the case
as the Bishop frame is not unique for a given curve [7]. Ṫ

Ṁ1

Ṁ2

 = u

 0 κ1 κ2

−κ1 0 0
−κ2 0 0

 T
M1

M2

 (2)

The Bishop or parallel transport frame has previously been
used to define tracking problems and has been implemented
within an invariant extended Kalman filter for tracking a
manoeuvring target with radar measurements [8], using the
framework laid out by Pilte et al. [6], [9]. Both approaches
are well suited to tracking problems given the ability to
define complex curves using slow changing or even constant
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parameters. While the curvature κ̂t and torsion τ̂t parameters
of the Frenet-Serret apparatus in the FS-LIEKF of [6] are able
to account for the twisting motion of trajectories, tangential
accelerations cannot be estimated and the filter relies upon
process noise on the norm velocity ût and unit tangent vector
T to estimate the magnitude and direction. The same is true
for the Bishop frame implementation or B-LIEKF, albeit with
the replacement of curvature and torsion with the two Bishop
curvatures κ̂1, κ̂2. This extension was originally noted by Pilte
[10] with the warning that the acceleration would degrade
performance on trajectories with constant velocity segments,
similar to the results seen when comparing simple CV and CA
EKFs.

With more modern targets able to manoeuvre with high
accelerations it is critical to have a kinematic model that can
adapt well to large changes in velocity. This paper presents the
extension to the Frenet-Serret and Bishop IEKF algorithms to
account for accelerating targets. The state error propagation
matrix for the Bishop implementation is derived and a short
simulation is produced to highlight the improved performance
during components of trajectories with non-constant velocity.

II. FRENET-SERRET AND BISHOP ACCELERATION LIEKFS

The invariant extended Kalman filter (IEKF) is a recent
extension to the Kalman filter that enables the definition of
state spaces on matrix Lie groups [11]. The key advantage of
the IEKF is that by defining a left or right-invariant estimation
error, the linearisation is performed on independent error
dynamics. This ensures that the computed Kalman gain is
not dependent on the accuracy of the current state estimate
and hence convergence can be guaranteed for a wider range
of trajectories [12]. Barrau and Bonnabel present a complete
introduction to the IEKF in [13] with the Unscented variant
covered in [14]. The non-accelerating form of the Frenet-Serret
process model can be found in [6], [9]. Here, the attitude
of the target is expressed as the Frenet-Serret or Bishop
rotation matrix Rt as in [6]. The only change is to assume
that an acceleration at acts on the target to update the norm
velocity ut. Changes in this acceleration, referred to as jerk,
are modelled as Gaussian white noise. The equivalent Bishop
frame dynamics are written as (3), substituting the curvature
and torsion for the first and second Bishop curvatures κ1, κ2

d

dt
x =



d
dtRt = Rt[ωb,t + wω

t ]× ∈ SO(3)
d
dtxt = Rt(vt + wx

t ) ∈ R3

d
dtκ

1
t = wκ1

t ∈ R1

d
dtκ

2
t = wκ2

t ∈ R1

d
dtut = at + wu

t ∈ R1

d
dtat = wa

t ∈ R1

(3)

The target velocity vt acts only in the tangential direction
vt =

[
ut 0 0

]T
and the Bishop Darboux vector is written

as ωb,t =
[
0 −κ2 κ1

]T
. Note that since the filter estimates

the target attitude, process noise for the position is only added
in the tangential direction, that is wx

t =
[
wx

t 0 0
]T

. The
state space is defined as SE(3) × R4 which we will refer to

as the manifold, noting that, since only part of the state is
an element of the special Euclidean Lie group of 3D rigid
body motion SE(3), one cannot fully implement the IEKF
[6]. The convergence guarantees presented in [12] are not
valid for filters defined on mixed Lie group states however
the IEKF still provides an elegant method for incorporating
group constraints associated with common matrix Lie groups
such as SE(3). Additionally, the nature of the Frenet and
Bishop formulae means that, in situations where the filter
runs at frequency exceeding the measurement availability, the
propagation is better suited to a wider range of trajectories.

A. IEKF Algorithm

This paper provides the key stages in deriving the state error
propagation matrix for the Ba-LIEKF, but the same method
can be easily applied to the Frenet-Serret case. To propagate
the state error covariance we must first linearise the error
dynamics. From [6], the state errors are defined as (4), a
combination of left-invariant state error and linear vector error.

η =

{
χ−1
t χ̂

ζ̂ − ζt
=


ηRt
ηxt
ηκ1
t

ηκ2
t

ηut
ηat

 =


RT

t R̂t

RT
t (x̂t − xt)
κ̂1t − κ1t

κ̂2t − κ2t

ût − ut

ât − at

 (4)

With the true trajectory formed from the Bishop formulae in
(3) and the noise-free filter models we can derive the error
dynamics. Since Pilte et al. present this process for the Frenet-
Serret formulae in [6] we proceed with the Bishop case. The
time derivative of the error dynamics can be shown to be

d

dt
ηt =


−[ωb,t + wω

t ]×η
R
t + ηRt [ω̂b,t]×

−[ωb,t + wω
t ]×η

x
t + vt + wu

t − ηRt v̂t
−wκ1

t

−wκ2
t

ηat − wu
t

−wa
t

 (5)

This can then be linearised using a first-order approximation
which is shown by Barrau and Bonnabel to be exact [12]. The
position and R4 states are assumed to follow ξt = ηt while the
rotation matrix Rt, an element of the special orthogonal group
of 3D rotations SO(3), follows a first order approximation of
the exponential map for SO(3), that is ηRt ≈ I3 + [ξRt ]×.
Substituting our linearised error definitions into equation (5)
gives the linearised error equations shown in (6).

d

dt
ξt =


−[ωb,t + wω

b,t]×(I3 + [ξRt ]×) + (I3 + [ξRt ]×)[ω̂b,t]×
−[ωb,t + wω

t ]×ξ
x
t + vt + wu

t − (I3 + [ξRt ]×)v̂t
−wκ1

t

−wκ2
t

ξat − wu
t

−wa
t


(6)

By rearranging into the form ξ̇t = Aξt + wt with wt =[
wω

t wx
t wκ1

t wκ2
t wu

t wa
t

]T
, the state error propaga-
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tion matrix At for the accelerating Bishop equations can be
derived as (7).

At = −



0 −κ̂1 −κ̂2 0 0 0 0 0 0 0
κ̂1 0 0 0 0 0 0 1 0 0
κ̂2 0 0 0 0 0 −1 0 0 0
0 0 0 0 −κ̂1 −κ̂2 0 0 −1 0
0 0 −ût κ̂1 0 0 0 0 0 0
0 ût 0 κ̂2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0


(7)

It can be seen that for the state error propagation matrix in
equation (7), the only change from the non-accelerating case
in [6] is the addition of −1 in the final column. This can be
repeated for the equivalent Frenet-Serret model by taking the
A matrix from [6] and adding the final row and column from
equation (7).

1) Propagation

With the state error propagation matrix derived, the com-
plete IEKF algorithm can be implemented by first propagating
the state using the Frenet-Serret and Bishop equations in [6]
and equation (3). The error covariance can then be propagated
using equation (8)

Pk|k−1 = ΦkPk−1|k−1Φ
T
k + Q̌k (8)

where Φk = expm(At∆t) and Q̌k ≈ ΦkQΦT
k∆t.

2) Update Equations

The FSa-LIEKF and Ba-LIEKF update step follows as
equations (9) to (10)

Kk = Pk|k−1H̃k(H̃kPk|k−1H̃
T
k +NR

k )−1 (9)

where H̃k is the measurement Jacobian of the spherical to
Cartesian transformation rotated into the target frame as per
[8], [10]. The error covariance is updated using the standard
Kalman equation, although the Joseph form is recommended
to avoid numerical issues associated with round-off errors.

Pk|k = (I10 −KkH̃k)Pk|k−1 (10)

Due to the composition of the state as a mixed manifold, the
state update uses the boxplus ⊕ operator to correct the state.

x̂k|k = x̂k|k−1 ⊕Kk(Yn − h(x̂k|k−1)) (11)

This box-plus operator refers to the composition of a tangent-
space element onto the manifold, with the ⊖ performing the
opposite operation. These retain the left or right bias and as
such we use the left ⊕ to update the state. This results in two
separate operations for the SE(3) Lie group and R4 vector
components as shown in equation (12).{

χ̂k|k = χ̂k|k−1 expSE(3)(K
χ
k (Yn − h(χ̂k|k−1)))

ζ̂k|k = ζ̂k|k−1 +Kζ
k(Yn − h(χ̂k|k−1))

(12)

Here the Lie group state is updated using the exponential map
of SE(3) and a linear vector addition can be used for the R4

state.

III. EXPERIMENTAL RESULTS

The IEKFs with the accelerating form of the Frenet-Serret
and Bishop dynamic models are implemented in a radar
tracking scenario with a target performing a trajectory com-
prising constant velocity, accelerating and spiralling segments.
The scenario used is presented in Figure 1. The observer is

Fig. 1. Sample trajectory for a manoeuvring target used as the tracking
scenario.

kept stationary for simplicity and receives range and bearing
measurements at 5Hz with uncertainties of 0.01rad and 5m
respectively. The filters update at 25Hz, propagating using the
kinematic models when a measurement is not available. The
process noises for all filters have been tuned manually.

A. Single Simulation

The FSa-LIEKF, Ba-LIEKF are implemented and compared
to the FS-LIEKF and B-LIEKF. For comparison to typical
algorithms used in industry, a variety of Cartesian CV and CA
filters are implemented, along with the CA-CV IMM2. Figure
1 depicts a single simulation comparing the FSa-LIEKF and
Ba-LIEKF to their constant velocity counterparts.. All four
algorithms perform well on this trajectory but the accelerating
forms show slightly reduced tracking error during the decel-
erating components immediately before and after the spiral
manoeuvre. As expected, the FSa-LIEKF and Ba-LIEKF are
able to adapt to the changing velocities faster than the constant
velocity counterparts but exhibit inferior performance on zero
acceleration segments. Performance on accelerating segments
could be further improved at the expense of increased noise
during constant velocity trajectories. In a multiple-model al-
gorithm the accelerating model could be tuned aggressively
to maximise tracking during the accelerating segment before
allowing the filter to switch to a FS-LIEKF or B-LIEKF filter.
Since the filters are run independently for this simulation a
balance is made. Figure 3 shows the FSa-LIEKF and Ba-
LIEKF responding to changes in velocity slightly faster than
the filters without the norm acceleration state. As the Bishop
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Fig. 2. Position Estimation of the Frenet-Serret and Bishop LIEKFs.

Fig. 3. Norm Velocity Estimation of the Frenet-Serret and Bishop LIEKFs.

frame to a curve is not unique, it is hard to verify the
accuracy of the estimation process for the two curvatures.
This is because the Bishop formulae parallel transport the
frame through a minimum rotation and will therefore change
dependent on the initial frame. We plot the equivalent absolute
Frenet curvature κ through κ =

√
κ2
1 + κ2

2. This is presented
in Figure 4. It should be noted that we have chosen to define
the Frenet-Serret curvature as a signed scalar, with clockwise
turns assigned a positive curvature. Additionally, since the
filters estimate κ̂ = uκ, the state estimate is divided by
the estimated norm velocity for plotting. Both Bishop filters
track the equivalent Frenet-Serret curvature well and, since the
tracking of the curvature is dependent on accurate estimation
of both curvatures, it suggests that the Bishop frame is able
to estimate both scalars more effectively than the Frenet-
Serret counterparts. Norm acceleration estimation of the Ba-

Fig. 4. Frenet-Serret Curvature Estimation of the Frenet-Serret and Bishop
LIEKFs.

LIEKF and FSa-LIEKF is depicted in Figure 5 with both filters
performing well, although results could be improved with
more aggressive process noise at the expensive of smoother
velocity estimation.

Fig. 5. Norm Tangential Acceleration Estimation of the Frenet-Serret and
Bishop LIEKFs.

B. Monte Carlo Simulation

The results from a Monte Carlo analysis with 50 simulations
provide a performance comparison for the IEKFs along with
some basic but common industry algorithms. The root-mean-
squared-errors (RMSE) of the position and norm velocity for
each filter during the simulation are presented below in Tables
I and II. The largest improvement in performance comes

TABLE I
LIEKF RMSES FOR SIMULATION

State B-LIEKF Ba-LIEKF FS-LIEKF FSa-LIEKF
x 34.71 34.52 34.02 33.50
y 42.23 39.43 43.31 40.60
z 38.95 36.71 39.64 43.04
u 9.82 9.09 10.09 9.42

during manoeuvres not currently defined by the Frenet-Serret
scalars, that is non-constant velocities, and it is here where
both the Ba-LIEKF and FSa-LIEKF show their merits. The
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TABLE II
EKF RMSES FOR SIMULATION

State CV-EKF CA-EKF IMM2-EKF
x 36.48 33.66 35.02
y 60.17 43.09 42.34
z 52.93 43.77 43.35
u 15.72 14.29 13.34

FSa-LIEKF and Ba-LIEKF show marginally improved norm
velocity estimation, shown in Table I, although the trajectory
presented has six segments with non-zero acceleration, so it
is purposely well-suited to the FSa-LIEKF and Ba-LIEKF.
Increased noise is seen during trajectory elements that do
not require an acceleration term. Since the Frenet-Serret and
Bishop formulae already allow for a broad range of motion, the
use cases for the FSa-LIEKF and Ba-LIEKF are diminished. It
is therefore recommended that the accelerating forms should
only be used over the B-LIEKF and FS-LIEKF when a
target is known to perform a large number of accelerating
manoeuvres. The CV and CA filters are not ideally suited to
some of the trajectory segments that would be best tracked by a
coordinated-turn (CT) model, but Table II shows the CA-EKF
performing better which, given the number of manoeuvres is
reasonable. The IMM2 algorithm provides robust performance
using simple Cartesian models but would benefit from an
additional CT or Frenet-based model.

IV. CONCLUSION

This paper has presented an extension to the Frenet-Serret
and Bishop target models to account for tangential acceler-
ations in the target kinematics. The left-invariant state error
propagation matrices have been derived and implemented in
LIEKF algorithms to track a manoeuvring target. The FSa-
LIEKF and Ba-LIEKF are shown to be more accommodating
to trajectories with accelerating components, closely tracking
the changes in velocity with the detriment of increased noise
during non-accelerating segments. This demonstrates that the
addition of the acceleration term only improves small parts
of the trajectory and the improvement on the original filters
is marginal as the FS-LIEKF and B-LIEKF provide robust,
single-model performance. The acceleration term also adds
complexity in the tuning process and additional care is re-
quired to optimise the filter performance. Based on the sim-
ulation undertaken, the original B-LIEKF and FS-LIEKF are
more than well equipped to estimate complex trajectories, and
the accelerating forms would be complementary extensions in
a multiple-model algorithm.

A. Future Work

With two kinematic models available for each filter, we plan
on developing an invariant-IMM based on [15] or multiple-
model particle filter to embed the geometric models into more
complex tracking algorithms.
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Abstract—For applications in signal processing, Field Pro-
grammable Gate Arrays (FPGAs) are more flexible than Ap-
plication Specific Integrated Circuits (ASICs), yet reconfigurable
and still power and energy efficient to a degree. Undervolting
and overclocking are approximate computing techniques that
can further save power and energy, closing the efficiency gap by
reducing the static/dynamic power and potentially speeding up
the computation. However, these techniques may introduce bit
level faults, which affect not only the computational correctness
but also the security of the hardware. Understanding these
fault behaviors provides necessary information for approximate
implementation in low-power and secure design.

In this work, we investigate joint undervolting and overclocking
of AXI peripherals, specifically on-chip AXI memory access, using
different commercial Xilinx Ultrascale+ heterogeneous MPSoCs
with practical data movement between the ARM processor and
the FPGA. Through experimental study we have observed fine-
grained bit-flipping patterns when the voltage and clock are tuned
beyond certain thresholds. By judging the probability of bit-
flipping in terms of bit error rate, we propose a guideline for
a balanced choice of voltage and frequency.

Index Terms—Approximate Computing, FPGA, Undervolting,
Overclock

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) can accelerate
performance in a range of applications more effectively than
software implementations [1], especially in the signal process-
ing domain [2], where lower power and real-time performance
are highly demanded [3]. While they are still less energy-
efficient than Application Specific Integrated Circuits (ASICs),
undervolting and overclocking are effective approximate com-
puting techniques which can potentially bridge this gap by
reducing the power/energy consumption and improving the
efficiency in terms of performance per Watt [4].

On the one hand, tuning the voltage below the nominal
level of the factory setting, i.e. undervolting, can signifi-
cantly improve the energy efficiency of hardware [5]. This
is true for processing units, such as Central Processing Units
(CPUs) [6], Graphics Processing Units (GPUs) [7], FPGAs [8],
and ASICs [9], and data storage units, such as Dynamic
RAMs (DRAMs) [10] and Static RAMs (SRAMs) [11]. Dy-
namic voltage and frequency scaling (DVFS) [12] adjusts the
voltage and frequency accordingly and saves power/energy

This work was supported by EPSRC Grant number EP/S000631/1 and
the MOD University Defence Research Collaboration (UDRC) in Signal
Processing.

dramatically while maintaining the default operating frequency.
On the other hand, by surpassing the nominal clock rate or
factory setting, overclocking can break through the limitation
of processing performance, especially for FPGA accelerators
running at lower clock frequencies than the CPU or GPU [13].

Either undervolting or overclocking leads to timing faults,
which can cause a system crash or a termination of applications
with processing errors. Such errors are characterized as coarse-
grained [4], [14]. However, to further understand the vulnera-
bility of applications on FPGAs, as well as how to mitigate the
impact of errors, there has been little emphasis on fine-grained
error characterization. In this work, we study the combined
effects of undervolting and overclocking and characterize fine-
grained, bit-flipping errors.

Contributions. We summarize our contributions as follows:
• We develop an infrastructure for joint undervolting and

overclocking on an FPGA
• We characterize the fine-grained bit-flipping errors
• We investigate the probability of bit-flipping errors and

provide a guideline for design space exploration
The rest of the paper is organized as follows. In Section II,

we describe related work on undervolting and overclocking on
FPGAs, contrasting it with our approach. In Section III, the
hardware/software deployment is illustrated. The vulnerability
analysis is presented in Section IV. A conclusion is given in
Section V.

II. BACKGROUND

The power consumption of modern digital signal processing
circuits, such as FPGAs, is directly related to their supply
voltage level and operating frequency. Total power can be
decomposed of dynamic and static power, as shown in Eq. (1).

Ptotal = Pdynamic + Pstatic. (1)
Dynamic and static power are modeled by

Pdynamic = α · C · F · V 2, (2)

Pstatic =
C∑

Ileakage · V, (3)
where α is a constant depending on the process technology,
C is the capacitance of resource utilization, F is the operating
frequency, V is the supply voltage, and Ileakage is the leakage
current [2]. Hence, from (2) and (3), power savings can
be achieved by decreasing α, C, F , V , and Ileakage, and
throughput can be improved by increasing F .

978-1-6654-8348-3/22/$31.00 ©2022 IEEE 16



Many techniques have been explored to minimize the power
consumption of FPGAs based on Eqs. (1), (2) and (3), e.g.
architectural improvements to reduce α [15], clock or voltage
gating [16], [17] to decrease C and Pstatic, DVFS [12] to
reduce both F and V . Since both dynamic and static power are
directly related to the supply voltage V , undervolting can de-
liver further power savings and improve energy efficiency [4].

Besides power, if an FPGA has an operating frequency lower
than a connected CPU or GPU, this limits the performance
of the FPGA accelerator and hence the overall system. By
overclocking the operating frequency F , safety margins of
error-free computation can be explored. Shi [13] combines
overclocking with approximate circuits on an FPGA, and
Rowlings [14] further demonstrates the benefits of overclock-
ing in fault-tolerant application.

Both undervolting and overclocking improve energy effi-
ciency. However, they also increase the vulnerability of FPGAs
leading to timing violations. Salami [4] has characterized the
voltage-to-errors of memory units on FPGAs. Rowlings [14]
developed a close-loop overclocking method for a spiking
neural network accelerator and investigated frequency-to-errors
at the application level. However, both are coarse-grained
characterizations of the relation between tuning parameters and
error probability, and an investigation of fine-grained bit level
error probability is missing.

Given that the Advanced eXtensible Interface (AXI) is the
most common data transfer protocol on FPGAs, we concentrate
on the impact of combined undervolting and overclocking on
the AXI data path to characterize the fine-grained bit error.

III. SYSTEM DEPLOYMENT

To characterize the vulnerability of the AXI data path, we
have designed hardware with different sizes of data path,
and a software instrument for tuning and measuring the volt-
age/power levels, as well as a data stream driver for the target
data path.

A. Hardware Deployment

Figure 1 shows the hardware architecture of the Processing
Systems (PS) and Programmable Logic (PL) on a Xilinx
Ultrascale+ FPGA, with AXI datapath access to BRAM and
its controller on the PL side.
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Fig. 1: Hardware Infrastructure

On the PS side, the AXI Master is configured for writing
data from the PS to the PL. The AXI Slave is configured to
receive data from the PL. The I2C peripheral I/O is configured
to enable PS PMBus access, while the SD peripheral I/O
is configured to allow Linux booting and data preservation
through an SD card. Using the I2C interface, the output
voltage of the power rails controlled by on-chip power manage-
ment integrated chip (PMIC) can be modified through a PMBus
protocol command by running software on ARM processor.

On the PL, BRAMs are linked to the AXI interface con-
troller to form a single memory block. This is achieved
by aggregating multiple instances of BRAM with the AXI
interface through the Xilinx tool. We can generate the datapath
using varying numbers of BRAMs, configured to perform data
movement through a developed device driver. More specifi-
cally, we produced a BRAM controller with varying memory
addressing sizes (e.g. 16, 64 and 128 Kbytes) and with varying
BRAM location through post-synthesis allocation using the
LOC semantic in-design constraint.

The bit level faults are investigated at various datapath
locations, without exhaustively optimize design but separated
elements on the FPGA. We use the generic BRAM IP on
Zynq PL through Xilinx Vivado, which is a hybrid of BRAM,
registers, and Look-Up-Tables. Note that all the generated
designs are processed at compile-time, producing bit files for
the PL configuration. These bit files are saved on an SD card,
identified by case name for later run-time reconfiguration and
evaluation. The resource utilization data from Table I are also
recorded for different sizes of the datapath.

TABLE I: AXI Datapath Cost

Datapath. Size (KB) Reg. LUT BRAM Address Frequency (MHz)

4 3954 3160 1 0x0-0xFFF 100

16 3974 3171 4 0x0-0x3FFF 100

32 3984 3177 8 0x0-0x7FFF 100

64 3994 3175 16 0x0-0xFFFF 100

128 4004 3191 32 0x0-0x1FFFF 100

As shown, every AXI datapath uses 1 BRAM with 4KB size.
The address range increases as the data path size grows, which
is used for later data partitioning to access specific BRAMs.
Using 11 AXI controllers in Fig. 1, all 312 (32× 9 + 16 + 8)
BRAMs on ZCU104/106 boards can be traversed by address-
ing.

B. Software Deployment
We developed the device driver to access the AXI datapath

by mapping the address of the BRAM controller to main
memory while the data is transmitted through the AXI bus pro-
tocol between the PS and PL. A specific data value switching
behavior is designed, from blocked to interleaved bit-flipping
patterns, when moving the data to and from the AXI datapath.
Table II lists the designed 32 bit data patterns, where the paired
data patterns are exchanged in turn during the transfer. This
ensures active bit alternation, which maximizes the chance
of capturing any bit-flipping errors when undervolting and
overclocking.
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TABLE II: Data Switching Patterns

Case No. Patterns (64 Bits)

c1 0x00000000 / 0xFFFFFFFF

c2 0xFFFF0000 / 0x0000FFFF

c3 0xFF00FF00 / 0x00FF00FF

c4 0xF0F0F0F0 / 0x0F0F0F0F

c5 0x33333333 / 0xCCCCCCCC

c6 0x55555555 / 0xAAAAAAAA

To traverse all the BRAM in the AXI data path, the transfer
data is partitioned according to the specific addresses in
Table I, with a 4 Bytes addressing interval for 32 bit data
patterns. Hence, given a 4KB range for a single BRAM, all
transferred data within every 0xFFF address space belongs to a
distinct BRAM. By constraining the location of BRAM during
the place and route implementation for each AXI controller in
sequential order, the location of each BRAM in the AXI data
path is known before the data transfer, which is bound to the
partitioned data pattern to characterize the bit-flip errors. Fig 2
shows an example of a pre-located AXI data path at the tiles
of chip layout.

Fig. 2: Post-Synthesis Localization of BRAM

Besides the device driver, to tune the voltage and clock, we
also developed a power management infrastructure that can
monitor and scale the voltage through the I2C interface, as
well as clock scaling through a Phase Locked Loop (PLL)
unit through the PL clock tree Linux device driver (LDD). By
testing the voltage and clock scaling on the device, the lowest
voltage and highest clock before the device halts are recorded
as prior knowledge.

All data patterns are written firstly to BRAM through the
AXI data path using the nominal voltage and frequency. Un-
dervolting and overclocking are only performed when reading
those pre-written data patterns. Before testing each pair of
patterns, the nominal voltage and frequency are reset. Fig. 3
shows the entire software infrastructure for iterative testing of
the various data patterns and recording of bit-flipping errors.

The voltage and frequency are set through I2C and PLL
LDD to initialize the system and later undervolting and over-
scaling. The written data pattern is transferred through the AXI
driver between the PS and PL by the AXI data path. With the
recorded error values and the pre-setup BRAM location in the
AXI data path, the corresponding bit-flipping errors can be
derived by masking the read pattern with the written patterns.
The whole software infrastructure is iterated for different data
patterns, as well as the various voltage and frequency scalings.

Error Recording

Nominal Initialization

System Tuning

Written Data Voltage Frequency

PLL LDDI2C PMBusAXI Driver

Undervolting Overclocking

Read Data Bit ErrorsBit Masking

Fig. 3: Software Infrastructure

IV. VULNERABILITY ANALYSIS

Power scaling is evaluated on two MPSoC evaluation devel-
opment boards, the Xilinx Zynq Ultrascale+ and ZCU104/106,
using the same FPGA XCZU7EV. The AXI data path IP is
deployed on both boards using the Xilinx Vivado tool-set
version 2019.1.

A. Undervolting

There are several power rails on these two boards, control-
ling the power supply to different areas. Power scaling targets
only the FPGA related power rails, i.e V CCINT , which is
the power supply rail for the programmable logic system, and
V CCBRAM , which is the power supply rail for the BRAM.
The nominal voltages of V CCINT and V CCBRAM are
0.85V and 0.9V. The official undervolt margins of V CCINT
and V CCBRAM are 0.7282V and 0.7253V. Testing the limits
of undervolting, 0.59V and 0.52V were determined as the
lowest voltages for V CCBRAM and V CCINT respectively,
beyond which the board halts.

Undervolting is evaluated alone by changing V CCBRAM
from 0.90V to 0.59V, and V CCINT from 0.85v to 0.52V,
keeping the nominal frequency 100MHz. There is a one second
interval for data transfer of each data pattern. By comparing
the read data to the pre-written data, the AXI data path is
robust, where no error is captured. Table III shows the relation
between undervolting and total power consumption of each
power rail for the AXI data path with all 312 BRAMs on the
ZCU106.
N/A indicates that no power is recorded due to the halting of

the FPGA with insufficient voltage. In the second column, the
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TABLE III: Undervolting Power Consumption (100MHz)

V CCINT (V) Power (mW) V CCBRAM (V) Power (mW)

0.85 297.33 (173.50) 0.90 44.26

0.80 262.54 (153.15) 0.85 36.51

0.75 231.86 (137.56) 0.80 29.17

0.70 203.21 (122.03) 0.75 22.86

0.65 177.19 (107.65) 0.70 16.81

0.60 153.35 (95.43) 0.65 11.45

0.55 131.21 (82.69) 0.60 6.56

0.52 119.21 (75.19) 0.59 5.59

0.51 N/A 0.58 N/A

number in the parentheses is the baseline power when no bit-
stream is configured to the programmable logic, which is only
applicable to the V CCINT power rail. We observe that no
bit-flipping error happen when using undervolting only, where
about 60% saving in power is achieved.

B. Overclocking

Next, overclocking is evaluated alone on the ZCU106. The
operating frequency is scaled from 100MHz to 499 MHz,
keeping the nominal voltage. Again, there are no errors.
Table IV shows the total power consumption with increasing
operating frequency.

TABLE IV: Overclocking Power Consumption (0.85/0.9 Volt)

Frequency V CCINT V CCBRAM

(MHz) Power (mW) Power (mW)

100 297.33 44.26

199 420.03 44.26

299 564.54 44.26

399 665.69 44.26

499 826.96 44.26

Overclocking can achieve a 5× times performance boost,
but at a cost of about 2.8× times power consumption on
V CCINT , while keeping V CCBRAM unchanged. From
this point of view, overclocking increases the energy efficiency
about 1.8× without errors on the AXI data path, since there is
more gain in performance than in power consumption. This is
because static power is independent of frequency F as shown
in Eq. 3.

C. Undervolting with Overclocking

By combining undervolting with overclocking, bit-flipping
errors happen when the frequency is above 299Mhz with
V CCBRAM at 0.59V and V CCINT below the nominal
voltage. Fig. 4 illustrates the normalized bit error ratio of 32
bits, which is evaluated with 1000 samples of each data pattern
across 11 AXI BRAM controllers.

As shown in Figs. 4, all bit-flipping errors are most likely
to occur in the lower range, which corresponds to the least
significant arithmetic bits. We also checked the higher freque-
nies, for example 0.56V and 0.72V with 399MHz and 499MHz
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Fig. 4: Bit Flipping Statistics at 299MHz

relatively. It is clear that the minimum voltage before the
device halts increases, while the lower the voltage, the more
bit-flipping errors occur.

We further checked bit-flipping on the ZCU104. Not repeat-
ing all measurements, 399MHz is chosen for comparison with
V CCBRAM = 0.56V and V CCBRAM = 0.59V . Every
16 BRAM locations of the AXI data path are rotated across
the different tiles on the chip. Fig. 5 shows the bit-flipping
errors at different locations on the ZCU104, where x and y
are the axes of tile location.
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Fig. 5: Bit Flipping Statistics at Different Locations

As shown, the error pattern varies with location of BRAM
on the AXI data path. Furthermore, unlike the ZCU106, the bit-
flipping position happens at both the most and least significant
bits. By defining the ratio of overall bit-flipping in 32 bits for
the AXI data path as the bit error rate (BER), Fig. 6 shows
both the energy efficiency and power consumption, where
the energy efficiency is the ratio of performance gain over
normalized power.

As shown in Fig. 6a, power increases from undervolting to
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Fig. 6: BER Performance

the nominal voltage, while BER decreases. There are sweet
spots for combined undervolting and overclocking where the
BER decrement is across power increment at a specific voltage,
e.g. 0.54V, 0.61V, and 0.73V for 299MHz, 399MHz, and
499MHz respectively. In Fig. 6a, the energy efficiency gain
decreases as the voltage increases when combining under-
volting and overclocking. Such sweet spots also exist when
considering the cross point between BER and energy efficiency
gain, 0.52V, 0.59V, and 0.73V for the corresponding overclock-
ing frequencies. From a defined energy efficiency or power
budget requirement, we can determine the optimal undervolting
voltage and overclocking frequency for tolerable BER.

V. CONCLUSIONS

We have developed an infrastructure to investigate the fine-
grained vulnerability of joint undervolting and overclocking
for the AXI data path on an FPGA. Deploying both the
hardware and software infrastructure, we are able to scale
the voltage and frequency of commercial FPGAs and capture
the bit-flipping errors when transferring regular switching data
patterns on the AXI data path. Evaluating two distinct devices,
we have found that the bit-flipping error patterns are device
dependent, even when using the same type of FPGA chip,
and also location dependent on the same chip. However, our
evaluation shows that a balanced choice of undervolting and
overclocking frequency can lead to very significant gains in

energy efficiency, for example by a factor of four, and power
reduction, for example by a factor of three, while maintaining
accurate performance. This provides a meaningful guide for
further investigation of efficient signal processing design with
different arithmetic and for different applications.
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Abstract—COVID-19 has caused global concern as the
World Health Organization (WHO) considered it a global
pandemic that has affected all countries to different extent.
Numerous studies have examined the behaviour of the pandemic
using a wide variety of mathematical models. In this paper,
we consider the nonlinear compartmental epidemiological
dynamical system model in the Susceptible-Exposed-Infected-
Quarantined-Recovered-Deceased (SEIQRD) form based on the
recursive estimator known as the extended Kalman filter (EKF)
to predict the evolution of the COVID-19 pandemic in Saudi
Arabia. We adopt the nested sampling algorithm for parameter
estimation and uncertainty quantification of the SEIQRD model
parameters using real data. Our simulation results show that the
EKF can not only predict the evolution of the directly measured
variables i.e. the total death (D) and active case (I) but can also
be useful in the estimation of the unmeasurable state variables
and help predicting their future trends.

Index Terms—Extended Kalman Filter (EKF), SEIQRD model

I. INTRODUCTION

Coronaviruses SARS-CoV-2 (Severe acute respiratory syn-
drome coronavirus 2) or the COVID-19 are a group of
viruses that has become a global pandemic recognised by the
WHO, affecting every country. The COVID-19 virus has high
transmissibility which has caused infections and increased the
burden on the public health, especially for older people. The
WHO declared the COVID-19 as a global pandemic in March
2020 [1] which started a rapid increase in research in epidemi-
ological modeling using different countries’ data. Now, with
more mutated variants of this virus, it is crucial to investigate
and predict the long-term behaviour of such infectious disease
models from an early stage until the end of the pandemic.
In March 2022 there were more than 400 million confirmed
cases of the coronavirus and the death cases have exceeded
6 million. The fundamental epidemiological model called SIR
(Susceptible-Infected-Recovered) introduced by [2] has been
utilized widely to predict the COVID-19 outbreak. SIR and
its modifications such as SEIR (Susceptible-Exposed-Infected-
Recovered) etc., have been discuss in details in [3]. Developing
the SEI model within Bayesian framework and estimate the
posterior probability distributions for parameters of interest
using Markov chain Monte Carlo (MCMC) method was re-
ported in [4]. The SEIR model in [5] demonstrated a consistent

prediction between the model outputs and real COVID-19 data
in Saudi Arabia. Later in [6] the SEIQR (Susceptible-Exposed-
Infected-Quarantine-Recovered) model has been studied for
stability analysis of the model based on Saudi Arabia infec-
tion daily data. The SEIQRD (Susceptible-Exposed-Infected-
Quarantine-Recovered-Dead) model was used in [7] for risk
management to forecast the spread of COVID-19 pandemic in
different countries.

As opposed to these existing works, the aim of this paper
is to construct a new epidemiological model SEIQRD with
reinfection to explain the long-term COVID-19 spread in Saudi
Arabia. This will then enhance the prediction using Kalman
filtering algorithms and help understand the behaviour of the
underlying dynamic process and track hidden or unmeasurable
variables of the compartmental model. With this aim, we have
investigated the utility of the KF family of algorithms in
COVID-19 spread. The KF algorithm is a recursive technique
to generate estimates of the state variables based on measured
time-series data of a fewer variables (e.g. active case and
total death) often corrupted with noise and bias. The KF
algorithm is well-known as an optimal recursive solution of
the discrete-time linear observer or state estimation problem
[8]. The optimality of the KF is in the sense of minimizing
the mean squared error (MMSE). The KF algorithm operates
in two steps: 1) predicting the current state estimates from the
previous estimates; 2) updating the estimates of the filter using
the error covariance matrices with the feedback mechanism.
Hence, the KF is referred as a predictor-corrector algorithm.

The drawback of the classical KF algorithm is strictly appli-
cable to the linear systems and Gaussian noise. For this reason
KF has been extended to other different versions. One of its
variant solves the model nonlinearity problem, known as the
Extended Kalman Filter (EKF). The EKF is an approximation
filter for the nonlinear systems based on first-order Taylor
series expansion, evaluated at each time step around the current
state. More information on EKF can be found in [9], [10]. The
EKF can be applied in tracking the epidemiological processes
but there has been limited amount of literature available,
addressing the use of EKF in tracking the spread of other
types of infectious diseases e.g. [11], [12]. For using the
EKF to estimate the COVID-19 spread, there are only few
literature addressing the COVID-19 pandemic. In [13], the
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Fig. 1: The proposed SEIQRD model with reinfection.

authors used the maximum likelihood estimation (MLE) in the
EKF to predict the COVID-19 transmission in China and USA.
Also, [14] proposed the use of EKF to simulate stochastic and
deterministic models with greater accuracy for the prediction
of COVID-19 behaviour. In [15] the authors have implemented
the EKF to predict the evolution of the COVID-19 pandemic,
within a short time span. Since the rapid outbreak of the
COVID-19, the accuracies of different dynamic models play
an important role in prediction and decision-making. Here,
the COVID-19 pandemic data has been used to fit a newly
proposed model of SEIQRD form with reinfection term along
with quantifying parametric uncertainties. We have considered
a reinfection term in the model since the reinfections cases are
reported in different sources e.g. [16]. Based on this model, the
EKF has been used to analyze the COVID-19 behaviour over
long-term. The simulation of the proposed method is applied
for the COVID-19 data outbreak in Saudi Arabia from 15
February 2020 to 17 March 2022. Moreover, the real data
has been compared with the EKF predictions on the measured
states beside estimating the trends of the unmeasurable states
of this SEIQRD compartmental model.

II. DESCRIPTION OF THE PROPOSED SEIQRD MODEL

The SEIQRD model divides the population into six classes:
susceptible S(t), exposed E(t), infected I(t), quarantined
Q(t), recovered R(t) and dead D(t). The compartments were
modelled using the system illustrated in Fig. 1 as the nonlinear
differential equation or nonlinear state space model as follows:

dS

dt
= −βIS + αR,

dE

dt
= βIS − ϵE,

dI

dt
= ϵE − γI − qI − dI,

dQ

dt
= qI − qtQ− dQ,

dR

dt
= γI + qtQ− αR,

dD

dt
= dI + dQ.

(1)

The model parameters {β, γ, ϵ, q, qt, α, d} are non-negative
and defined as the infection rate, recovery rate, incubation rate,
quarantine rate, quarantine period, reinfection rate, and death
rate respectively. Since the length of the protective immunity
is unknown, we consider the possibility of reinfection after

recovery where a fraction (α) of the recovered population
returns to the susceptible compartment and when α = 0 our
proposed model coincides with the SEIQRD model proposed
in [17]. It is a closed compartmental model (2) defined as:

S + E + I +Q+R+D = N, (2)

defining N as the total size of the population of a country un-
der study. The basic reproduction number R0 for the proposed
model can be defined based on the next generation matrix
proposed in [18] as:

R0 =
Nβ

d+ γ + q
. (3)

III. METHODOLOGY FOR MODEL PARAMETER AND
UNCERTAINTY ESTIMATION

The official epidemic data is frequently published on a daily
or weekly basis. The reported measurements are usually in
discrete time domain (cases per day) whereas the epidemi-
ological model is in continuous time. Therefore, the model
under local linearization needs to be discretized to match with
the dataset collected on a daily basis using the hybrid extended
Kalman filter (discrete-continuous EKF). The first step of this
is estimating the parameters of the SEIQRD model using a
Bayesian uncertainty quantification method called the nested
sampling algorithm that draws samples from the posterior
distribution of the unknown dynamic model parameters as
a by-product while calculating the Bayesian evidence or the
marginal likelihood [19]. Using the mean estimate of the pos-
terior distribution of the unknown model parameters, we carry
out the state estimation using the EKF approach. We consider
the prediction of COVID-19 spread using the locally linearized
hybrid EKF using the mean posterior of the new SEIQRD
model parameters to estimate the unmeasurable states with a
given initial state vector X0 and covariance matrix P0.

IV. EXTENDED KALMAN FILTER APPLIED TO THE
SEIQRD MODEL FOR STATE ESTIMATION

The system state vector X for the SEIQRD model with
reinfection (1) is defined as:

X =
[
S E I Q R D

]
T . (4)

Starting with the non-negative initial conditions:

X(t0) = [S0, E0, I0, Q0, R0, D0], (5)

which yields the state space model described as:

Xt+1 = f(Xt) + ξt, (6)

where f is the nonlinear function, ξt is the process noise that
is assumed to be Gaussian with zero mean and covariance
matrix Ξ. Now, the discrete time nonlinear function f(Xt)
can be represented as:

f(Xt) =


−βIS + αR
βIS − ϵE

ϵE − γI − qI − dI
qI − qtQ− dQ
γI + qtQ− αR

d(N − (S + E +R+D))

 . (7)
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Using the Taylor series approximation to linearize the nonlin-
ear discrete time system in (7) as a linear system we get:

Ft =


−βI 0 −βS 0 α 0
βI −ϵ −βS 0 0 0
0 ϵ (−γ − q − d) 0 0 0
0 0 q (−qt − d) 0 0
0 0 γ qt −α 0
−d −d 0 0 −d −d

 ,

(8)
where Ft is the Jacobian matrix. In the available dataset of
reported cases in Saudi Arabia, we use the measurements of
the active cases (I) and cumulative death (D) by incorporating
them within the model using the measurement equation as:

yt = HXt + ωt, (9)

where, yt is the measurement vector of the observed data and
H is the observation matrix structured as:

H =

[
0 0 1 0 0 0
0 0 0 0 0 1

]
, (10)

and ωt is the measurement noise assumed to be Gaussian
distributed with zero mean and covariance matrix Ω. The EKF
algorithm for state estimation involving both measured and
unmeasured states can be described as the following steps:

1) Start with initializing the state vector X0 and the covari-
ance matrix P0 as:

X̂0
+
= E[X0],

P̂0
+
= E[(X0 − X̂0

+
)(X0 − X̂0

+
)T ].

(11)

2) Perform the prediction of state estimates and error
covariance as:

X̂−
t = f(X̂t),

P−
t = FP+

t FT + Ξt.
(12)

3) Perform the measurement update of the state estimate
and estimation error covariance as:

X̂+
t = X̂−

t +Kt

(
yt −Ht

(
X̂−

t

))
, (13)

Kt = P−
t HT

t

(
HtP

−
t HT

t +Ωt

)−1
, (14)

P+
t = (I −KtHt)P

−
t , (15)

where Kt is the Kalman gain and +̂ denotes the estimate
after processing the measurement whereas − denotes the
process before the correction step.

4) The steps in 2 and 3 can be repeated until getting a
better estimate of Xt.

V. PARAMETER ESTIMATION AND SIMULATION OF
COVID-19 SPREAD IN SAUDI ARABIA

We analysed the Saudi Arabia COVID-19 data with active
cases (I) and death cases (D) based on the openly available
dataset in [20]. The dataset contains daily measurements
of these two state variables between the dates 15 February
2020 and 17 March 2022. This dataset contains data about
the numbers of tests, cases, deaths, critical cases, active
cases and recovered cases in each country. We next used
the nested sampling algorithm with Markov Chain Monte
Carlo (MCMC) random walk for the live points (Nlive) to
draw samples from the likelihood surface as presented in
[19]. The nested sampling is a generic Bayesian inference
framework to estimate unknown model parameters along with
uncertainty bounds from their posterior probability distribution
while also calculating the marginal likelihood or Bayesian
evidence (logZ) of the model showing the degree of agreement
between the model and the measured data. The uncertainty
information on the SEIQRD model parameters within the
one standard deviation around the mean (µ ± σ) confidence
interval (CI) has been shown in Fig. 2. Using the Saudi
Arabia COVID-19 data, the estimated model parameters as
the mean of the posterior are presented in Table I. The
tuning parameters in the nested sampling algorithm to fit
the SEIQRD model include: (a) the number of live points
Nlive = 90 for exploring the 9D joint posterior distribution
of the unknown model parameters, (b) stopping criterion for
log-evidence calculation ∆logZ = 0.01. As an output we
get: (a) total number of likelihood evaluations Nlike = 9792
proportional to Nlive, (b) model evidence log Z = -7236.54. In
the Bayesian inference engine, we used an uninformative prior
as a uniform distribution over a specified range of unknown
model parameters i.e. {β, ϵ, γ, d, q, qt, S0, E0, α} as:

π (β) ∼ U
[
0, 10−4

]
, π(ϵ) ∼ U [0, 1],

π(γ) ∼ U [0, 1], π(d) ∼ U [0, 1] ,

π(q) ∼ U [0, 1] , π(qt) ∼ U [0, 1] ,

π(S0) ∼ U
[
1× 105, 1.5× 109

]
,

π(E0) ∼ U
[
1× 105, 1.5× 109

]
,

π(α) ∼ U [0, 1] .

(16)

Using the above prior and a multivariate Gaussian likelihood
function assuming the temporal data-points are independent
and identically distributed (i.i.d) samples, the nested sam-
pling algorithm draws random samples from the posterior of
the unknown SEIQRD model parameters. Fig. 3 shows the
posterior distribution of all the parameters of the proposed
SEIQRD model with reinfection term using the univariate
marginal histograms in the principal diagonal and the bivariate
kernel density estimates (KDE) along with scatterplots of the
posterior samples in the off-diagonals. Simulation results was
conducted using the mean of the posterior prediction to predict
the COVID-19 spread in Saudi Arabia as shown in Fig 4. It can
be seen from Fig. 4(a) around 150th day of the simulation the
infected reported cases reached it peak with 63000 infections
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Fig. 2: The estimated uncertainty bounds of the posterior
distribution of the model parameters.

and it is noted that the total death in 4(b) in the same period is
gradually increasing over time. After the first peak,the number
of active cases decreased rapidly which clearly indicates that
the Saudi Government has effectively controlled the pandemic
using various measures such as lockdown, self-isolation and
social distancing which were strictly applied.

For the full period in this study the basic reproduction
number R0 is calculated according to the observed data and
estimated around 5.44 for the whole size of the epidemic since
the outbreak. In the EKF simulations, several values of the co-
variances Ξ and Ω were tested and each values has a different
performance where we observe that if the Ξ and Ω are small
we get a large error in the EKF estimates. This helped deciding
to use the process and measurement noise covariance matrices
as: Ξ = 500×I6×6, Ω = diag([100, 1000]) where we obtained
small error in both the infected and death situations which is
the best estimate in these cases. Thus, as shown in Fig. 4(a),
the measured data of active cases lie very close to the EKF
predictions where the mean posterior numerical simulation
as the smooth output of the SEIQRD model alone does not
perform so well in explaining the non-smooth changes in the
active cases. Fig. 4(b) shows the estimated cumulative number
of death cases which is around 9000 in Saudi Arabia since
the early intervention helped to reduce the mortality rate. The
EKF predictions for I and D are very close to the reported data
and better than the posterior mean simulations of the SEIQRD
model. Each subplot in Fig. 5 corresponds to the simulation of
the proposed SEIQRD model and the predictions based on the
EKF for the unmeasurable states. Due to the unavailability of
the ground truth data for these 4 unmeasurable states, the EKF
prediction is more reliable than the smooth dynamical model
simulations. However, we notice that the dynamical system
simulation model is close to the EKF prediction results in the
susceptible cases and recovered cases while for the remaining
variables viz. exposed and quarantined cases, the model differs
slightly in terms of when they reach their peaks. Thus, the
use of the EKF helps in estimating the unmeasurable states
such as susceptible, exposed, quarantined and recovered more
accurately than the nonlinear system model simulations since
it can predict sharp changes while the ODE simulation alone

TABLE I: Mean Posterior of the proposed SEIQRD Model
Parameters for the Saudi Arabia COVID-19 Data

Parameter Value Description
N 34 ×106 population number
β 2.92 ×10−7 infection rate
α 0.0028 reinfection rate
ϵ 0.0353 1/incubation period
q 0.9593 quarantine rate
qt 0.5939 time period of quarantine
d 3.5853×10−4 death rate
γ 0.9586 recovery rate
R0 5.44 Reproductive number

TABLE II: Root Mean Square Error of the EKF-based on
SEIQRD Model

Covariance Matrices Infected Error Death Error
Ξ = 1 , Ω = diag[10, 10] 196.442 0.74698

Ξ = 0.01 , Ω = diag[10 10000] 212.3171 42.2808
Ξ = 500 , Ω = diag[100, 1000] 56.3065 0.27098

is mostly smooth in nature. In order to quantify the EKF
prediction results, we use the root mean square error (RMSE)
of the active and deaths cases defined as:

RMSE =

√√√√ 1

n

N∑
i=1

(Xreported I,D −XEKF,I,D)
2
, (17)

where, n is the number of measurement points. The RMSE
values were compared in Table II, for the two state variables
I and D using different assumptions of the noise covariance
matrices. This demonstrates the validity and efficacy of the
proposed nonlinear state estimation method beside visual
comparisons of the real COVID-19 data with the EKF-based
predictions.

VI. CONCLUSION

This paper presents a new epidemiological model of the
SEIQRD form with reinfection to understand the impact of
COVID-19 based on active and death cases data in Saudi
Arabia. Nested sampling algorithm based posterior mean
parameters were used in the SEIQRD model for dynamic
simulations. The fitted dynamic model can be useful to predict
the spread of infectious disease and can be further used
to help the Saudi Government to monitor the COVID-19
pandemic since different scenarios of unknown bias/noise
covariance have been considered. The EKF was applied with
the linearized version of the SEIQRD model to estimate
the dynamics of COVID-19 unmeasurable states while also
validating the predictions with the actual measurements of the
active cases and the cumulative deaths. Our results show that
the EKF is capable of estimating the evolution of the pandemic
in the long term which yields more accurate estimation than
the fitted nonlinear dynamical system model. In the future,
we shall consider more complex epidemiological models and
other families of the nonlinear Kalman filters with different
assumptions of the noise distribution beside the normal case.
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Fig. 3: Posterior distribution of the proposed SEIQRD model parameters with the reinfection term.

Fig. 4: Comparison of the state estimation based on EKF with
real data in Saudi Arabia: (a) active cases (b) cumulative death.

Fig. 5: Comparing estimated variables of the Susceptible,
Exposed, Quarantined and Recovered cases in Saudi Arabia.
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Abstract—This paper develops optimal procedures for point
estimation with Bernoulli filters. These filters are of interest
to radar and sonar surveillance because they are designed for
stochastic targets that can enter and exit the surveillance region
at random instances. Because of this property they are not served
by the minimum mean square estimator, which is the most
widely used approach to optimal point estimation. Instead of the
squared error loss, this paper proposes an application-oriented loss
function that is compatible with Bernoulli filters, and it develops
two significant practical estimators: the minimum probability of
error estimate (which is based on the rule of ideal observer), and
the minimum mean operational loss estimate (which models a
simple defence scenario).

I. INTRODUCTION

Radar and sonar processing chains often use a Bayesian
filter that outputs a probability distribution describing the
state of a time-varying stochastic world. Such a probabilistic
representation is unintelligible in many practical applications
and to human decision makers alike. More interpretable results
are obtained by collapsing the full distribution into the best
possible estimate (called an optimal point estimate), which is
then used by the dependent application as if it were the true
state of the world. The best estimate, from the perspective
of Bayesian decision theory, is the one which minimises the
expected amount of loss in the application. This loss emerges
due to the discrepancy between the revealed true state of the
world and its estimate, and is typically quantified by the squared
error (SE) (loss) function (shown on Fig. 1). This function leads
to the minimum mean SE (MMSE) estimate, which happens to
coincide with the expected value of the random variable, and
is often easy to compute.

This paper studies optimal point estimation for Bernoulli
filters [1]. These filters are designed for stochastic dynamic
systems that randomly switch on and off and of interest to
radar and sonar surveillance [2], [3] where the target of interest
may not always exist in the surveillance region. The MMSE
estimator is known to be incompatible with such random finite
set filters [4] since in the SE loss the underlying definition of
error is based on the Euclidean distance, which does not extend
to the cardinality errors, i.e., errors in the number of targets. In
Bernoulli filtering, this latter errors are the equivalents of false
alarm and missed detections.

Nevertheless, there have been efforts to adopt the SE loss
regardless. Some authors have proposed using alternative set
distance definitions (such as the optimal subpattern assignment
(OSPA) distance), which combine errors in location and car-
dinality after redefining the SE loss [5], [6] (see also [7]). To
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Fig. 1. The SE loss (solid) and the UC loss [13], [14] (dashed) with tolerance
r0 (r0 = 0.5 shown). These losses are symmetric, i.e., they equally penalise
errors of over- and underestimation. Note that only the UC loss is bounded.

the best of our knowledge, these approaches have not reached
widespread use (see, e.g., [8], [9] for relevant developments).
One difficulty for their use is that the resulting estimates are not
as easy to compute as other sub-optimal ones. For example, a
typical alternative is to test the target’s probability of existence
against a pre-defined threshold, and, only if it exceeds, use
the SE loss to extract an estimate of the kinematic state from
the localisation density [10], [11], [12]. This approach is ad
hoc in its nature as there is no criterion to uniquely select
the threshold, and the resulting estimate is not endowed with
properties of optimality in some prespecified sense.

This paper proposes a loss function that is directly compat-
ible with Bernoulli filters. The proposed approach can be con-
figured to model losses in different applications. In particular,
the loss function is constructed to integrate the loss resulting
from the error in the target’s kinematic state (quantified with
the uniform cost (UC) loss shown on Fig. 1) and the loss
due to the error in cardinality. The approach is validated with
two examples, which are irreducible to each other, and yield
practical optimal point estimates:

• the minimum probability of error (MPE) estimate, and
• the minimum mean operational loss (MMOL) estimate.
To the best of our knowledge, precursors of our approach

combine other loss functions, and do that in different contexts,
such as joint signal detection and estimation [15, Ch.6], [16],
or joint tracking of a target and its classification [17].

The developments in this paper are for a single Bernoulli
variable. Technically, the resulting expressions can be applied
to individual Bernoulli components of a multi-Bernoulli process
output by a multi-object filter (e.g., [12], [18], [19]). However,
investigation of optimality in, and extension of, our optimal
estimation approach to multi-Bernoulli systems is the subject
of future work.
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The paper is organised as follows. Section II introduces
a Bernoulli point process, which models a stochastic target,
and outlines the procedure of Bayes-optimal point estimation.
Section III proposes an application-oriented loss function, and
develops an optimal point estimator that thresholds the proba-
bility of existence to declare a target. Section IV develops two
practical estimators and studies their thresholds.

II. BACKGROUND

A. Bernoulli point process
In this article, the objects of interest, i.e., the targets, have in-

dividual states x in some dx-dimensional state space X ⊂ Rdx ,
typically consisting of position, velocity and class variables. A
point process (p.p.) Φ on X is a random variable on the process
space X =

⋃∞
n=0 Xn, i.e. the space of all finite sequences of

points in X , whose number of elements and element states
are unknown and (possibly) time-varying. A realisation of Φ
is a sequence x1:n ∈ Xn, representing a population of n
objects with states xi ∈ X , 1 ≤ i ≤ n, where n ∈ N. A
more formal definition can be found in [20]. In the context of
Bayesian filtering, this sequence depicts a specific multi-object
configuration.

As for regular real-valued random variables, a p.p. is de-
scribed by its probability distribution PΦ on X; the projection
measure P

(n)
Φ describes the realisations of Φ with n elements,

n ≥ 0. The projection measures are assumed to be symmetrical
functions, so that the order of points in a realisation is irrelevant
for statistical purposes and the permutations of a realization of
the p.p.—such as (x1, x2) and (x2, x1)—are equally probable.
In addition, a p.p. is called simple if the probability distribution
is such that realisations are sequences of points that are pair-
wise distinct almost surely, i.e., a realization does not contain
repetitions. For the rest of the paper, all of the point processes
are assumed to be simple. The density of the projection measure
P

(n)
Φ , n ≥ 0, is then denoted by p

(n)
Φ .

Definition II.1 (Bernoulli point process [21], [12]). A Bernoulli
point process Φ on X with parameter 0 ≤ p ≤ 1 and spatial
distribution s is an i.i.d. cluster process with spatial distribution
s, whose size is 1 with probability p and 0 with probability 1−p.
Its probability density is given by:

p
(n)
Φ (φ) =


1− p, if φ = ∅,
p · s(x), if φ = {x},
0, otherwise.

, (1)

where n = |φ| is the set cardinality, and ∅ is the empty set. Its
probability generating functional (p.g.fl.) is given by1

GΦ[h] = 1− p+ p

∫
h(x)s(dx), (2)

where h : X → [0, 1] is a test function.

In the context of target tracking, the parameter p is typically
referred to as the target’s probability of existence.

1Here and in the following, notation s(dx) = s(x)dx is used for the sake
of compactness.

B. Bayes-optimal point estimation
In the Bayesian framework, the optimal solution to a point es-

timation problem is obtained following the minimum expected
loss principle [22], [23], where a loss function

L : X× X → R+
0 (3)

assigns a non-negative real number to every possible pair of an
estimate and the true state on the state space X.

Proposition II.2 (Optimal Bernoulli point estimation). For a
Bernoulli p.p. Φ from Definition II.1, the solution to the optimal
point estimation problem is a pair (α∗

Φ, ρ
∗
Φ) of, respectively, the

optimal estimate and associated expected loss

α∗
Φ =argmin

α∈X
E [L(α,Φ)] , (4)

ρ∗Φ =E [L(α∗
Φ,Φ)] , (5)

where L is in (3), and its expected value for some α ∈ X is

E [L(α,Φ)] =
∑
n≥0

∫
L(α,φ)P

(n)
Φ (dx1:n) (6a)

=p
(0)
Φ (∅)L(α, ∅) +

∫
L(α, {x})p(1)Φ (x)dx

+
∑
n≥2

∫
L(α, {x1:n})p(n)Φ (x1:n)dx1:n (6b)

=(1− p)L(α, ∅) + p

∫
L(α, {x})s(dx). (6c)

III. APPLICATION-ORIENTED POINT ESTIMATION

A. Proposed loss function
We propose an estimation loss compatible with Bernoulli

p.p. that, as will be shown in Section IV, can be configured to
model loss in particular applications.

Definition III.1 (Application loss). The loss function is

L(α,φ) :=


c00, if α = ∅, φ = ∅,
c01, if α = ∅, φ = {x},
c10, if α = {a}, φ = ∅,
c11 + c · 1Ba

(x), if α = {a}, φ = {x}.

, (7)

where c00, c01, c10, c11, c ∈ R+, and 1Ba
is the indicator

function on a region Ba ⊂ X such that

1Ba
(x) :=

{
1, if x ∈ Ba,

0, if x /∈ Ba.
, (8)

where Ba is the rejection region2 (for Euclidean distance d):

Ba := {x | d(a, x) > r0}, ∀ x ∈ X . (9)

The proposed loss function is a combination of a set of coef-
ficients {c00, c01, c10, c11} and the loss in (8). The set encodes
a cost matrix (hence the subscripts), which is essentially a loss
function on the state space comprising just two points [24,
Ch. 8.11]; (8) is effectively the UC loss function (Fig. 1) [13],

2We note that here, Ba does not denote the ball of radius r0 around a, but
rather it indicates the complement of the ball in X .
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TABLE I
COST ASSIGNMENT IN (7) FOR THE MPE AND MMOL ESTIMATORS.

Estimator c00 c01 c10 c11 c
MPE 0 1 1 0 1
MMOL 0 cA cM cM cA

[14]. The UC loss assigns cost 1 to every pair of a and x with
distance between them higher than the tolerance parameter r0,
and 0 otherwise. In principle, the UC loss models effectors with
a limited impact region, e.g., pencil-beam radars, low-power
sensing nodes in a network [25], [26], [27], precise defensive
countermeasures [28], [29], or rescue supplies [30, p. 40].

Remark III.2. The loss in (7) and the squared OSPA error loss
(discussed in the introduction) are distinct and not reducible to
each other as, in the latter, c00 and c11 are set to 0, c01 and
c10 to c2, and, c · 1Ba(x) is replaced by min(c, d(a, x))2 for
each a, x ∈ X , where d : X × X → R+

0 is the Euclidean or
other distance metric.

B. Bayes-optimal point estimation
Theorem III.3 (Bayes-optimal Bernoulli point estimation). For
a Bernoulli p.p. Φ with parameter p and spatial distribution s, a
Bayes-optimal solution to the point estimation problem under
loss (7) is a pair (α∗, ρ∗), respectively, of the optimal point
estimate and associated expected loss given by

(α∗, ρ∗) =

{
({a∗MMUC}, ρ{a∗

MMUC}), if p > Γ,

(∅, ρ∅), if p < Γ.
, (10)

where Γ is the reporting threshold obtained as

Γ =
c00 − c10

c00− c01 − c10 + c11 + c
∫
1Ba∗

MMUC
(x)s(dx)

, (11)

a∗MMUC is the minimum mean uniform cost (MMUC) estimate

a∗MMUC = argmin
a∈X

∫
1Ba(x)s(dx), (12)

with its corresponding expected loss

ρ{a∗
MMUC}= (1− p)c10+ p

[
c11+ c

∫
1Ba∗

MMUC
(x)s(dx)

]
. (13)

In (10), the expected loss of the empty set ∅ is given by

ρ∅ = (1− p)c00 + pc01. (14)

The proof is given in Appendix. This estimator is a test over
the Bernoulli parameter p in (1) against a threshold Γ. There are
sub-optimal procedures [10], [11], [12] with a similar structure.
Our approach differs in that the threshold Γ optimally adapts to
the spatial distribution s and the loss function (7) that models
the application at hand (cf. the estimator in [31, Ch. 14.7.5.2]).

Estimator in (10) requires solving (12) which can be com-
putationally expensive. From Sherman’s theorem [32], if s is
unimodal and symmetric around its mean, the optimal estimate
in (12) is the mean of s, i.e.,

∫
xs(dx), which is easier to

compute. If s is multimodal, using the SE loss, i.e., the mean

estimate, is discouraged in practice [33], [34], and an estimator
based on a bounded loss function, e.g., (8), is preferable [29].

Finally, since s and p are common both to Bernoulli filters
and the integrated probabilistic data association (IPDA) fil-
ter [35], [36], this estimator is compatible with both algorithms.

IV. APPLICATION-SPECIFIC POINT ESTIMATES

This section develops two examples of application-specific
estimators that are based on the proposed loss function in (7)
and use the cost relations in Table I. We study the estimators
for Bernoulli-Gaussian processes, i.e., Bernoullis with s(·) =
N (·;µ, σ2), where µ and σ are, respectively, the mean and
standard deviation. The focus is primarily on the behaviour of
Γ, which tests p to determine whether the empty set ∅ or a
singleton {µ} should be reported.
A. Minimum probability of error estimate

Cost assignment in this estimator is inspired by the MPE
decision rule in detection theory [37, p. 8], which is sometimes
called the rule of ideal observer [15, p. 51] or the Siegert-
Kotelnikov rule [38, p. 65]. It assigns the costs such that
correct decisions incur no penalties, and incorrect decisions are
penalised with the unit cost. Such assignment is compatible
with the UC loss function within loss (7) when costs from
Table I are used, and provided that correct detection is penalised
if the true target kinematic state falls inside the rejection region.

Corollary IV.1 (Minimum probability of error estimation). Un-
der the MPE cost assignment from Table I, the MPE estimator is
a pair (α∗

MPE, ρ
∗
MPE) that is obtained from (α∗

Φ, ρ
∗
Φ) in Theorem

III.3 with

Γ =

[
2−

∫
1Ba∗

MMUC
(x)s(dx)

]−1

, (15)

ρ{a∗
MMUC} = GΦ

[
1Ba∗

MMUC

]
, (16)

ρ∅ = p, (17)

where GΦ[·] is defined in (2).

Proof. The result is obtained by substituting the MPE costs
from Table I into Theorem III.3. For (13), this leads to

ρ{a∗
MMUC} = 1− p+ p

∫
1Ba∗

MMUC
(x)s(dx), (18)

which is equivalent to (16) when notations (2) are used.

The result in (16) highlights the utility of p.g.fl.s in practical
applications, beyond filtering derivations (e.g., [21]). Another
example is the statistics of adversarial risk in [39, Thm. IV.2].

Fig. 2a compares the quality of MPE and conventional
estimates that are produced, respectively, using Γ1 = 0.5943
and Γ2 = 0.5. The MPE threshold yields estimates with lower
probability of error for Bernoullis with p ∈ [Γ2,Γ1]. The MPE
threshold is further studied on Fig. 3a: Bernoullis with higher
spatial uncertainty require higher thresholds for a target to be
declared. A Bernoulli with p < 0.5 is never declared as a target
(i.e., the threshold values are bounded from below), whereas
when p > 0.5 it may be estimated as no target in case the
uncertainty is high with respect to r0.
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(b) Expected loss as mean operational loss (r0=1, cA=0.9, cM =0.1).

Fig. 2. The quality of point estimates as perceived by the respective application,
which are produced with optimal (Γ1) and conventional (Γ2=0.5) thresholds.
The estimates are of Bernoulli-Gaussians with distinct p values, 0 ≤ p ≤ 1,
and spatial distributions with the same µ = 0 and σ = 1. The quality is
naturally quantified by the expected loss in the application.

B. Minimum mean operational loss estimate

Cost assignment in the MMOL estimator is inspired by
a textbook example of decision making under uncertainty,
typically called the umbrella problem [40, p. 24] or cost-
loss model [41]. This model is used to determine how the
probability of adverse events affects the decision of whether
to take a costly precautionary measure for protection against
losses from that event. We consider an operational scenario with
one potential target aiming to destroy the asset of cost cA (see,
e.g., [39]), when we control a countermeasure of cost cM . What
distinguishes it from the rule of ideal observer is that cardinality
errors are penalised in different ways (see Table I): c01 ̸= c10
(losing the asset is commonly more damaging than wasting the
countermeasure), and c11 > 0 (countermeasure is committed
to prevent losing the asset). We extend this model within loss
(7) by considering that the countermeasure has limited impact
around the point of its application with radius r0: failure to
apply it sufficiently close to the target is then modelled by the
UC loss in (8), and is penalised by both cA and cM .

Although the original model is designed for studying deci-
sions about what course of action is to implement, it permits
another interpretation, see e.g. [42], that communicates a state-
ment about the state of stochastic world. For example, if the
optimal action is to preserve the countermeasure, it is equivalent
to acting as if there were no target. And similarly, applying the
countermeasure in a certain location is equivalent to acting as
if there were a target in that point.

Corollary IV.2 (Minimum mean operational loss estimation).
Under the MMOL cost assignment from Table I, the MMOL
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Fig. 3. Reporting threshold Γ as a function of spatial uncertainty, which is
characterized by the standard deviation σ in the Bernoulli-Gaussian case.

estimator is a pair (α∗
MMOL, ρ

∗
MMOL) that is obtained from

(α∗
Φ, ρ

∗
Φ) in Theorem III.3 with

Γ =
cM
cA

[
1−

∫
1Ba∗

MMUC
(x)s(dx)

]−1

(19)

ρ{a∗
MMUC} = cM + p · cA ·

∫
1Ba∗

MMUC
(x)s(dx), (20)

ρ∅ = p · cA. (21)

The result is obtained by substituting the MMOL costs from
Table I into Theorem III.3. Fig. 2b compares the quality of
the MMOL and conventional estimates, which are produced,
respectively, with Γ1 = 0.1628 and Γ2 = 0.5. The MMOL
threshold yields lower mean operational loss for Bernoullis with
p ∈ [Γ1,Γ2]. The MMOL threshold is studied on Fig. 3b: it is
bounded from below by cM/cA, which can generally be smaller
than 0.5. When the threshold is studied for various cM/cA
(dash-dotted), it reveals its characteristic behaviour: if cM = 0,
the target is always declared as there is no cost of committing
the countermeasure; if cM ≥ cA, the target is never declared
since it is always better to preserve a costly countermeasure.

V. CONCLUSION

In this paper we have proposed an application-oriented loss
function for Bernoulli filters, and developed two examples of
optimal application-specific point estimators. Similar to the
conventional estimators, they involve the step of thresholding of
the target’s probability of existence. However, this threshold is
not a constant, but a function of specific parameterization in the
loss function as well as certain features of the spatial probability
density. A critical difference of the resulting estimators is
that a Bernoulli with high probability of existence may still
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be declared as absent if the spatial uncertainty is high, or if
committing costly measures brings unjustified expected losses.

APPENDIX: PROOF OF THEOREM III.3

Proof. Let us first obtain expressions of the expected loss
ρ∅ for the empty set and ρ{a} for a singleton containing an
arbitrary kinematic state a. For α = ∅, the expected loss
ρ∅ = E [L(∅,Φ)] is given by

ρ∅ = (1− p) · L(∅, ∅) + p

∫
L(∅, {x})s(dx), (22a)

and substituting from (7) in the above equation yields (14).
For α = {a}, the expected loss is

ρ{a} = E [L({a},Φ)] (23a)

= (1− p) · L({a}, ∅) + p

∫
L({a}, {x})s(dx) (23b)

= (1− p) · c01 + p ·
[
c11 + c

∫
1Ba(x)s(dx)

]
. (23c)

The minimum of (23c) is obtained for a = a∗MMUC given by
(12). Substituting (12) into (23c) yields (13), i.e., the minimum
expected loss ρ{a∗

MMUC} for a singleton. The optimal estimate
(and associated minimum expected loss) is then obtained by
comparing the resulting values of expected loss as

α∗ = argmin
α∈{∅,{a∗

MMUC}}
ρα, (24)

which is written as a test for p in (10), where the threshold Γ
in (11) is obtained by solving ρ∅ = ρ{a∗

MMUC} w.r.t. p.
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Abstract—The Direction of arrival (DOA) for contiguous tar-
gets with a significant power difference, with fewer sensors and
snapshots, is a challenging task. Our earlier work based on Mod-
ified Group delay-ℓ1-SVD [1] can correctly resolve contiguous
targets with fewer sensors. The weights in Modified Group delay
ℓ1-SVD were computed using the Hadamard product of MUSIC
and Group delay (GD) weights. However, a significant power
difference between the targets results in degraded performance.
This is due to the incorrect MUSIC weights, which result in
poor spatial resolution for contiguous targets with a significant
power difference. Re-weighting the ℓ1-SVD with Capon-MUSIC
and Capon-MUSIC GD weights helps estimate DOAs with a high
spatial resolution at fewer sensors. Average-Root-Mean-Square-
Error (ARMSE) and Resolution Probability are used to evaluate
the performance of the proposed methods.

Index Terms—ℓ1-SVD, Capon-MUSIC, high resolution, power
difference

I. INTRODUCTION

Direction-of-Arrival (DOA) estimation plays an essential
role in the field of SONAR, RADAR, radio astronomy, seis-
mology, and wireless communications [2]. DOA estimation is
perceived as an important task for target localization and track-
ing. Some common DOA estimation techniques like delay-
sum beamformer (DSB) [3], adaptive beamforming methods
such as Capon beamformer [4] and subspace techniques like
Multiple-Signal-Classification (MUSIC) [5] are widely used.
In dynamic environments like oceans employing the passive
SONAR, echos from the targets may be several dB’s lower
than the intentional interference or self-noise from the ship.
Masking the weak signal with a strong one leads to a degraded
DOA estimation [6]. The performance is degraded further
when the targets with large power differences are contiguous
or closely spaced [7] [8]. Further, in aerial and oceanic
environments, stationarity is observed for a short time, thus
limiting the number of snapshots. At low SNR regions with
limited snapshots, the spatial spectrum peaks corresponding to
the low power target become smaller and difficult to identify.

Estimating the DOAs of targets with a significant power
difference involves estimating a weak target after mitigating
the strong interference. With prior knowledge of the strong
interference, the jamming method is used for DOA estimation
[9]. However, the interference jamming method suffers from
the reduced array aperture due to the removal of strong

interference from the array manifold matrix. With the prior
knowledge of the DOAs, constrained MUSIC [10] achieves
accurate DOA estimation for the weak target. Additionally, us-
ing eigenvectors projection for modified spectrum has proved
to be efficient for estimating DOAs provided the targets are
known [11]. An estimation technique based on the Capon-
MUSIC algorithm was proposed in [7] for closely spaced
targets but suffers from reduced peak levels for both strong and
weak targets. Using “Eigenbeam mCapon” [12], the number
of targets and DOA estimation for weak targets can be done
at the cost of repeated iterations.

Some other studies use compressive sensing (CS) without
prior knowledge to estimate the DOA of strong targets, then
remove the strong source effect via orthogonal complements
[13]. Following the convex optimization framework, Sparse
Recovery algorithms like ℓ1-SVD offer theoretical guarantees
to perform well in noise [14] [15]. A robust sparse asymptotic
minimum variance (RSAMV) algorithm was proposed in [16]
after analyzing the loss of weak targets in the asymptotic
minimum variance (SAMV) algorithm. Also, a computation-
ally expensive method of robust orthogonal projection [17]
estimates the target DOAs without prior knowledge. Certain
practical constraints are encountered in real-time scenarios,
like the number of snapshots, sensors, and region of SNR [18].

The overall performance of the aforementioned algorithms
degrades profoundly by reducing the number of snapshots and
the number of sensors. In this paper, we have proposed MUSIC
Capon-GD and ℓ1-SVD in two variants for estimating the
DOAs for contiguous targets with significant power differences
and fewer snapshots and sensors. The proposed method can
correctly resolve contiguous targets with a significant power
difference. The rest of the paper is organised as follows: In
Section II we discuss signal model followed by related works
in Section III. Section IV elaborates the two proposed methods
in detail. Performance evaluation in Section V and conclusion
in Section VI.

II. SIGNAL MODEL

Let us consider a Uniform Linear Array (ULA) of N sensors
on which J narrowband signals with centre frequency f are
arriving from directions θ1 . . . , θJ . The data y(t) received at
the array during time t is given by

978-1-6654-8348-3/22/$31.00 ©2022 IEEE 31



y(t) =
J∑

j=1

a(θj)sj(t) + n(t); t = 1, . . . , L (1)

Here a(θj) = [1, . . . , e−j2π(d/λ) sin(θj)(N−1)]T is array steer-
ing vector for θj direction, λ is the incoming signal wave-
length, d is the inter-sensor spacing conserved at λ/2. Also,
sj(t) is the amplitude of the jth incoming target signal at
tth snapshot. n(t) is the independent and identical (i.i.d)
circularly symmetric complex Gaussian noise, with zero mean
and diagonal covariance matrix, i.e, n(t) ∼ CN (0, σ2

nI) [19].
In matrix form the Eq.1 can be written as:

Y = AS+N ∈ CN×L (2)

where S ∈ CJ×L is a matrix of amplitudes for incoming sig-
nals for L snapshots, A = [a(θ1),a(θ2), . . . ,a(θJ)] ∈ CN×J

being the array manifold matrix for J narrowband targets.
N ∈ CN×L the noise model matrix [19]. The estimated
covariance matrix of y(t) is given as:

R̂ =
1

L

L∑
t=1

y(t)y(t)H =
1

L
YYH (3)

III. SOME EARLIER RELATED WORKS

There are a number of DOA estimation techniques pertain-
ing to targets with large power differences. Some of the basic
techniques used are mentioned herein:

A. MUSIC and Capon-MUSIC Algorithm

The spatial spectrum for MUSIC is derived from the noise
subspace of the sample covariance matrix [5] R̂ as:

Pmusic(Θ) =
1

aθHUnUn
Haθ

(4)

Thus Capon-Music is defined in [7] as:

PC−music(Θ) =
aθ

HR̂−1aθ

aθHUnUn
Haθ

(5)

The DOAs are found by searching for the peaks in the spatial
spectrum obtained in Eq.(4) and Eq.(5).

B. ℓ1-SVD

Following the convex optimization, the SR algorithms are
efficient in terms of snapshots [15]. They exhibit high res-
olution and are effective at low SNRs. With the knowledge
of the over-complete basis AΩ which comprises of the over-
complete set of basis vectors aθi , ...,aθK ,where K being the
discrete set of spatial search points θ ∈ [−90, 90).

Consider the SVD of the data matrix Y in Eq.2 as:

Y = UΛVH (6)

U and V being singular vectors. We can define

Ỹ = UΛEJ = YVEJ ∈ C(N×J) (7)

where EJ = [IJ 0]T ∈ C(L×J), IJ is the (J × J) identity
matrix, and 0 is the J × (L − J) zero-matrix. Rewriting the
Eq. (7) as:

Ỹ = AΩS̃+ Ñ (8)

where S̃ = ŜVEJ and Ñ = NVEJ . The reduced data matrix
Ỹ retains most of the signal power. The row-support of S̃
being identical to Ŝ. Expressing the columns of Ỹ as:

ỹ(j) = AΩs̃(j) + ñ(j), j = 1, . . . , J (9)

Defining s
(ℓ2)
k =

√∑J
j=1 |s̃k(j)|2, k = 1, . . . ,K, where s̃k(j)

represents the kth element of s̃(j). Collectively, a row vector
is created by s

(ℓ2)
k as:

s̄(ℓ2) = [s
(ℓ2)
1 , . . . , s

(ℓ2)
K ]T ∈ RK (10)

It is observed that the support of s̄(ℓ2) is identical to row-
support of S̃ [20] hence, s̄ is considerd as a good approxima-
tion to the spatial magnitude spectrum ŝ(t) in Eq. (1).

Thus, we can estimate s̄(ℓ2) can by solving the optimization
problem [15],

min ||s̄(ℓ2)||1 subject to ||Ỹ −AΩS̃||2F ≤ η2 (11)

where || · ||F is Frobenius norm and η being the regularization
parameter, specifing the amount of noise to be allowed.

IV. PROPOSED METHOD FOR DOA ESTIMATION

The algorithms mentioned in Section III produce inaccurate
results for targets with a large power difference. The height of
the spectrum peak corresponding to the lower power target is
reduced compared to the strong target. Thus spatial spectrum
peak corresponding to a low power target is hard to pick or
observe. The performance deteriorates further if snapshots are
limited and sensors are less for contiguous targets. Algorithm
in [1] can be modified by re-weighting the ℓ1-SVD by Capon-
MUSIC GD (CMGD-ℓ1-SVD) and Capon-MUSIC ℓ1-SVD
(CM-ℓ1-SVD).

A. Capon-MUSIC Group delay ℓ1-SVD

With fewer sensors and snapshots, MUSIC cannot dis-
tinguish the contiguous targets, as evident from MUSIC-
weights in Fig.1. While Capon-MUSIC [7] can recognize the
contiguous targets with power difference, the height of the
spectral peak corresponding to the weak target is impercep-
tible. Using the high-resolution GD [21] with the ability of
Capon-MUSIC to locate DOAs of targets with large power
differences, CMGD-ℓ1-SVD inherits the proprieties of the
methods mentioned above for accurate DOA estimation. Using
the phase information in the GD function for DOA estimation
of contiguous targets with fewer sensors has been shown in
[22]. The overall GD function τ(θ) is defined as :

τ(θ) =
N−J∑
i=1

| − dΦi(θ)

dθ
|2 (12)

here phase spectrum is evaluated as inner product of the steer-
ing and noise singular vectors, i.e, Φi(θ) = arg(aΩ(θ)

Hui),
i = 1, . . . , N − J. Where ui is the (J + i)th singular vector
of U.

GD function has peak preserving ability due to additive na-
ture of phase spectrum [23] [24]. Decomposing over-complete
basis as AΩ = [A B] where A ∈ CN×J corresponds to
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Fig. 1. Angular spectrum for different weights at N=6, SINR=20 dB and
targets at 20◦& 26◦

the true DOAs and B ∈ CN×(K−J) to remaining directions.
Evaluating the phase response of the matrix we get:

∠{AH
ΩUN} = [∠{AHUN} ∠{BHUN}] = [ΦA ΦB ] (13)

Complex values of AHUN being small due to orthogonal-
ity of signal and noise subspace. Thus the phase response
of ΦA ∈ CJ×(N−J) will result in sharp phase shifts.
Taking the gradient of unwrapped spectrum of columns as
∇[ΦA ΦB ] = [τA τB ]. Thus we obtain the GD weights
as (wGroup−delay)

−1 = [[τ
(ℓ2)
A ]T [τ

(ℓ2)
B ]T ]T . Using Capon-

MUSIC spectrum to compensate for the instability in the GD
spectrum, we take the Hadamard product of the Capon-MUSIC
spectrum and GD weights as:

WCMGD =
1

wGroup−delay ⊙PC−music
(14)

The use of WCMGD for re-weight the ℓ1-SVD for robust
performance at large power differences for contiguous targets,
compensates SR algorithms inaccurate estimate with less sen-
sors and also GD’s noise sensitivity. After diagonalizing the
weights as W = diag (WCMGD) the minimization equation
in [15] is rewritten as given in [1] as:

min||Ws̄(ℓ2)||1subject to||Ỹ −AS̃||2F ≤ η2, (15)

where in the position of the largest peak of Ws̄(ℓ2) gives the
estimate of the target DOA. The value of η should be large
enough such that the probability of ||N||2F ≥ η2 is small. With
known distribution of N, we can find the mean of ||N||2F and
the value as a choice for η2 [15].

B. Capon-MUSIC ℓ1-SVD

From Fig.1 we can observe the MUSIC weights are not
able to recognise the target at low power (at 26◦). While
CMGD-ℓ1-SVD weights result in spurious peaks around the
true DOAs. This being due to GD’s sensitivity to noise, which
leads to degraded performance at significant power differences
thus resulting in incorrect weighting. In another attempt to
emphasize the importance of re-weighting, the re-weighting
for ℓ1-SVD was performed only using Capon-MUSIC weights
as:

WC−music =
1

PC−music
(16)

Re-weighting the ℓ1-SVD with the WC−music results in far
better performance in terms of DOA estimation than the Capon
MUSIC GD ℓ1-SVD (CMGD-ℓ1-SVD). Although exempting
the GD from the estimation of DOA results in the loss of

high resolution, apparent peaks are still observed at true DOA.
Further, the weights around the true DOAs are relatively
smooth with no spurious peaks as compared to CMGD-ℓ1-
SVD, as seen from Fig.1. By re-weighting with WC−music,
we can resolve contiguous targets with significant power
difference with fewer sensors, as Capon-MUSIC performs
well than traditional MUSIC (Fig.2 (a)). After obtaining the
diagonalized weight as WC−music, the largest peak of Ws̄(ℓ2)

in Eq.15 provides the estimate of the target DOAs as shown
in Algorithm 1.

Algorithm 1 Pseudo Algorithms for DOA estimation using
CMGD-ℓ1-SVD and CM-ℓ1-SVD
Input: Array Data matrix: Y ∈ CN×L and J targets.
Output: Estimated spatial spectrum Ws̄(ℓ2)

1: Compute the covariance matrix R̂ from Eq. 3 and inverse as R̂−1

if CMGD-ℓ1-SVD
a: Compute the PC−music(Θ) from Eq. 5 and (wGroup−delay)

−1

b: Obtain WCMGD from Eq.16 and Re-weight ℓ1-SVD.
else CM-ℓ1-SVD
a: Compute the Capon MUSIC weights as shown in Eq.14
b: Re-weight ℓ1-SVD using WC−music

2: Estimate the spatial spectrum Ws̄(ℓ2) from Eq. 15.

V. PERFORMANCE EVALUATION

The performance of proposed methods is evaluated through
simulations and compared with some state-of-the-art algo-
rithms. With a ULA of half-wavelength inter sensor spacing,
multi-snapshot processing is performed on L = 200 for
contiguous targets at 20◦ and 26◦ unless stated otherwise. The
efficiency of the proposed methods is evaluated with a step
size of 1◦. The number of sensors used for observations is
N = 6, and all the results are evaluated over S= 103 Monte-
Carlo simulations. By reducing the number of sensors, we
have reduced the computational complexity of the complex
SR algorithms, thus resulting in a better trade-off between
performance and computational time. While evaluating the
performance of the proposed methods, the Signal to Noise
Ratio (SNR) of the strong target is fixed at 20 dB, while the
SNR of the second target is varied over the range of [20 to
-5] dB. The σ2

n = 1 or fixed, which is generally observed in
real-world scenarios. We have evaluated the proposed methods
in terms of ARMSE [20], and Resolution Probability [7].
Wherein ARMSE is defined as:

ARMSE =
1

J


J∑

j=1

√√√√ 1

S

S∑
s=1

(
θ̂sj − θj

)2

 (17)

and for Resolution Probability, two targets are considered well
separated if the absolute difference between true and estimated
target DOA is less than the difference between true target
locations i.e, (|θ̂1 − θ1|& |θ̂2 − θ2|) < |θ1 − θ2|.

A. ARMSE Vs Sensors

The number of sensors plays a crucial role in the accuracy of
a DOA estimator. As can be observed from Fig. 2 (a), when
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Fig. 2. Comparison of proposed methods with state-of-the-art methods using (a) ARMSE Vs. No. of Sensors, (b) ARMSE Vs. Snapshots, (c) ARMSE Vs
SINR and, (d) ARMSE Vs Angular Seperation

targets are close (6◦ of angular separation), and at a power
difference of 20 dB, the proposed algorithms, i.e., CMGD-ℓ1-
SVD and CM-ℓ1-SVD achieve the low ARMSE score than the
state-of-the-art methods with less number of sensors. However
in CMGD-ℓ1-SVD due to the use of GD, spurious peaks
occur, resulting in degraded performance [20] [21] than CM-
ℓ1-SVD. One can also observe that with an adequate number
of sensors (N > 14), all the mentioned algorithms can resolve
and achieve a minimum ARMSE score. One also has to satisfy
the Restricted Isometry Property constraint (i.e., N > 2J) [25]
thus, the number of sensors is restricted to N = 6.

B. ARMSE Vs Snapshots

In dynamic environments like Oceans, stationarity is ob-
served for a brief period, thus restricting a large number
of snapshots. The performance of the algorithms degrades
upon reducing the snapshots. The results evaluated in Fig.2
(b) for two contiguous targets at 20◦ and 26◦ with a power
difference of 20 dB illustrate that proposed methods can
achieve the lowest ARMSE score for less number of snapshots
as compared to other algorithms. Here again CM-ℓ1-SVD
outperforms CMGD-ℓ1-SVD and traditional ℓ1-SVD at less
snapshots. However ℓ1-SVD has a better performance than
CMGD-ℓ1SVD till L = 400 snapshots. One of the plausible
arguments for this anomalous behavior in CMGD-ℓ1SVD
might be due to zero’s close to unit circle at low snapshots,
thus causing spurious peaks to occur in the spatial spectrum.

C. ARMSE Vs SINR

In this section, we have evaluated the performance of
the proposed methods for SINR (Signal-to-Interference-Noise-
Ratio). The input SNR is defined as SNR = 10log10 σ2

s/σ
2
n

where σ2
s is the power of target. Here we have set a strong

target T1 with SNR1 and other weak target T2 with SNR2.
We also define SINR as SINR = SNR1 − SNR2. The

variation of SINR is shown in Fig.2 (c). Wherein SNR1

is fixed at 20 dB and SNR2 is reduced from 20 dB to -5
dB. The results are evaluated at L = 200 and N = 6. We
can observe that the proposed method CM-ℓ1-SVD achieves
the minimum ARMSE at all SINRs. Further, it is important to
note that the performance of CMGD-ℓ1-SVD starts to degrade
when the two targets have a power difference of 15 dB (i.e.,
SINR =15 dB). This can be attributed to the inability of GD to
recognize the true DOAs at higher values of SINR. Also, the
performance of the ℓ1-SVD is somewhat constant across all
SINRs. The plausible argument could be the high resolution
(needle-like) peaks obtained in the spatial spectrum of ℓ1-SVD
despite the power difference present in targets.

D. ARMSE Vs Angular Separation

In this section, we evaluate the ability of the proposed
methods to resolve the targets with a significant power dif-
ference at different angular separations. This is done by fixing
a target T1 at 20◦ and varying the angular position of the
T2 from 22◦ to 40◦. Again these results are evaluated with
N = 6 and L = 200. We can observe from Fig.2 (d) that
the proposed method CM-ℓ1-SVD can achieve the lowest
ARMSE score in the current setup. Beyond angular separation
of 8◦, CMGD-ℓ1-SVD outperforms traditional ℓ1-SVD and
matches the performance of its counterpart CM-ℓ1-SVD. Upon
increasing the separation, almost all algorithms perform well.
The other proposed method can perform better than traditional
algorithms like MUSIC and GD-ℓ1-SVD and even Capon-
MUSIC under the same setup.

E. Resolution Probability Vs. Angular Separation and SINR

During this investigation stage, we examine the Resolution
Probability, i.e., the resolving capability of different algorithms
in terms of probability of separation. This is done with respect
to angular separation and SINR. These results are evaluated
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Fig. 3. Plots for Resolution Probability evaluated at N = 6, L = 200.

at N = 6 and L = 200. In the Angular separation case,
it can be observed that the proposed methods can achieve
good resolution probability across the angular separation
axis, with CM-ℓ1-SVD outperforming all other algorithms in
comparison. Even at an angular separation of 2◦, it has a
resolution probability of around 0.2. Under the same setup,
we can observe that both proposed methods can achieve good
resolution probability in SINR. Both these methods perform
well across all the SINR ranges.

VI. CONCLUSION

This paper presents two techniques, CMGD-ℓ1-SVD and
CM-ℓ1-SVD, to provide accurate DOA estimation for con-
tiguous targets with significant power differences (SINR =
25dB). Although uniform (constant) weighting and high-
resolution property of ℓ1-SVD provide a reasonable DOA
accuracy, it starts to degrade when the power difference
between targets increases at fewer sensors and snapshots. With
fewer sensors (N=6) and fewer snapshots (L=100), we can
achieve the lowest ARMSE scores and highest Resolution
Probability for CM-ℓ1-SVD in comparison to the state-of-
the-art algorithms. This is attributed to the appropriate re-
weighting achieved by the CM-ℓ1-SVD, when the power
difference between targets increases significantly, resulting in
higher DOA accuracy than the traditional ℓ1-SVD. Due to the
inability of GD to perceive low power targets (missing peaks
in the spectrum), the CMGD-ℓ1-SVD performance is affected
beyond a specific value of SINR. Also, it is observed that by
increasing the step size of the grid, the spatial resolution is
likely to improve.
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Abstract—The purpose of sonar is to detect the stealthy
target in shallow water. The main barrier to locating the target
is sonar’s self-noise. Existing subspace-based noise suppression
methods typically employ eigenanalysis-based methods involving
high computational complexity. Recent approaches based on
compressed sensing (CS) or sparse representations (SR) are
computationally efficient. It is not straightforward to extend
existing CS/SR-based methods for self-noise cancellation as, first,
the energy of interference is much higher than the target,
and second, it also exhibits similar sparsity properties. This
work presents a novel method to combine the advantages of a
subspace-based noise cancellation approach with low complexity
of working with fewer CS measurements. Both target recovery
and self-noise cancellation are done in the compressive domain
only. Experimental results demonstrate the robustness of the
proposed approach for both narrowband and broadband targets
at very low signal-to-interference-noise (SINR).

Index Terms—Self-noise cancellation, compressed sensing, un-
derwater acoustics, sensor array

I. INTRODUCTION

The problem of detecting an underwater target in the pres-
ence of background noise and estimating parameters such as
range, depth, and bearing have been a point of research in the
last few decades [1]–[4]. One of the major noise sources is the
self-noise (interference) generated from the ship itself, which
makes it challenging to perform passive signal processing
onboard a moving ship to detect or locate a source. The
standard approach to mitigate the effects of any interfering
signal is to project the observed signal onto the subspace
orthogonal to that of the interfering signal.

Existing methods proposed in various studies mainly differ
in the computation of the noise subspace, which is estimated
from eigenvectors of the correlation matrix of either the
observed or interference signal [5]–[7]. If the correlation
matrix is computed from observations, the number of sampled
eigen directions corresponding to noisy subspace is often done
empirically. To address this issue, work in [4] proposed a
method based on eigenanalysis of cross-spectral density matrix
(CSDM) of the data followed by beamforming each of the
components. This helps identify the components with low
target-to-interference power for robust detection of the target
signal. When the energy of the interference signal is powerful
compared to the target, the only reliable way of detection

This work is supported through Project No. NRB/4003/SSB/PG466/20-21.

is to compute the noisy subspace from an estimate of the
interference signal itself [7]. Nevertheless, any eigenanalysis-
based approach suffers from high computational complexity,
especially for high dimensional data from multiple sensors [8].

Further, in recent years, the sparse representation (SR)
based methods have proved to be successful in a variety of
underwater acoustic tasks such as direction-of-arrival (DOA)
estimation and source localization [9]–[11]. These methods
are based on the fact that it is relatively easy to find a sparse
representation for target data given a suitable overcomplete
basis (e.g., Fourier, wavelet) instead of noise (assumed to be
additive). Other works further exploit the sparsity of signals
to perform such tasks using very few random projections
based on the principles of compressed sensing (CS) [12],
[13]. For instance, work in [14], [15] proposed a compressive
beamformer for DOA estimation. However, the CS/SR-based
methods cannot simply be extended for self-noise cancellation
(SNC). First, the interference energy is much higher than the
target, and second, it exhibits similar sparsity properties. This
work proposes a novel method to combine the advantages of
a subspace-based noise cancellation approach with few CS
measurements.The advantage of the proposed method is that
it has reduced time and memory complexity compared to the
high-dimensional subspace-based methods.

The rest of the paper is organized as follows: Section II
describes array data model, The proposed compressive SNC
framework follows this in Section III. Finally, the experimental
results are detailed in Section IV, with a brief conclusion in
Section V.

II. ARRAY DATA MODEL

Consider N sensor elements are arranged on a Uniform Lin-
ear Array (ULA) [1]. The received array signal y[n] ∈ RT×1

at nth sensor is a combination of the target signal, self-noise,
and ambient noise as shown below :

y[n] = A(θ)s[n] + a(θ0)so[n] + v[n] (1)

A(θ) ∈ RT×J is the steering matrix for signal vector s[n] ∈
RJ×1 at angle of incident θ of signal vector on array, s0 is the
self-noise (generated by the mother ship) associated with the
steering vector a(θ0) ∈ RT×1, here θ0 is the self-noise bearing
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Fig. 1. Compressed self-noise cancellation via null-space projection

angle and v[n] ∈ RT×1 represents the additive Gaussian noise.
Received noisy signal at ULA is

Y = [[y(1)] , [y(2)] , [y(3)], · · · [y(N)]] ∈ [T ×N ] (2)

For simplicity, we denote the signal model in matrix form as:

Y = S + Z (3)

where the goal is to recover/detect the signal component S
by removing undesired component Z due to the ambient and
self-noise.

III. PROPOSED METHOD: COMPRESSIVE SNC

The conventional approach for self-noise cancellation max-
imizes signal-to-interference noise ratio (SINR) by utilizing
the null space projection techniques. The optimal solution for
detecting the desired signal signature by eliminating interfer-
ence due to undesired signatures plus the noise is given as [6],
[16]:

Ŝ = PY; P = (I−UU†) (4)

where P is the projection matrix, and † denotes the pseudo-
inverse. U are selected sampled orthogonal columns of Z.
The crucial difference between existing approaches lies in the
computation of basis U which is estimated either from the
correlation matrix of the interference or the observation matrix.
In this work, we consider the former case (which is optimal
here) as the energy of the interference/undesired signatures is
powerful compared to the desired signature. From a numerical
point of view, U is mostly estimated by applying orthogonal
decomposition such as singular value decomposition (SVD)
or rank-revealing QR decomposition and is chosen to be
undercomplete as only the first few dominant directions (e.g.,
singular vectors) suffice to characterize the self-noise.

The inherently data-dependent nature of SVD/QR estima-
tion involving expensive eigendecomposition [6] often hinders
its use in severely resource-constrained settings such as un-
derwater acoustics [17]. To address this issue, we propose to
perform the null-space projection-based SNC in a compressed
domain by projecting observed sensor data onto a random
lower-dimensional subspace as highlighted in Fig.1. Here, we
not only use compressed measurements to recover/detect the
target signal but also perform the estimation of basis U for

noise cancellation. To this aim, we reexpress matrices Y and
Z as:

Y = [[y(1)] , [y(2)], . . . [y(T )]]T ,

Z = [[z(1)] , [z(2)], . . . [z(T )]]T
(5)

where y(m) and z(m) ∈ RN are mth row of Y and Z
respectively. Here [ . ]T represents transpose of a matrix.
Initially, We have partitioned Y and Z in ‘B’ number of
windows.

Yw(m) = [[y((m− 1)L+ 1)], · · · , [y((m− 1)L+ L)]]T ,

Zw(m) = [[z((m− 1)L+ 1)], · · · , [z((m− 1)L+ L)]]T

(6)
Subscript ‘w’ shows signal for one window. Here, m =
1, 2, ...B and T = BL. L is the length of a window, where
Yw ∈ RL×N and Zw ∈ RL×N . In compressed sensing
(CS), observations are measured using non-adaptive linear
measurements:

Ȳw = ΦYw = Φ(Sw + Zw) = Φ(ΨAw + Zw) (7)
Z̄w = ΦZw (8)

where Φ ∈ Rl×L(l << L) denotes the sensing matrix
consisting of ‘l’ random orthonormal random vectors. We
assume signal from each sensor exhibit a k-sparse represen-
tation (as columns of Aw) in a basis Ψ [12]. Study in [18]
showed that under the mild assumption of the eccentricity of
dominant eigenvalues, the eigenvectors of covariance matrix
ZT

wZw/L in original domain and Φ(ZT
wZw)ΦT/l are related.

By exploiting this property, the SNC procedure in (4) can be
performed in low-dimensional compressive space as:

S̄w = P̄wΦYw; P̄w = (I− ŪwŪ†w) (9)

where I is the identity matrix. P̄w and Ūw are the projection
and the orthogonal matrices respectively in the compressive
domain. The processed measurements S̄w can be considered
as an approximation of CS measurements of signal component
Sw. It has been shown that stable recovery of Sw in terms
of its sparse representation Aw is possible if Φ satisfies the
restricted isometry property (RIP) and is incoherent with basis
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Fig. 2. Beampattern for noisy and recovered NB stationary signal. Target bearing is at 120◦, and self-noise bearing is 15◦. (a,b,c) at SINR -20dB and (d,e,f)
at SINR -25dB using (a,d) top 10, (b,e) top 20 and (c,f) top 30 sampled orthogonal vectors (SOV), respectively. The compression ration l/L = .2 is used in
case of CSSVD and CSQR methods.

Ψ [12], [13]. The estimation of the signal matrix requires
solving N independent inverse-problems of the form:

argmin‖S̄w −ΦΨAw‖2F s.t. ‖ai‖0 ≤ k,
Aw = [a1 a2 a3 . . .]; Ŝw = ΨÂw

(10)

where ‖.‖0 denotes the `0-norm, ai are the columns of Aw,
and k denotes the cardinality of a vector. (10) is a non-
convex problem [19]–[21] and its solution can be obtained by
matching pursuit-based greedy algorithms or by relaxing the
sparsity constraints and using `1-norm based solvers instead
[12]. In this work, we employ discrete-time cosine transform
(DCT) as the sparsifying basis and random-ortho Gaussian
matrix as measurement matrix as it satisfies incoherence or
RIP conditions with high probability [13]. We denote the
two-step procedure in (9) and (10) as compressive self-noise
cancellation method. Finally, the complete recovered signal
can be obtained by concatenating recovered signal for all
windows:

Ŝ = [Ŝw(1), Ŝw(2), · · · Ŝw(n)]T (11)

This is followed by post-processing using a delay-and-sum
beamformer [8] to get beamformed output ŝ. Thus, the
proposed method reduces time complexity to O(L2N) as
compared to the high-dimensional subspace-based method
(O(l2N)).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

An experimental study is performed to evaluate the perfor-
mance of the proposed compressive SNC approach for target
detection in underwater acoustics. The simulation is done for
Narrowband (NB) and Broadband (BB) Signals, both with
stationary and moving targets in the presence of Gaussian am-
bient noise. Target and self-noise bearing are set to be 120◦ and
15◦, respectively, with moving target bearing varying at 1◦ per

second. The ULA contains 32 sensors that capture the signal
at a sampling rate of 12800 Hz over an observation time of the
40s. For signal recovery, we measure and process the signal
using non-overlapping rectangular windows of size 80ms. The
projection matrix P̄ is estimated from CS measurements using
SVD and QR decomposition, where we only sample a few top
consecutive orthogonal vectors to form basis Ū. To recover
the signal from projected CS samples Ȳ we employ greedy
sparse recovery algorithms. In particular, we experimented
with compressive sampling matching pursuit (CoSaMP) [22],
and orthogonal matching pursuit (OMP) [23] algorithms and
found OMP to be more robust in recovery both at low SNR
and less number of measurements. The recovered signal from
all sensors is beamformed using a delay-and-sum beamformer,
and the recovery performance is reported using: 1) plot of
normalized beam power as a function of steering angle; and
2) waterfall display (WD) of detected power signature as a
function of time and steering angle. We denote the plots/curves
corresponding to recovered signal after noise-cancellation in
the original domain as SVD or QR and in the compressed
domain as CSSVD or CSQR.

B. Results for Narrowband Signal

In this experiment, we consider the case where both target
and self-noise are narrowband with a single signal frequency
component of 1300 Hz and interference frequency of 1200 Hz.
Fig. 2 shows the beampattern corresponding to the recovered
target and the observed noisy signal at SINR of -20dB and
-25dB using top 10, 20 and 30 sampled orthogonal vectors
(SOV). Our baseline here is the SVD method, which can be
observed to have good noise-cancellation and target localiza-
tion with most of the power concentrated in the main lobe
centered at 120◦ (see Fig. 2(a)). The QR method also exhibits
comparable target recovery and localization. In contrast, both
CSSVD and CSQR methods have good target localization and
better noise-cancellation performance in terms of lower power
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Fig. 3. Waterfall display for noisy and recovered [NB/BB] stationary and moving target at SINR -20 dB using top 20 sampled orthogonal vectors.

in side lobes. Note that the main lobe power in the case of
CSSVD/CSQR is slightly less than SVD/QR methods and is
a function of the compression ratio l/L (see Section IV-D
for more details). We have also analyzed the impact of a
number of SOV of Ū to form a projection matrix P̄. While the
target localization is comparable, one can observe that as we
sample more vectors, the uniformly distributed side lobe power
becomes more concentrated at certain steering angles. These
results are consistent for different SINR and both stationary
and moving targets. We further evaluate the Self Noise - Power
Level Reduction (SN-PLR) and Target Power Loss (TPL). It
is the absolute difference in power output (in dB) between the
recovered and noisy signals at self-noise and target bearing,
respectively. The SN-PLR (TPL) scores at SINR-20 dB and -
25 dB are illustrated in Table I and II respectively at l/L = .2.
Although the CSSVD/CSQR show higher TPL, the target is
still being localized with respectable suppression in self-noise
(higher SN-PLR compared to SVD/QR). To demonstrate the
bearing history of the recovered target at a specific time,
we show the WD plots in Fig. 3(a) and (b). In particular,
we only show WD plots for moving targets to visualize the
temporal behavior better. Observe maximum power at 120◦

for stationary target and how the signature is localized from
120◦ to 180◦ throughout the 40s in WD plots. We see that
CSSVD and CSQR methods can recover, localize, and track
the target while simultaneously suppressing the ambient and
self-noise even for moving targets.

C. Results for Broadband Signal

This experiment considers a more complex broadband case
with the frequency range for both target and interference being

TABLE I
SN-PLR (TPL) FOR NB STATIONARY TARGET AT SINR -20 DB

SOV SVD QR CSSVD CSQR
10 37.12 (0.28) 34.95 (0.27) 41.23 (1.99) 39.31 (1.95)
20 39.02 (0.61) 37.42 (0.59) 43.38 (2.50) 41.85 (2.44)
30 40.81 (0.93) 40.35 (0.93) 45.06 (2.99) 44.86 (2.99)

TABLE II
SN-PLR (TPL) FOR NB STATIONARY TARGET AT SINR -25 DB

SOV SVD QR CSSVD CSQR
10 37.69 (5.10) 35.26 (5.05) 42.38 (7.68) 40.07 (7.52)
20 40.58 (5.53) 38.40 (5.48) 45.76 (7.69) 43.35 (7.71)
30 44.91 (5.94) 43.77 (5.92) 49.49 (8.16) 48.77 (8.09)

100Hz-2000Hz. Due to space constraints, we only report the
results using the WD plot in Fig. 3(c) and (d). For stationary
targets, it can be observed that both SVD and CSSVD methods
have comparable performance in terms of noise cancellation
and target localization. However, the QR method is unable to
recover the target, which demonstrates that the choice of the
orthogonal subspace is crucial. Here the sample vectors do
not seem to correspond to self-noise leading to undesirable
results. Interestingly, the CSQR method can still locate the
target, and although self-noise is not fully canceled, it is
distributed along with other bearing angles. We observe similar
trends for the case of moving target where the SVD method
performs the best, followed by CSSVD, CSQR, and QR
methods, respectively. These results demonstrate the advantage
of exploiting the sparsity to achieve SNC in the compressive
domain.
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D. Impact of compression ratio

In this experiment, we assess the recovery performance
of the proposed compressive SNC method as a function
of compression ratio (l/L). This is important to understand
the trade-off between computational complexity using fewer
CS samples vs. the target recovery/localization performance.
In particular, we consider the case of NB stationary target
where the SNC is performed using the CSSVD method at
compression ratio of 0.2, 0.1, 0.05, respectively. Fig. 4 shows
the beampattern corresponding to the observed noisy signal
at SINR of -20dB and the recovered target using top 20
orthogonal vectors. It can be inferred that even with very few
measurements, especially l/L =.05, the proposed method is
able to localize the target. However, the ability to resolve the
main lobe at 120◦ from the other side lobe improves as the
ratio l/L increases.

V. CONCLUSION

We have presented a CS-based approach for self-noise
cancellation and target localization in this work. Consistent
with existing studies, we demonstrate the efficacy of the
CS approach in exploiting the sparsity of the target for a
robust recovery in the case of both narrowband and broadband
signals. The novelty of our approach lies in the combination of
the subspace-based noise-cancellation approach with CS-based
target localization in the presence of self and ambient noise.
Self-noise typically has much higher power than target and
also exhibits sparse properties. Hence, we first employ null-
space projection in the compressive domain to suppress noise
followed by conventional CS-based target recovery. Finally,
we experimentally demonstrated that working with various
orthogonal decomposition methods to estimate noisy subspace
in the compressed domain is more robust than working directly
in the original high-dimensional signal domain. Our future
work will focus on optimizing the sensing matrix for multiple
target localization.
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Abstract—Linear frequency modulated (LFM) waveforms play
a significant role in both military and civilian detection and
ranging applications. Based on LFM, researchers have designed
a phase shift keying (PSK) modulated LFM waveform to enable
both communication and radar functions simultaneously. Esti-
mating the chirp rate and carrier frequency of data modulated
LFM waveforms is therefore of interest in defence applications.
In the previous research, the discrete chirp-Fourier transform
(DCFT) was proposed to estimate the parameters for non-
modulated waveforms. However, the DCFT method is limited
with respect to the transform length and the estimation range.
Thus, this paper proposes a generalised coherent DCFT that
extends the previous DCFT method. We also introduce a novel
non-coherent DCFT to improve parameter estimation for PSK
modulated LFM waveforms. In the simulation section, this paper
discusses the applicability of two modified DCFT methods and
demonstrates their superior performance.

I. INTRODUCTION

Target detection is typically a primary task for radar sys-
tems. As one of several fundamental radar signals, linear
frequency modulation (LFM) waveforms are applied in var-
ious scenarios [1]. Furthermore, variants of LFM waveform
radar such as the smeared synthesized LFM signal [2] and
orthogonal LFM waveform [3] has arisen more recently.

For signal processing at the receiver of the radar, [4]
explains the working pattern and the significance of the LFM
parameter estimation. To estimate the chirp rate parameters, [5]
proposed the discrete chirp-Fourier transform (DCFT) method
with a clear theoretical background but with limitations on
the detection range and resolution. In a follow-up publication
[6], the authors modify the sampling rate in the DCFT to
avoid failed detections. In addition, other researchers [7]
made modifications based on [5] to improve the performance
of the chirp rate parameter estimation. Recent research has
investigated applications of the DCFT in other areas, e.g.,
in compressive sensing [8], cubic chirp parameter estimation
[9], and LFM parameter detection [10]. To apply the DCFT
to practical problems, [11] proposed an efficient matrix cal-
culation to reduce the complexity of the application of the
DCFT. Research in [12] illustrates the detection of a high
speed target via the fast DCFT. However, research to date
about the application of the DCFT mainly focusses on the
original LFM waveform instead of variants of LFM. Thus, this
paper also considers phase shift keying (PSK) modulated LFM
waveforms as one kind of radar waveform to be characterised.

Beyond the research on the basic LFM waveform, there
is major interest in joint radar and communication systems

PSK ModulatorLFM Signal Generator

Chirp Frequency fl

Carrier Frequency fk

PSK Symbols Su Signal Processing 
(DCFT)

Channel

r(t) p(t)

y(t)

Transmitter
Receiver

(Comms/Radar)

Fig. 1. Joint Radar and Communications System Model.

to better utilise the available frequency bands. Researchers
in [13] proposed several systems that jointly implement both
radar and communication functions. To design joint radar and
communication waveforms, [14] discussed the modulation of
radar waveforms with specially designed binary sequences
prior to transmission. Then, research in [15] introduced the
realisation of PSK modulated LFM waveforms and embed-
ded the PSK data into multiple-input multiple-output radar
waveforms. Reference [16] designed PSK modulated LFM
waveforms for internet of things applications.

The novel contributions of this paper are as follows. This
paper proposes two variants of the DCFT, the coherent DCFT
for the original LFM waveform and the non-coherent DCFT
for the PSK modulated LFM signal. First, generalised forms
of the DCFT are able to arbitrarily select the length and reso-
lution of the transform depending on prior information of the
application scenario. Secondly, for the PSK modulated LFM
waveform, the non-coherent DCFT is proposed to provide
more robust estimation performance.

The layout of this paper is as follows: Section II describes
the system model of this paper; Section III illustrates the basic
DCFT method and points out some potential problems; Section
IV proposes the coherent and non-coherent variants of the
DCFT for the different variants of LFM waveform; in Section
V, simulation results are exhibited to compare the performance
of these new methods, and Section VI provides conclusions.

II. SYSTEM MODEL

In this paper, the system model can be divided into three
parts, which are the transmitter, the channel, and the receiver
as shown in Fig. 1. To generate the basic LFM waveform, the
transmitter continually adjusts the centre carrier frequency fk
(in Hz) where the rate of change of frequency is called the
chirp frequency and is denoted as fl in Hz. Then the PSK
modulated LFM waveform can be generated by multiplying
the chirp signal with the PSK symbol waveform Su. This paper
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Fig. 2. Spectrogram of 1ms of the LFM waveform with fl = 300MHz and
fk = 300 kHz.

considers an additive white Gaussian noise (AWGN) channel
and implements the DCFT at the receiver to estimate the chirp
frequency f̃l and the carrier frequency f̃k.

At the transmitter, the instantaneous frequency f(t) in Hz
at time t (in seconds) of the LFM waveform is

f(t) = flt+ fk, (1)

where t is in the range [0, Tc] and Tc is the period of the LFM
waveform. Then, the conventional complex LFM waveform
r(t) as shown in Fig. 1 is written as

r(t) = exp(j(β0t
2 + α0t)), (2)

where the relationships between β0, α0 and fl, fk are

β0 = πfl, α0 = 2πfk. (3)

The discrete LFM time signal r[n] is obtained by sampling
r(t) with the sample frequency fs in Hz and the sample period
correspondingly Ts = 1/fs in seconds. Then r[n] is written
as

r[n] = exp(j(β0(n/fs)
2 + α0(n/fs))). (4)

Fig. 2 shows the spectrogram of 1 ms of the LFM waveform
with fs = 1 MHz, fk = 300 kHz, and fl = 300 MHz.

The process of generating modulated symbols is similar
to that used in [15] and this paper considers QPSK as the
modulation method. A constellation diagram for QPSK is
shown in Fig. 3(a) and the QPSK symbol Su can be one of
four options

Su = exp(j(2u− 1)π/4) , u = 1, 2, 3, 4. (5)

Then, the complex QPSK modulated LFM (QPSK-LFM)
waveform p[n] is

p[n] = Sur[n] . (6)

To illustrate the process of the QPSK-LFM generation, we
consider 10 QPSK symbols as the example to be transmitted
in 1 ms as shown in Fig. 3(b). Then the LFM waveform r(t)
as shown in Fig. 2 is multiplied by these QPSK symbols Su

and forms the QPSK-LFM waveform p(t). Fig. 3(c) exhibits
the spectrogram of this QPSK-LFM waveform and highlights
the symbol transition and the period for each QPSK symbol.
Furthermore, this paper considers another scenario that there
maybe an offset time To between the start of the chirp signal
and the first QPSK symbol. In this paper, we assume that
To is an integer multiple of Ts, and To therefore adjusts the
relationship between Su and r(t).
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(a) QPSK constellation points.

0
1

0
1

I Channel

Q Channel

00 01 10 11 00 01 10 11 0100

-1

-1

(b) QPSK symbols.

100 200 300 400 500 600 700 800 900
0

200

400

600

800

Fr
eq

ue
nc

y 
(k

H
z)

-120

-100

-80

-60

Po
w

er
/fr

eq
ue

nc
y 

(d
B/

H
z)

Symbol Transition

00
01 10 11 0100

10 11 00 01

(c) Spectrogram of 1ms of the QPSK-LFM waveform with fl = 300MHz
and fk = 300 kHz.

Fig. 3. QPSK-LFM Waveform Examples.

We denote the transmitted signal as x[n], which will either
be the LFM waveform r[n] or the QPSK-LFM waveform
p[n]. This waveform passes through the AWGN channel so
the received waveform y[n] is

y[n] = x[n] + w[n] , (7)

where w[n] is AWGN distributed on CN (0, σ2) and σ2 is the
power of the AWGN. The signal-to-noise ratio (SNR) in this
paper is defined as (E[x2[n]]/σ2), where E[ ] is the expectation
symbol.

III. THE TRADITIONAL DCFT METHOD

This section mainly introduces the derivation of the tradi-
tional DCFT technique and highlights three potential problems
that arise in application scenarios.

Based on the DFT method, reference [5] proposes an N -
point DCFT technique, which is

X[l, k] =
1√
N

N−1∑
n=0

x[n]W ln2+kn
N , l, k = 0, 1, . . . , N−1, (8)

where x[n] is derived from the known continuous time domain
signal x(t) when t = n/fs, N is the length of x[n], W p

N =
exp(−2πjp/N) and X is the N ×N DCFT output matrix.

The coordinate (l̃, k̃) corresponding to the largest value in
the recovered matrix X[l, k] provides f̃l and f̃k via

f̃l = 2f2s l̃/N , f̃k = fsk̃/N . (9)

The resolutions ∆fl and ∆fk for f̃l and f̃k of this method are

∆fl = 2f2s /N , ∆fk = fs/N . (10)

The estimation ranges (fmin
l , fmax

l ) in Hz and (fmin
k , fmax

k )
in Hz correspondingly are

fmin
l = 0 Hz , fmax

l =
1

N
(N − 1)2f2s Hz , (11)
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Fig. 4. Estimation ranges transformation for the DCFT modification.

fmin
k = 0 Hz , fmax

k =
1

N
(N − 1)fs Hz . (12)

Research in [5] specifies fs to be proportional to a value
of N1/3 Hz and emphasises N should be a prime value to
avoid aliasing occuring in the DCFT matrix X . By contrast,
[6] modifies the DCFT definition by increasing the sample
rate to fs = N Hz to improve the performance. In addition,
[7] restricts l and k to integers in the range [0, N/2) to improve
the chirp rate resolution.

However, there are still some potential problems in applica-
tion scenarios. First, when N is a very large value, the process
of generating X will lead a very high computational cost.
Second, from (10), when the value of fs is much larger than
N , namely fs � N , the resolution step size ∆fl and ∆fk
will become larger and possibly cause imprecise recovery of
X . Furthermore, from (10), (11), and (12), there is a (2fs)
times difference between the values fl and fk for the resolution
and detection ranges, which means when fs is a large value,
the parameters for fl and fk will not be the same order of
magnitude and this may cause significant errors.

IV. NOVEL MODIFICATIONS TO THE DCFT

To solve the above problems, this section introduces the
coherent DCFT method for the original LFM waveform with
a custom estimation range and then proposes the non-coherent
DCFT technique to extend the DCFT to handle data modulated
LFM waveforms.

A. The Coherent DCFT

First of all, this modified method introduces the length
parameter of the DCFT, K, which is set equal to the datasize
N in the previous DCFT technique. Through decoupling the
identical relationship between the length of DCFT and the
number of samples, this method is able to determine the
value of K depending on the requirements of the application.
According to practical scenarios, [17] illustrates radars are
used to detect targets under certain specific bandwidths. Thus,
this modified DCFT method is designed for user-specified
estimation ranges, (fmin

l , fmax
l ) and (fmin

k , fmax
k ). Fig. 4

compares the blue grid in (8) and the modified method on the
green grid. This modified method specifically selects the green
grid as the estimation ranges by introducing the real-valued

coefficients a, b, c, and d. Thus, the (8) can be rewritten into
the K-point coherent DCFT as

X[l1, k1] =
1√
N

N−1∑
n=0

x[n]W
(al1+c)n2+(bk1+d)n
K . (13)

where l1 and k1 are integers in the range [0,K − 1] while
al1 + c and bk1 + d might be fraction values.

From the known customised range (fmin
l , fmax

l ) and
(fmin

k , fmax
k ) and the similar deduction procedure in (11) and

(12), the detecting ranges of this method are modified as

fmin
l = 2f2s c/K, fmax

l = 2f2s (a(K − 1)) + c)/K, (14)

fmin
k = fsd/K, fmax

k = fs(b(K − 1) + d)/K . (15)

Then the coefficients a, b, c, and d are defined as

a =
K(fmax

l − fmin
l )

2f2s (K − 1)
, c =

Kfmin
l

2f2s
, (16)

b =
K(fmax

k − fmin
k )

fs(K − 1)
, d =

Kfmin
k

fs
. (17)

Via the coordinate of the largest magnitude entry of
X[l1, k1] at position, (l̃1, k̃1), estimates of f̃l and f̃k are

f̃l = 2f2s (al̃1 + c)/K , f̃k = fs(bk̃1 + d)/K . (18)

The resolution values ∆fl and ∆fk of this method are

∆fl =
fmax
l − fmin

l

K − 1
, ∆fk =

fmax
k − fmin

k

K − 1
. (19)

Correspondingly, the available values of f̃l and f̃k, Rfl and
Rfk where l and k are integers in the range [0, . . . ,K−1] are

Rfl = fmin
l + l

fmax
l − fmin

l

K − 1
, Rfk = fmin

k + k
fmax
k − fmin

k

K − 1
.

(20)
Compared to the resolution and the detection ranges in the

previous DCFT method in equations (10), (11), and (12), those
parameters for this modified method are updated as equations
(14), (15), and (19). For the computational complexity when
fs = N Hz, the one of the previous DCFT method is N3

while the coherent DCFT method is NK2. According to the
demand of the application scenario, this method can restrict the
estimation ranges and select K to avoid computational waste
through using inappropriate estimation ranges for fl and fk.

B. The Non-Coherent DCFT

In addition to the LFM waveform, the QPSK-LFM wave-
form couples Su with r(t). However, when we apply the
coherent DCFT directly to p(t), the modulation signal Su can
significantly degrade the estimation result. To eliminate the
influence caused by PSK modulation symbols, this subsection
proposes the K-point non-coherent DCFT. To apply the non-
coherent DCFT to the QPSK-LFM waveform, the number of
symbol blocks for the period of the LFM waveform should be
known in order to divide it into different symbols. Assuming
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the number of symbol blocks is M and based on (13) the
non-coherent DCFT is

X[l2, k2] =
1√
N

M∑
i=1

∣∣∣∣∣
mi+ni−1∑
n=mi

x[n]W
(al2+c)n2+(bk2+d)n
K

∣∣∣∣∣ ,
(21)

where ni = [N/M ] is the number of samples in the ith symbol
block, mi is the initial sample value for the ith symbol block,
m1 = 0 and mi = mi−1 + ni−1 and l2 and k2 are integers in
the range [0,K − 1].

Fig. 5 shows the real part of the time domain waveform used
in Fig. 3(c) and the main processing steps of the non-coherent
DCFT for the example waveform when M = 10, ni = 100,
and mi = 100(i− 1). Then through (l̃2, k̃2), f̃l and f̃k can be
recovered via the same process as (18).

V. SIMULATIONS AND DISCUSSION

This section discusses the properties and estimation errors
for the proposed coherent and non-coherent DCFT methods
and describes some simulation results of two above methods.
The two modified DCFT methods proposed in Section IV fix
three potential problems mentioned in the Section III and can
select an appropriate value of K to achieve the resolution and
detection range that is needed. Furthermore, these two DCFT
methods can decrease the computational complexity, improve
the resolution, and estimate f̃l and f̃k simultaneously.

Estimation errors for both f̃l and f̃k in the DCFT can be
caused by the LFM signal having non-integer values of (l̃, k̃).
In the following simulations, to avoid this effect, the ground
truth of (fl, fk) is randomly generated from (20). Results were
averaged over 104 Monte Carlo instances in each simulation
and the key simulation parameters are as shown in Table I.

When the input waveform of the DCFT x(t) is the QPSK-
LFM waveform p(t) with different numbers of symbol blocks
M from 1 to 100, the coherent DCFT becomes unable to
estimate f̃l and f̃k correctly. Fig. 6 shows that the normalised
mean square error (NMSE) of fl and fk increases significantly
as the symbol rate increases. Moreover, for a small number
of symbols, as there are only a few phase transitions present
in the LFM waveform, the coherent DCFT is still able to
accurately determine fl and fk; however this method fails

TABLE I
KEY SIMULATION PARAMETERS

Name Value
K 70
(fmax

l , fmin
l ) (10, 500)MHz

(fmax
k , fmin

k ) (10, 500) kHz
Tc 1ms
fs 1MHz
Ts 1µs
SNR range [−30 dB, . . . , 10 dB]
Modulation type QPSK
Baud rates [0, . . . , 100] kbaud
To [0, . . . , 9]Ts
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Fig. 6. Coherent DCFT recovery for different symbol rates.

at higher symbol rates. Our simulation tests also show that
the traditional DCFT fails in this scenario as well. To deal
with this circumstance, we switch from the coherent DCFT
method into the non-coherent DCFT method for the QPSK-
LFM waveform. In Fig. 7-9, the results calculate the likelihood
of correctly recovering the ground truth coordinate (l, k) and
are plotted as the probability of accurate (l, k) recovery.

To assess the influence of AWGN, we respectively apply the
two proposed DCFT methods to y(t) and obtain the simulation
results shown in Fig. 7 and Fig. 8. From Fig. 7 and Fig. 8, the
non-coherent DCFT exhibits a better performance under the
same circumstance. For 60 symbols per millisecond, the prob.
of recovery for the coherent DCFT is only 1.88% even for
infinite SNR in Fig. 7. In Fig. 8 with the non-coherent DCFT,
the prob. of recovery increases to 23.97% for −10 dB SNR
and 97.83% for 0 dB SNR. As the number of symbol blocks
and the SNR increases, Fig. 7 shows a dramatic reduction in
accurate recovery and thus proves the coherent DCFT is not
suited to estimate the parameters of the QPSK-LFM signal. In
Fig. 8, the dominant factor to estimate parameters is the SNR.
The non-coherent DCFT recovery performance degrades as the
SNR reduces or the symbol rate increases.

To further illustrate the robustness of the non-coherent
DCFT, Fig. 9 simulates an imperfect synchronisation scenario
with different offset times To as shown in Table I. The offset
time To delays the location of the QPSK data modulation
transitions compared to the coherent DCFT processor blocks
shown in Fig. 5. In this simulation, the number of symbol
blocks M is fixed as 100 and Fig. 9 shows that the higher
accuracy is achieved at the lowest or highest sample offsets
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Fig. 7. Coherent DCFT simulation for QPSK-LFM with different SNRs.

compared to the near 0 result at the middle sample offset.
This means the influence of imperfect synchronisation is
much more severe than the presence of AWGN and should
be avoided in real-world applications. Conversely, the non-
coherent DCFT has the strong robustness for the small offsets
with the over 90% accuracy at the 1 or 9 samples offset.

VI. CONCLUSION

This paper proposes a coherent variant of the DCFT to cir-
cumvent the inflexibilities of the standard DCFT. The proposed
generalised coherent DCFT method is able to arbitrarily design
the estimation range and determine the length of the DCFT
based on prior information. Such an approach is more suitable
for real-world applications.

Furthermore, this paper introduces the non-coherent DCFT
for detecting PSK modulated LFM waveforms. Through sim-
ulations, this paper shows that the proposed coherent DCFT
is able to recover both the chirp frequency and the carrier
frequency parameters of LFM, but this method yields a high
NMSE for the PSK modulated LFM waveforms. However, the
non-coherent DCFT method can recover the chirp parameters
of the PSK modulated LFM waveform with higher accuracy.
In addition, this paper discusses the performance of the
proposed DCFT methods under different values of SNR and
varying symbol offsets. Simulation results have shown that
the accuracy of recovery can remain high at a high SNR for
a small synchronisation error.
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Large-Scale Sparse Linear Inverse Problems
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Abstract—This paper addresses the estimation of large-scale
sparse coefficients from noisy linear measurements using Expec-
tation Propagation (EP) method for unsupervised approximate
Bayesian inference. In the Bayesian model, the Laplace prior,
Mixture of two Gaussians (MoG2) prior, and Spike-and-Slab
(SaS) prior are adopted respectively as the sparsity-promoting
priors of the unknown sparse parameter. In solving high-
dimensional linear inverse problems, the proposed EP method
directly provides the approximate minimum mean squared error
(MMSE) estimate and the approximate posterior uncertainty
by an approximating posterior distribution. Furthermore, to
tackle the challenging problem of hyperparameter tuning, the
EP posterior approximation is embedded in a variational Expec-
tation Maximization (EM) approach to allow for unsupervised
hyperparameter estimation. Experiments are conducted on syn-
thetic datasets, including an imaging deconvolution problem, to
illustrate the efficiency of the proposed unsupervised EP method
and the advantage of using MoG2 and SaS priors in solving
sparse linear inverse problems.

Index Terms—Unsupervised approximate Bayesian inference,
Expectation Propagation, large-scale problem, sparse linear
model, sparsity prior, hyperparameter estimation

I. INTRODUCTION

Many media types in digital signal and image processing
can be sparsely represented in transform-domains, and a large
number of processing tasks in this field can be posed as solving
the sparse linear inverse problems, where one seeks to recover
a sparse signal from the degraded measurements [1]. Such
problems become large-scale when the model parameters are
high-dimensional. To solve the large-scale sparse linear inverse
problems, the Bayesian framework provides a natural and
versatile way by incorporating prior knowledge in different
sparsity-promoting prior models. Combining these priors with
the likelihood of the measurements, the sparse solution can
then be inferred from its posterior distribution.

Uncertainty quantification (UQ) is critical in defence ap-
plications when decision-making and planning are based on
the current estimate [2], [3]. While Bayesian methods feature
a strong ability for uncertainty quantification, quantifying
the uncertainty for large-scale sparse linear inverse problems
remains challenging due to the high dimensionality [4]. As a
result, most of the existing Bayesian approaches to such large-
scale problems are restricted to the single point estimation
without computing further uncertainty. Maximum A Posteriori

This work was supported by the Royal Academy of Engineering under the
Research Fellowship scheme RF201617/16/31, the Engineering and Physical
Sciences Research Council of the UK (EPSRC) Grant number EP/S000631/1
and the UK MOD University Defence Research Collaboration (UDRC) in
Signal Processing.

(MAP) is the most widely used point estimator as it can be
recast as an optimization problem and use powerful convex
optimization tools when the posterior distribution is log-
concave. An alternative to the MAP estimator is the Minimum
Mean Squared Error (MMSE) estimator or posterior mean
(when it exists), which is often associated with the poste-
rior covariance matrix for uncertainty quantification. Unfortu-
nately, exact computation of the MMSE estimate and posterior
covariance from a high-dimensional posterior distribution is
challenging as it involves high-dimensional integration, even
if the parameter to be estimated is sparse.

Approximate Bayesian methods have been developed to
bypass the exact computation of such posterior summary
statistics by approximating the exact posterior distributions.
This class of methods proposes to find approximation to the
exact posterior distributions in order to improve the computa-
tional efficiency. In recent years, Expectation Propagation (EP)
[5] has received growing attention [6], [7] as an approximate
method, and it complements methods based on Variational
Bayes (VB). There have been a number of EP methods in
the literature that provide efficient solutions to sparse linear
inverse problems [8]–[10]. These EP methods are applied to
linear models with sparsity-promoting priors such as Laplace
prior [8], Spike-and-Slab (SaS) prior [9], or Mixture of two
Gaussians (MoG2) prior [10]. Yet, these EP methods with
different models (likelihood+prior) have not been consid-
ered in a single study for large-scale problems. This paper
compares these sparsity-promoting priors, combined with an
approximate Bayesian method, for unsupervised inference, i.e.
to also estimate the prior hyperparameter(s). A multivariate
Gaussian distribution and a multivariate Bernoulli distribution
are chosen to approximate the posterior distributions of the
unknown high-dimensional sparse parameters of interest. The
approximating distributions are further embedded in a varia-
tional Expectation Maximization (EM) approach to estimate
the sparsity-promoting prior hyperparameters.

The rest of the paper is organized as follows. Section II
presents the large-scale sparse linear inverse problem to be
addressed and the associated Bayesian model. Section III
describes the proposed EP method to solve the problem.
Section IV evaluates the performance of the proposed EP
method on synthetic experiments. Conclusion and future work
are finally reported in Section V.
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II. PROBLEM FORMULATION AND BAYESIAN MODEL

A. Large-scale sparse linear inverse problem

The large-scale sparse linear inverse problem investigated
in this paper consists of estimating a high-dimensional sparse
vector x ∈ RN×1 from the observation y ∈ RM×1 of the
form

y = Ax+ n, (1)

where A ∈ RM×N is a known linear operator and n ∈ RM×1

represents additive white Gaussian noise with variance σ2.
Given y, A, and σ2, the proposed EP method casts the
estimation problem as a Bayesian inference problem using the
posterior distribution of x. The Bayesian model is constructed
by the combination of a Gaussian likelihood function and
different sparsity-promoting priors for x, as will be presented
next.

B. Bayesian model

1) Gaussian likelihood function: given the unknown pa-
rameter x, the observation y follows a Gaussian distribution
and the likelihood function fy|x(y|x) is given by

fy|x(y|x) = N (y;Ax, σ2I). (2)

2) Sparsity-promoting priors: the prior distribution of x,
denoted by fx(x|θ), is parameterized by a hyperparameter
θ. In the following, we consider three different sparsity-
promoting models for fx(x|θ). To simplify the notation, in
this section the hyperparameters of the three prior models
are common to all the elements xn (∀n = 1, . . . , N ) in x.
However, it is also possible to use different hyperparameters
for each elements, or groups of elements. This will be further
discussed in Section III-B.

Laplace prior: a Laplace distribution is classically adopted
as a sparsity-promoting prior [8] with a scalar hyperparameter
θ := λ > 0 and fx(x|θ) is expressed as

fx(x|θ) =
N∏

n=1

1

2λ
e−

|xn|
λ . (3)

Mixture of two Gaussians (MoG2) prior: when x denotes
for instance the coefficients of natural images in the Fourier
or wavelet domains [11], the mixture prior model has been
shown to be a more appropriate choice than the Laplace prior
as it is capable of capturing better the inactive (nearly zero)
and active (non-zero) states [12]. The MoG2 prior model with
hyperparameter θ := (π0, v1, v2) of the form

fx(x|θ) =
N∏

n=1

π0N (xn; 0, v1) + (1− π0)N (xn; 0, v2) (4)

is employed as the sparsity-promoting prior in this work as it
is a conjugate prior of the Gaussian likelihood function in (2),
and it does not require the setting of a lot of hyperparameters
when compared to the mixture of more components. The
hyperparameter π0 ∈ [0, 1] is the prior probability of xn

(n = 1, . . . , N ) being significantly different from zero, and
v1, v2 are set to be “large and small”, respectively [13].

Spike-and-Slab (SaS) prior: the SaS prior can be consid-
ered as a degenerate case of the MoG2 prior by replacing
N (.; 0, v2) using a Dirac delta function δ(.), i.e.

fx(x|θ) =
N∏

n=1

π0N (xn; 0, v1) + (1− π0)δ(xn). (5)

In practice, π0 in (4) and (5) is usually unknown and can
be modeled by a binary random variable zn using a Bernoulli
distribution Bern(zn|π0), where Bern(zn|π0) = znπ0+(1−
zn)(1 − π0). A binary vector z = {zn}Nn=1 ∈ RN×1 is thus
introduced in (4) and (5), and the prior for z is defined as

fz(z|π0) =
N∏

n=1

Bern(zn|π0). (6)

To prevent numerical overflow, π0 is often computed using a
logistic function π0 = σ(p0) =

1
1+exp(−p0)

.
Combining (4) (or (5)) and (6), the mixture prior adopted

in the Bayesian model becomes

f(x, z|θ) = fx(x|z)fz(z|π0), (7)

with fx(x|z) =
N∏

n=1
znN (xn; 0, v1)+(1−zn)N (xn; 0, v2) or

fx(x|z) =
N∏

n=1
znN (xn; 0, v1) + (1− zn)δ(xn).

3) Posterior distribution: combining the Gaussian likeli-
hood fy|x(y|x) in (2) with the sparsity-promoting prior in (3)
or (7), the posterior distribution of x or (x, z) is given by

p(x|y,θ) ∝ fy|x(y|x)fx(x|θ), (8)

p(x, z|y,θ) ∝ fy|x(y|x)f(x,z|θ). (9)

When the dimensions of y and x is large, exact computation
of the posterior distributions is practically intractable, as it in-
volves costly integral over the high-dimensional x and also the
discrete variable z when using prior in (7). While p(x|y,θ)
in (8) is log-concave and its unique mode can be found by
convex optimisation, estimating the posterior covariance still
requires computing high-dimensional integrals or Monte Carlo
approximation.

EP is applied here to approximate the intractable posterior
distribution by a simpler tractable distribution, and the MMSE
estimate of x (or (x, z)) as well as the uncertainty are
approximated via approximate Bayesian inference from the
approximating posterior distribution, as will be presented in
the next section.

III. UNSUPERVISED EP METHOD FOR LARGE-SCALE
SPARSE LINEAR INVERSE PROBLEM

In this section, a novel unsupervised EP method is proposed
to provide the approximate solution when high-dimensional
integrals are intractable in Bayesian posterior inference. The
proposed EP method consists of two procedures following
the classical EM framework, i.e. the E-step and M-step. In
the E-step, given the hyperparameter θ, an approximating
posterior distribution is found by EP, and in the M-step, the EP
posterior approximation is used to estimate θ by maximizing
the marginal likelihood.
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A. Posterior approximation by EP given hyperparameter θ

Suppose for now that the hyperparameter θ is fixed. The
exact posterior distribution p(x|y,θ) (or p(x, z|y,θ)) can
be seen as the product of two (or three) factors, and the
posterior approximation by EP is formed by the product of
approximating distributions for each of the exact factors,

qx,1(x)qx,0(x) ≈ fy(y|x)fx(x|θ),
qx,1(x)q0(x, z)qz,0(z) ≈ fy(y|x)fx(x|z)fz(z|π0).

(10)

Note that the factor fy(y|x), which implicitly depends on the
observation y, is seen as a function of the unknown parameter
x. To ensure the posterior approximation for p(x, z|y,θ) re-
mains tractable, q0(x,z) is further factorized into q0(x, z) =
qx,0(x)qz,1(z) using a mean-field approximation [14]. In
EP, the approximating distributions are found by minimizing
successively the following Kullback-Leibler (KL) divergences

min
qx,1(x)

KL
(
fy|x(y|x)q0(x)||Qx(x)

)
, (11a)

min
qx,0(x)qz,1(z)

KL
(
fx(x|z)qx,1(x)qz,0(z)||Qx(x)Qz (z)

)
,

(11b)

min
qz,0(z)

KL
(
fz(z|π0)qz,1(z)||Qz(z)

)
, (11c)

where qx,i(x), qz,i(z), ∀i ∈ (0; 1) are parameterized by

qx,i(x) ∝ N (µi,Σi), qz,i(z) = Bern(z|σ(pi)), (12)

and

Qx(x) ∝ qx,1(x)qx,0(x), Qz(z) ∝ qz,1(z)qz,0(z). (13)

In (11b), qx,0(x) and qz,1(z) are jointly estimated when
minimizing the KL divergence. For fx(x|θ) in (3), (11b) and
(11c) reduce to min

qx,0(x)
KL(fx(x|θ)qx,1(x)||Qx(x)).

In each iteration, (µ1,Σ1), (µ0,Σ0), p1, p0 are updated
sequentially by matching the expected value of the sufficient
statistics of the first KL argument to that of the second
argument, and the matched second KL argument is then used
to update the parameters of the corresponding KL minimizers.
To avoid large matrix inversion, Σ1 and Σ0 are constrained
to be diagonal, Σ1 := diag(Σ1), Σ0 := diag(Σ0). The update
procedures are presented in the following:

update of (µ1,Σ1): the update of (µ1,Σ1) requires large
matrix inversion. Here we employ an efficient strategy in the
update without costly matrix inversion. The details are omitted
for lack of space and interested readers are referred to [9], [15].

update of (µ0,Σ0), p1: p1 is not involved in minimizing
KL(fx(x|θ)qx,1(x)||Qx(x)) for the Laplace prior in (3).
Given the structure of qx,0(x)qz,1(z) and the Bayesian model,
the KL factorizes over the N elements of x, z and the
parameters w.r.t. xn, zn (n = 1, . . . , N ) can be processed
independently. For the three priors, the first argument of the
KL divergence is a mixture of: (i) two 1-dimensional (1D)
Truncated Gaussian distribution (for Laplace prior), (ii) two
1D Gaussian distributions (for MoG2 prior), and (iii) spike-
and-slab distribution (for SaS prior). The weight ωj , and the

expected values (Ej [xn],Ej [x
2
n]), Ej [zn], ∀j ∈ (1; 2) of each

mixture component can be computed analytically, such that
the expected values of (E[xn],E[x2

n]), E[zn] admit closed-
form expressions. After matching (E[xn],E[x2

n]) to the first
and second order moments of Qx(xn), and matching E[zn]
to the moment of Qz(zn) respectively. (µ0,n,Σ0,n) and p1,n
are then updated by the newly updated moments of Qx(xn)
and Qz(zn). The same update rule is applied to update the N
elements of (µ0,Σ0) in parallel.

update of p0: since qz,0(z) and fz(z|π0) are both Bernoulli
distribution and p0 is assumed common to all the elements in
fz(z|π0), no update is needed and p0 remains unchanged as
the initialized value.

Upon convergence, the EP posterior approximations for
p(x|y,θ) in (8) and p(x, z|y,θ) in (9) are obtained by

Qx(x) ∝ qx,1(x)qx,0(x),

Qx(x)Qz(z) ∝ qx,1(x)qx,0(x)qz,1(z)qz,0(z).
(14)

Qx(x) is a multivariate Gaussian N (x;µ,Σ), and Qz(z)
is a multivariate Bernoulli distribution Bern(z|σ(p)), whose
parameters are computed by

Σ =
(
Σ−1

1 +Σ−1
0

)−1

, µ = Σ
(
Σ−1

1 µ1 +Σ−1
0 µ0

)
,

p = p1 + p0.
(15)

Next, Qx(x) and Qz(z) will be used to estimate the hyper-
parameter θ.

B. Hyperparameter estimation using EP posterior approxima-
tion

Using Qx(x|θ(t−1)), Qz(z|θ(t−1)) computed given θ(t−1)

which is estimated at the (t−1)-th EM iteration, in the M-step
at the (t)-th EM iteration, θ(t) can be estimated by maximizing
the marginal likelihood

θ(t) = argmax
θ

EQx(x|θ(t−1))

[
log f(y|θ)

]
,

θ(t) = argmax
θ

EQx(x|θ(t−1))Qz(z|θ(t−1))

[
log f(y|θ)

]
.

For θ in (3), it has been investigated in [15] that the expec-
tation w.r.t. p̂(x|θ(t−1)) := fx(x|θ)qx,1(x) performs better
for hyperparameter estimation and in turn for the estimate
of x than that of Qx(x|θ(t−1)). Closed-form solutions can
be derived to estimate θ in (3) and (7), even if θ has
more parameters, e.g. if only subsets of x share the same
hyperparameters. If the hyperparameters are not widely shared,
they are often assigned hyperpriors, i.e. the prior distributions
of hyperparamteres, and the updates above need to be adjusted.
This is not performed here due to space constraints. The two
steps in III-A and III-B are iterated until convergence.

IV. EXPERIMENTS

This section evaluates the performance of the proposed un-
supervised EP method on synthetic experiments. The synthetic
datasets are 1D vectors and 2D images with known true values.
The proposed method is applied to estimate the sparse vectors
from the simulated observations to illustrate its efficiency in
solving large-scale sparse linear inverse problems.
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A. Synthetic experiments on 1D vectors

In this subsection, three i.i.d. sparse vectors x are generated
according to the three sparsity-promoting priors with known
true values of hyperparameter θ∗ in Section II, i.e. x ∼
fx(x|λ∗) in (3) for Laplace prior, x, z ∼ f(x, z|π∗

0 , v
∗
1 , v

∗
2) in

(7) for MoG2 and SaS priors (v∗2 is not needed in SaS prior).
The observations y are simulated via y ∼ N (Ax, σ2I), where
A is a M × N (N=100, M=2N , M=N , M=N/2) random
matrix with i.i.d. standard Gaussian entries and σ2 = 0.01.
The proposed EP method is applied to estimate x, (x,z) from
y. The estimated mean values of x, z are obtained by the
approximate posterior means of Qx(x) and Qz(z).

Table I reports the mean values with standard deviation of
the estimated hyperparameter θ̂ and root-mean-square error
(RMSE) of µ over 200 noise realizations. Note that the
observations y are different for each row in the table as x
in y ∼ N (Ax, σ2I) are different. It can be seen that the
estimated hyperparameters of the three priors are close to the
true values, and the RMSE values are relatively low. When
the available information in observation y becomes less as M
decreases, RMSE increases and the estimated hyperparameters
become less accurate but still in good agreement with the true
values. Figure 1 plots the estimation results from the second
row of Table I. For MoG2 and SaS priors, in addition to the
estimates of x, the proposed EP method also provides the
estimates of the sparsity indicating variable z.

B. Synthetic experiments on 2D image deconvolution

In this subsection, synthetic experiments are conducted on
2D image deconvolution in the wavelet domain. A noise-free
Cameraman image of size N=128×128 pixels is used as the
true image x. The true sparse vector is the coefficient of x
transformed in Haar wavelet domain over 4 scales (including
the coarse scale). The observed image y is generated by
blurring x using a 5×5 pixels uniform kernel. The blurred
signal-to-noise ratio (BSNR) is 20dB. The proposed unsu-
pervised EP method is applied to estimate the deconvolved
image from y in the Haar wavelet domain, as presented in
Figure 2. The estimated images are obtained by transforming
the estimated wavelet coefficients back to the image domain.
RMSE and structural similarity (SSIM) are computed between
the estimated images and true images. The wavelet coefficients
and their uncertainties are obtained from the EP approximate
posterior mean µ and marginal variances diag(Σ), For MoG2
and SaS priors, the sparsity maps obtained by the mean of
Qz(z) are shown to indicate the probability of the wavelet
coefficients being significantly different from zero at different
scales. Furthermore, the proportion of sparsity coefficients
over different scales by the MoG and SaS priors are close
to the true values. Observe that using the three sparsity-
promoting priors, the proposed EP method manages to recover
the texture of wavelet coefficients, where the MoG2 and SaS
priors perform better than the Laplace prior. Moreover, the
approximate marginal variances diag(Σ) by the EP method
directly quantify the uncertainty of the estimated wavelet
coefficients.

Laplace prior MoG2 prior SaS prior

true values λ∗ = 0.7
π∗
0 = 0.1 π∗

0 = 0.1
v∗1 = 30 v∗1 = 30
v∗2 = 0.1

M=2N
λ̂ = 0.6 ±9.2× 10−5

π̂0 = 0.1 ±1.9× 10−5 π̂0 = 0.1 ±1.6× 10−4

v̂1 = 31 ±6× 10−3 v̂1 = 31 ±7× 10−2

v̂2 = 0.1 ±6.6× 10−5

RMSE(µ) = RMSE(µ) = RMSE(µ) =
0.001 ±1.1× 10−4 0.001 ±1× 10−4 0.0002 ±5× 10−5

M=N
λ̂ = 0.78 ±4.4× 10−3

π̂0 = 0.1 ±1.7× 10−4 π̂0 = 0.1 ±3.3× 10−5

v̂1= 34 ±7.3× 10−2 v̂1 = 28 ±1.6× 10−2

v̂2 = 0.1 ±9.2× 10−4

RMSE(µ) = RMSE(µ) = RMSE(µ) =
0.04 ±2.6× 10−2 0.0231 ±1.1× 10−2 0.0002 ±6.8× 10−5

M=N /2
λ̂ = 0.74 ±1.3× 10−4

π̂0 = 0.1 ±6.6× 10−5 π̂0 = 0.2 ±2.15× 10−4

v̂1 = 26 ±1.7× 10−2 v̂1 = 21 ±3× 10−2

v̂2 = 0.18 ±3.1× 10−4

RMSE(µ) = RMSE(µ) = RMSE(µ) =
0.54 ±8× 10−5 0.3509 ±2.2× 10−4 0.0006 ±1.4× 10−4

TABLE I
MEAN VALUE ± STANDARD DEVIATION OF THE ESTIMATED

HYPERPARAMETER θ̂ AND RMSE OF µ OVER 200 NOISE REALIZATIONS.
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Fig. 1. Estimation results of x, z when M = N . The estimates in orange
are shown by multiplying ’-1’ for better visualization.

V. CONCLUSION AND FUTURE WORK

In this paper, a new unsupervised EP method is proposed
for large-scale sparse linear inverse problems. A Bayesian
model is constructed by a Gaussian likelihood and different
sparsity-promoting priors, including the Laplace, MoG2, and
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Fig. 2. Results of 2D image deconvolution in Haar wavelet domain. The
wavelet coefficients are decomposed over 4 scales (include the coarse scale)
and the scales boundaries are shown using the manually added boxes in pink.
The scale indices for the proportion of sparse coefficients are listed in the
pink boxes.

SaS priors. Approximate Bayesian inference is performed on
the posterior approximation found by EP. The MMSE estimate
and posterior covariance of the large-scale sparse vector are
approximated by the mean vector and covariance matrix of the
multivariate approximating distributions. Furthermore, the EP
posterior approximation for the unknown model parameters
is embedded in a variational EM approach for hyperparam-
eter estimation. Experiments conducted on synthetic datasets
illustrate that the proposed EP method can provide not only
the approximate MMSE estimates that are close to the true
values, but also the uncertainty quantification of the estimates.
In particular, MoG2 and SaS priors exhibit the advantages
over Laplace prior in providing additional sparsity indicating
information. Future work considers replacing the likelihood
function of Gaussian i.i.d. noise by other noise models and
building more informative sparsity-promoting priors to im-
prove the performance of the proposed method for other large-
scale sparse linear inverse problems, such as Poisson noise
model and structured prior sparsity in wavelet-based Bayesian
compressive sensing.
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Abstract—The development of Spiking Neural Networks (SNN)
and the discipline of Neuromorphic Engineering has resulted in
a paradigm shift in how Machine Learning (ML) and Computer
Vision (CV) problems are approached. At the heart of this shift
is the adoption of event-based sensing and processing methods.
The production of sparse and asynchronous events that are
dynamically connected to the scene is possible with an event-
based vision sensor, allowing for the acquisition of not just
spatial data but also high-fidelity temporal data. In this work, we
describe a novel method for performing instance segmentation of
objects, only using their spatio-temporal movement patterns, by
utilising the weights of an unsupervised Spiking Convolutional
Neural Network that was originally trained for object recognition
and extending it to instance segmentation. This takes advantage
of the network’s spatial and temporal characteristics encoded
within its internal feature representation, to offer this additional
discriminative ability. We demonstrate this through a track path
identification problem, where 6 identical blobs complete complex
movement patterns within the same area at the same time. The
network is able to successfully identify all 6 individual movements
and segment the movement patterns belonging to each. The work
then also explains how these methods map into the more complex
Track before Detect problem. A complex track initiation problem,
where detection can only be completed after an integration
period, due to the low signal, high noise environment. These
problem characteristics seem to complement the properties of
event-based sensing and processing and initial test results are
shown.

Index Terms—Neuromorphic Engineering, Neuromorphic Al-
gorithms, SNN, STDP, Computer Vision, Unsupervised Learning,
Instance Segmentation, Event-Based Vision

I. INTRODUCTION

In most defence applications, identification of any target is
a time-sensitive and crucial function. However, it is not only
detection and identification that is vital, as the exact location
is also an important consideration. With the recent take over
of deep learning (DL) in the computer vision domain, much
research and effort have gone into turning the state of the art
in object detection [1], [2], into the instance recognition of
video information [3]. However, the reality of the situation in
a defence scenario is that the target object is often extremely
small (one or few pixels), and it contains no relevant spatial

This work is funded by the Defence Science and Technology Laboratory
(DSTL) under the DASA Advanced Vision 2020 Project (ACC6010078 -
Neuromorphic processing detection and tracking of fast moving targets)
contract DSTLX1000147830.

information to discriminate it from background noise and
clutter. This then rules out the idea of performing frame-based
detection. In cases like this, the requirement for a recurrent
approach to allow the accumulation of information over time
is required [4]. However, the drawback to this solution is that
the longer the integration period, the higher the computational
overhead required. Once this issue gets into the low signal or
low signal high noise realm, where methods such as Track
before Detect (TBD) are used, then DL approaches appear to
have had a minimal impact [5].

Neuromorphic Engineering introduces a new paradigm to
the sensing and processing domain with the use of event-
driven asynchronous sparse binary information. Taking inspi-
ration from biological systems, Neuromorphic sensor signal
processing aims to take methods from the breadth of the
machine learning community, including DL, and to combine
them with the new event-based method of sensing data. This
way of thinking is driven by innate abilities that exist in nature.
For instance, even in the presence of various background and
foreground distractors, human vision has the natural ability to
recognise, localise, and discriminate items of interest. This is
all done in real-time within a minimal power budget, usually
while also completing a number of other complex tasks.
Neuromorphic simply means brain-like, in that biological
inspiration is taken in how to handle information. Specifically,
this makes use of event-driven binary spikes, rather than
numerical values, to sense and process data. This means
the information precision lies in the timing or rate of the
spikes rather than in their magnitude. Neuromorphic sensors
give a high temporal resolution without the computational
burden, while the event-driven nature of the sensing means
the processing would naturally accumulate information over
time. This results in high fidelity spatio-temporal patterns to
be resolved, where detection and localisation are computed
simultaneously.

Neuromorphic, or event-based, sensors have matured over
recent years, with vision sensors becoming particularly pop-
ular. So much so even consumer products are available,
as for example the asynchronous time-based image sensor
(ATIS [6]), backed by Sony and sold by Prophesee, and
the Dynamic Vision Sensor (DVS [7]), backed by Samsung
and sold by Inivation. Event-based sensing is done typically
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through change detection, where a large enough change in
the signal causes the sensor to output spikes. The level of
this change can be set on the sensor to ensure a suitable
output. This change detection greatly helps to sparsify the
output. The spikes output by the sensor then represent a high
resolution and asynchronous temporal record of the changes
occurring in the scene. Even though there is a high degree
of spatial and temporal resolution, the data is still sparse
compared to a traditional frame-based imaging approach, since
not every pixel changes at the same time. This means the
sensor has a dynamical relationship to the scene. To exploit
this feature, we pair the sensing with a processing method that
has a variable integration period, thus capturing the movement
period precisely and collecting the relevant information.

Neuromorphic processing is typically carried out using the
3rd generation of neural networks, referred to as Spiking
Neural Networks (SNN). The SNN exhibits properties such as
asynchronous and event-driven processing, fast inference, low
power consumption, massive parallelism and online learning.
All of which makes it an interesting prospect in many ap-
plications, and ideal for processing information that requires
integration over time. In this sense, it means the SNN benefits
from not requiring recurrency to extract sequential or temporal
information, as such networks are naturally time-dependent.
Another benefit of the SNN is that it can exploit being related
to Artificial Neural Networks (ANN), as methods of feature
extraction can be ported from one to the other. One such
method, the Convolutional Neural Networks (CNN), is an
efficient and effective method for both learning and extracting
features, due to the natural local continuity of objects in both
space and time.

II. ALGORITHMIC DEVELOPMENT

The main theme to the algorithmic work is to exploit the
SNN in the application of instance segmentation. The detection
and pixel-wise delineation of each separate item of interest
present in a picture is known as instance segmentation. In
essence, instance segmentation is a mixture between object
recognition and semantic segmentation, two important com-
puter vision problems. Detecting instances of things belonging
to a specific class, while simultaneously determining their
physical position, usually using a bounding box, is known as
object detection. Semantic segmentation, on the other hand,
is the challenge of grouping areas of an image that belong
to the same object class together, resulting in a considerably
more thorough pixel-wise localisation. This problem only gets
more complex when attempted on video instead of images, as
now the processing time must be less than the time interval
available until the next frame, otherwise extra latency is
added to the system. For fast-moving objects or scenes, this
only becomes more difficult as the rate at which one senses
must increase, i.e. higher frame rate, thus forcing a shorter
processing interval available.

Fig. 1. The SpikeSEG network used to segment spiking images. The encoder
is featured in green and the decoder is featured in orange.

A. Spatial Scene Understanding

To initially approach the extraction of useful spatial features
from a spiking event-based scene, this work borrows from the
previous own SpikeSEG [8], which details how a convolutional
encoder-decoder network can be utilised to extract commonly
occurring spatial features in a scene (within the encoder). Then
it maps this semantically contextualised information into the
pixel space again (through the decoder). This in essence allows
semantic segmentation to be performed on spiking event data
within an unsupervised regime. An example of the network
along with an input/output is shown in Fig. 1. The network
architecture illustrated here is made up of two main sections
seen in green and orange, that relate to the encoding and
decoding layers respectively. The network is split into these
two sections where training only occurs on the encoding side,
while the weights are tied to the mirrored decoding layers.
This allows an integrate and fire neuron with layer-wise STDP
mechanism, and with adaptive thresholding and pruning, to
be used to help represent spatial features of the input. These
features are then learned through the encoder, which in turn
allows the decoder to segment the image based on the Conv3
/ Trans Conv3 pseudo classification layers.

This encoding-decoding structure symbolises a feature ex-
traction and then a shape generation process. The learn-
ing of the encoding process aims to extract common spa-
tial structures as useful features, then it decodes those
learned features over to the shape generation process, un-
ravelling the latent space classification representation, al-
though with a reduction in spiking activity due to the
max-pooling process. The network has 9 computational lay-
ers (Conv1-Pool1-Conv2-Pool2-Conv3-TransConv3-UnPool2-
TransConv2-UnPool1-TransConv1) as seen in Fig. 1. Between
the Conv3 and TransConv3 layers, there is a user-defined
attention inhibition mechanism / classification, which can
operate in two manners: ‘No Inhibition’, which allows seman-
tic segmentation of all recognised classes from the pseudo
classification layer; or ‘With Inhibition’, which only allows
one class to propagate forward to the decoding layers. This
attention not only provides a reduction in the amount of
computation, but also simplifies the output of the network,
for simpler handover to downstream systems. For further
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information contained within this section regarding the process
of encoding, decoding, thresholding and pruning, see [9]. Fig.
2 helps visualise the internal working of the network. This
illustration details the internal network dynamics, with each
coloured pixel representing the corresponding region’s feature
map activation. Classification is the joint representation of
Conv3 and TransConv3, which in this case would be the same,
as only one class is present.

Fig. 2. The internal network representation of SpikeSEG for two class
examples.

B. Featural-Temporal Decomposition

Building upon the successful feature extraction of the Spike-
SEG network, it was noted that items within particular classes
seemed to exhibit rather unique temporal patterns in which
the features (neurons) inside the network would be active.
This can be simply explained due to the STDP process of
learning by looking for the most salient and occurring features.
Therefore the more salient the feature, the larger likelihood
it would be activated earlier in time. From this hypothesis,
the Hierarchical Unravelling of Linked Kernels (HULK) and
Similarity Matching through Active Spike Hashing (SMASH)
algorithms were designed.

HULK is the process of taking each spiking instance from
the last layer of the encoder and unravelling its path through
the decoder, no longer at a semantic level, but at the instance
level. So for each spike in that feature map, one can track
it back to the pixel space, rather than doing it from all the
spikes in any given feature map, as was shown previously in
Fig. 2. Instead, there is a more granular process now as shown
within Fig. 3, which depicts a flow chart of the HULK SMASH
process, along with examples from sections of the process [9].
The image highlights the process starting with the SpikeSEG
network, but looks at each spike within the last convolution
layer leading to the HULK ASH image. Another represen-
tation for this featural-temporal representation is shown just
below with the red and blue spike trains, which highlight the
differences more clearly. The final example image depicts the
SMASH process, where the similarity and proximity scores
are combined to decide on the number of instances present
in the image. Further details regarding specific parts of the
process can be found in the [9].

Overall the HULK SMASH process was able to show
that not only is the spatial feature information useful in
identifying objects within the image, but also that the temporal

sequencing in which the features occur can be utilised for
more specification identifications. This finding underpins the
importance of the temporal nature of the spiking event data:
it is the ability to encode the saliency of features, simply by
allowing them to occur earlier than less salient features.

Fig. 3. Flow chart for HULK SMASH with examples for each section.

C. Spatio-Temporal-Featural Decomposition

Once it was established that featural-temporal information
could be extracted from the spatial features of the spiking
event data, the next step was to test the feature extraction
ability on spatio-temporal information. As such, the spatial
information alone is not representative of anything meaningful,
so a longer integration period is required to ascertain if there
is a temporal component to the spatial information presented.
This was tested under the assumption of an unknown object
(small dot) completing a set number of movement patterns,
as seen in Fig. 4. It would then be the movement pattern that
would be the identifying feature of the data. The SpikeSEG
network allows a temporally invariant classification of known
movement patterns to be determined, while the HULK process
re-enables the temporal variance to further determine the
temporal aspect of the feature occurrence. In essence, it allows
the system to further resolve if the movement was completed
fast or slow. An example of the feature breakdown is shown
per layer in the encoder and decoder in Fig. 5. This is a time
integrated view of the accumulation of features showing the
mapping from pixel to classification latent space and back
to pixel domain. The HULK and ASH process ensures the
temporal continuity is also captured to be used for further
comparing and contrasting of event sequences.

III. USE CASE DEMONSTRATION

The demonstrator envisages a particularly challenging track-
ing example, where the three previously mentioned movement
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Fig. 4. Movement patterns.

Fig. 5. HULK breakdown of spatio-temporal features.

patterns are occurring in close proximity to one another and
at about the same time. This happens along with the mirrored
(over the y-axis) version of the events. The resultant integrated
over time image for this scene is shown in top left of Fig. 6.
The difficulty in this task is that spatially the target object
that is moving around it the same in all examples. It also
is occluded and crosses paths of the other targets, together
with some unpredictable movements (i.e. figure of eight). This
demo is supposed to rule out the possibility of just simple
identifying each of the moving targets as individuals, instead
meaning one relies on the movement of the target, to be able
to classify it.

Testing of this complex scenario highlights the strength of
the SpikeSEG and HULK SMASH methods. A breakdown of
the integrated feature extraction process for the whole multi-
target movement scene is illustrated in Fig. 6, where there
is a high degree of spatial overlap from the scene which is
represented within all the feature extraction layers. However,
due to the high temporal resolution of the event data from
the scene, the spatio-temporal overlap of the target is rather
minimal. This results in only minimal overlap of features
allowing the movement patterns to be resolved, as shown in
Fig. 6.

The accumulated result of this is that the 6 movement
patterns can be distinguish between as seen in Fig. 6, where
although there was a large overlap in the spatial location of
the movements, each movement path could be classified and
segmented.

The image appears fragmented as the pooling layers are still
active on the decoding side, meaning only the most relevant
information passes through to the pixel space again. This was
to ensure the output of the network was more specific than
it was sensitive. The high degree of spatial overlap means
that certain regions were not the most salient in terms of
the classification process and therefore are not shown in the

Fig. 6. Breakdown of the features used to segment one movement from the
multi-movement scene, with final coloured segmentation

segmentation. The segmentation is quite literally a saliency
mapping of the found features. However, now the output of
the network is an instance and semantically contextualised
version of the input. Meaning, that if only wanting to look
for a figure of eight movements, one could inhibit all the
other classes, and the output from the demonstrator would
only show the two figure of eight movements. A number of
spatial and temporal variations of this demo were tested (i.e.
X,Y displacement, time displacement, temporal continuity).
The SpikeSEG network was able to semantically classify each
movement successfully, while the HULK SMASH algorithm
was able to determine instances within the classes. As such,
it was possible to notice changes in the temporal structure
of the spiking event data (i.e. the scene was faster/slower
than the previous, and if the features occurred in a different
order). This means the system is invariant to movement and
the location of the movement within the scene does not matter,
while being temporally variant, as the timing of the occurrence
of the features does matter. This clarifies that the SpikeSEG
network is invariant to both space and time, while the HULK
SMASH algorithm adds the variance to the feature data. This is
only permitted due to the SpikeSEG network being an asyn-
chronous processing Spiking Convolutions Neural Network,
which maintains the temporal continuity of the incoming data
due to the neurons firing, even though the network itself is
invariant to time.

A. Track before Detect Problem

This section covers the initial testing that has been carried
out using the same network as described above, but in the
situation of a low signal to noise ratio (SNR). This problem
is highly related to the principle behind Track before Detect
(TBD), as detection is based on tracking or accumulating
information on any objects of interest within a scene. How-
ever, the time scales required for movement detection are
far shorter than that required in the previous classification
task. Regardless, it became clear that neuromorphic sens-
ing and processing could be utilised to great effect in the
more challenging TBD domain. The neuromorphic event-
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based sensor allows for the accumulation of spatio-temporal
information on higher fidelity and variable/incoherent scale,
due to its high temporal resolution and asynchronous readout.
This means the sensor can accumulate small enough amounts
of time to detect pixel motion, while mitigating the effects of
the sensor noise and clutter. Fig. 7 illustrates how a longer
integration time has lower levels of SNR (left), compared to a
less noisy shorter integration time (right). It is in this non-
linear relationship between the signal and noise where the
benefits of an asynchronous approach are most seen, which is
somewhat similar to the benefits of incoherence in randomly
sampling for PF. This asynchronous sensing also allows a
dynamical relationship to movement in the scene, meaning
those moments when movement is detected can be extracted as
needed, exploiting the ability to collect high SNR values over
this short period. This is in contrast to the fixed temporal rate
in a traditional frame-based imaging sensor, which will just
accumulate over a set period irrespective of signal movement.

Fig. 7. High and low noise due to integration time.

Preliminary testing of our previously designed systems on
an example of a TBD problem has resulted in very encour-
aging results, with a similar laser pointer example as shown
earlier, creating a non-distinct moving blob, but with a high
level of noise present due to the closing of the aperture of
the sensor. This results in a very low SNR value of around
-21dB for the movement sequence (based on signal strength
captured in a relatively noise-free environment compared to
a signal-free noise environment). This scenario was initially
tested against simple implementations of a Kalman filter and a
particle filter in both the high and low SNR scenarios. All three
systems are not optimised for the task, but manage to perform
tracking very well on the clean data. However, when tested
on the highly noisy data, only the neuromorphic processing
can extract the moving point, as illustrated in Fig. 8. The
Kalman filter case shows two predicted points, one of which
is close to the object, including briefly tracking the point, but
then losing it. The particle filter case shows the particles as
a red plus and the mean point a yellow star, and none of the
particles are aligned with the object. The SNN case shows
the output of the system with only the pixels that were first
activated in the system (time to first spike), so operating on
a single layer spiking convolution process with a matching
encoding and decoding layer, then inhibiting all other feature
neurons to produce this output. For this to work in a continuous
asynchronous manner, the time to first spike method would
need to be changed to a rate-based approach based on spatio-

temporal correlation neurons firing.

Fig. 8. Output from noisy data for Kalman Filter, Particle Filter and Spiking
Neural Network.

IV. CONCLUSION

In this paper, we have presented how the paradigm of
neuromorphic engineering and its event-based sensing and
processing can provide an efficient and effective method of ex-
tracting complex spatio-temporal patterns from a visual scene,
without the requirement for recurrency. This method is then
also shown to have promise in TBD, a more relevant defence
scenario of low SNR track initiation. Here engineering and its
event-based sensing and processing can allow recovering the
movement pattern from a highly noisy scene by exploiting the
non-linear relationship between the noise distribution and the
movement induced signal.
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Abstract—The error inflicted on a space-time covariance esti-
mate due to the availability of only finite data is known to perturb
the eigenvalues and eigenspaces of its z-domain equivalent, i.e.,
the cross-spectral density matrix. In this paper, we show that
a significantly more accurate estimate can be obtained if the
source signals driving the signal model are also accessible, such
that a system identication approach for the source model becomes
viable. We demonstrate this improved accuracy in simulations,
and discuss its dependencies on the sample size and the signal
to noise ratio of the data.

I. INTRODUCTION

For broadband array data in a vector x[n] ∈ C
M with

time index n ∈ Z, signal processing problems are often

formulated using second order statistics, such as when aiming

to minimise a mean squared error [1], [2]. Since relative

delays between signal components are key to addressing the

broadband nature of the signals, the space-time covariance

matrix R[τ ] = E
{

x[n]xH[n− τ ]
}

, with E{·} the expectation

operator, therefore includes a lag parameter τ ∈ Z. Solutions

to such problems typically rely on a diagonalisation of R[τ ].
Since the standard eigenvalue decomposition (EVD) can only

decouple R[τ ] for one specific value of τ , an EVD to

diagonalise R[τ ] for all τ , or equivalently its z-transform

R(z) =
∑

τ R[τ ]z−τ for all z ∈ C, is required.

The problem of diagonalising a matrix R(z)
is well-understood. An eigenvalue decomposition

R(z) = Q(z)Λ(z)QP(z) exists for almost all analytic

matrices [3], [4], such that the diagonal matrix Λ(z)
contains the eigenvalues, and the Q(z) their corresponding,

orthonormal eigenvectors, with QP(z) = QH(1/z∗)
involving the parahermitian, Hermitian, and complex

coonjugation operators {·}P, {·}H, and {·}∗, respectively [5].

This decomposition can be approximated by various

algorithms, including the second order sequential best

rotation (SBR2) [6]–[8], sequential matrix diagonalisation

(SMD) [9]–[11], and a number of discrete Fourier transform

(DFT)-based families of algorithms [12]–[20].

A number of application examples have been success-

fully addressed by the above algorithms, ranging, e.g., from

coding [7], [21], beamforming [22], [23], angle of arrival

estimation [24]–[26], speech enhancement [27]–[29], optimum

precoder and equaliser resign for MIMO communications

This work was supported in parts by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1 and the MOD
University Defence Research Collaboration in Signal Processing. F. Khattak
is the recipient of a Commonwealth Scholarship.

systems [30]–[33], and subspace scanning for weak transient

signals [34]–[36].

In almost all of these applications, the space-time covari-

ance matrix cannot be obtained via expectations but must be

estimated from finite data. The estimate R̂[τ ] will be prone to

estimation errors, and the variance of the unbiased estimator

based on N snapshot of data x[n], n = 0, · · · , (N − 1) has

been investigated in [37]. This deviation from the ground truth

R[τ ] will in turn result in a perturbation of the eigenvalues

and eigenspaces [38]–[40].

The impact of estimation errors is twofold. Firstly, an esti-

mation error causes imprecision e.g. through subspace leakage

for the above applications [41]. Secondly, e.g. overestimating

the support of the space-time covariance matrix will result

in polynomial matrices of higher order than necessary [43],

counteracting many efforts to keep computational complexity

low via e.g. numerical efficiency [44]–[47] or trimming of

polynomials [48]–[50].

Therefore, in this paper we aim to enhance the estimate R̂[τ ]
and thus reduce the perturbation of its eigenvalue decompo-

sition, as well as aid in keeping the polynomial orders of all

factors low. This is achieved the source signals are accessible,

such that the convolutive mixing system that contributes to

x[n] can be estimated via system identication. This type of

estimation for R̂[τ ] is possible e.g. in loudspeaker-microphone

setup such as in [26]–[29]. For this purpose, we review the

EVD of a space-time covariance matrix in Sec. II. The source

model that defined R[τ ] is introduced in Sec. III together

with the unbiased estimator of [37]. Our proposed alternative

system identification approach is outlined in Sec. IV, and

compared to the unbiased estimator via simulations in Sec. V.

Conclusions are drawn in Sec. VI.

II. PARAHERMITIAN MATRIX EVD AND PERTURBATION

A. Parahermitian Matrix EVD

The diagonalisation of the space-time covariance matrix

R[τ ] was motivated in Sec. I as a way to solve broadband

problems. Since the model of R[τ ] in Sec. III typically

contains causal, stable system components, the z-transform

R(z) =
∑

τ R[τ ]z−τ is analytic in z ∈ C. To diagonalise

R[τ ] for every lag value τ , or R(z) for every z, a standard

EVD is insufficient. Instead, a parahermitian matrix EVD [3],

[4]

R(z) = Q(z)Λ(z)QP(z) (1)
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is required, where the diagonal parahermitian matrix Λ(z)
contains the eigenvalues λm(z), m = 1, . . . , M . The cor-

responding eigenvectors form the columns of Q(z), which

is paraunitary such that Q(z)QP(z) = I. Both Λ(z) and

Q(z) can be selected to be analytic, such that (1) can be

approximated well by Laurent polynomial terms.

Under some circumstances, the ground truth eigenvalues

λm(z), when evaluated on the unit circle, may satisfy spectral

majorisation, such that

λ1(e
jΩ) ≥ λ2(e

jΩ) ≥ . . . ≥ λM (ejΩ) . (2)

Though, generally (2) is not a given, and the ground truth

eigenvalues of (7) may overlap. Note that the factorisations

provided by the SBR2 [6], [7] and SMD [9], [11], [49] families

of PEVD algorithm generally encourage (or can even be

shown to guarantee [42]) spectral majorisation, thus conflicting

with the analytic solution; in particular, the approximation of

spectrally majorised eigenvalues can converge very slowly,

requiring Laurent polynomials of much high order than for

the analytic solution.

B. Perturbation of Eigenvalues

To investigate how a discrepancy between the ground truth

R[τ ] and the estimated R̂[τ ] perturbs the eigenvalues, recall

from [40] that when evaluated at a specific normalised angular

frequency Ω0, the error in the eigenvalues is bounded due to

the Hoffman-Wielandt theorem [39]

M
∑

m=1

(

λ̂m(ejΩ0)− λm(ejΩ0)
)2

≤ ‖E(ejΩ0)‖2F , (3)

where E(ejΩ0) = R(ejΩ0) − R̂(ejΩ0), and λ̂m(ejΩ0) are

the eigenvalues of R̂(z) evaluated for z = ejΩ0 . Thus the

bin-wise perturbation of the eigenvalues depends directly on

the accuracy of the space-time covariance estimate R̂(z).
Dependencies similar to (3) can be shown for the eigenspaces.

In the remainder of this paper we will concentrate on

limiting the perturbation in (3) by reducing the error in R̂(z).

III. SIGNAL MODEL AND SPACE-TIME COVARIANCE

A. Source Model

We assume that L zero-mean unit-variance uncorrelated

sources uℓ[n], ℓ = 1, . . . , L, contribute to the measurements

at M sensors via a matrix H[n] ∈ C
M×L of impulse responses

as shown in Fig. 1. This system matrix H[n] is given as

H[n] =











h1,1[n] h1,2[n] . . . h1,L[n]
h2,1[n] h2,2[n] . . . h2,L[n]

...
. . .

...

hM,1[n] hM,2[n] . . . hM,L[n]











, (4)

where an element hm,ℓ[n] is the impulse response connecting

the ℓth source to the mth sensor. Using H[n], the contribution

of all L sources at the mth sensor is

xm[n] =

L
∑

ℓ=1

hm,ℓ[n] ∗ uℓ[n] + vm[n] , (5)

H[n]
...

...

+

+

x1[n]

xM [n]

u1[n]

uL[n]

v1[n]

vM [n]
...

Fig. 1. Source model for the measurement vector x[n].

where ∗ denotes the convolution operator, and vm[n] is

additive spatially and temporally uncorrelated noise. In

matrix notation, for the measurement vector x[n] =
[x1[n], . . . , xM [n]]T we obtain

x[n] = H[n] ∗ u[n] + v[n] , (6)

with u[n] ∈ C
L and v[n] ∈ C

M the source signal and noise

vectors, respectively, that are defined akin to x[n]. We assume

that H[n] is a finite impulse response system of order LH .

B. Space-Time Covariance Matrix

With the source covariance E
{

u[n]uH[n− τ ]
}

= ILδ[τ ]
and the noise covariance E

{

v[n]vH[n− τ ]
}

= σ2
vIMδ[τ ],

where E{·} is the expectation operator and δ[τ ] the

Kronecker function, the space time covariance R[τ ] =
E
{

x[n]xH[n− τ ]
}

∈ C
M×M can be tied to the source model

of Fig. 1 as

R[τ ] =
∑

n

H[n]HH[n− τ ] + σ2
vIMδ[τ ] . (7)

Each element of R[τ ] is a cross-correlation

rℓ,m[τ ] = E{xℓ[n]x
∗
m[n− τ ]} (8)

=
∑

n

L
∑

k=1

hℓ,k[n]h
∗
m,k[n− τ ] + σ2

vδ[τ ]δ[l −m] .

(9)

C. Unbiased Estimation

In applications, R[τ ] typically has to be estimated from

finite data, leading to an estimated space-time covariance

matrix R̂[τ ]. If N measurements x[n], n = 0, . . . , (N−1) are

available, then an un-biased estimator for (8) can be defined

as

r̂ℓ,m[τ ] =

{

1
N−|τ |

∑N−|τ |−1

n=0 xℓ[n+ τ ]x∗
m[n], τ ≥ 0 ,

1
N−|τ |

∑N−|τ |−1

n=0 xℓ[n]x
∗
m[n− τ ], τ < 0 .

(10)

The variance of the estimator (10) is derived in [37] which

forms the average power of the estimation error. It depends

on both R[τ ] and N , and for the variance of one element

r̂ℓ,m[τ ], we can state [37]

var{r̂ℓ,m[τ ]} =
1

(N − |τ |)2

N−|τ |−1
∑

t=−N+|τ |+1

(N − |τ | − |t|)

· (rℓ,ℓ[t]r
∗
m,m[t] + r̄ℓ,m[τ + t]r̄∗ℓ,m[τ − t]),

(11)
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Fig. 2. Overall error ξ when estimating H[n] from data, in dependence of
the number of lags τ , with truncation and estimation error terms ξ1 and ξ2,
respectively, underlaid in grey for different sample sizes N .

where r̄ℓ,m[τ ] = E{xℓ[n]xm[n− τ ]} is the complementary

cross-correlation sequence. The overall estimation error

ξ =
∑

τ

‖E
{

R[τ ]− R̂[τ ]
}

‖2F , (12)

with ‖ · ‖F the Frobenius norm, can be minimised by judi-

ciously setting the lag support [43].

Example. For some space-time matrix R[τ ] ∈ C
20×20 of

polynomial order 88, Fig. 2 show the truncation error ξ1 as

well as the estimation error ξ2, which make up the error term

ξ = ξ1 + ξ2 in (12). Note that an increase of the sample size

N reduces the estimation error, and increases the optimum lag

support, i.e., the value for τ where ξ takes on its minimum in

Fig. 2.

IV. ESTIMATION VIA SYSTEM IDENTIFICATION

In case we have significantly more access to the system in

Fig. 1 and in addition to x[n] are able to acquire N samples

of the source vector u[n], we can obtain an estimate for R[τ ]
directly via (7), such that

R̂[τ ] =
∑

n

Ĥ[n]ĤH[n− τ ] + σ̂2
vIMδ[τ ] , (13)

where Ĥ[n] is an estimate of the convolutive mixing system

H[n], which we can obtain via adaptive system identifica-

tion [2]. The estimate for the noise variance, σ̂2
v , can be

reached via the minimum mean squared error. We outline

these two steps below, followed by some thoughts on how to

optimise the lag support in combination with the convolution

operation in (13). Because with u[n], we know significantly

more about our system, we also expect (13) to significantly

exceed the estimate via (10) based on only x[n].

A. Adaptive System Identification

Various approaches can be used to perform system identi-

fication, including the least mean square and recursive least

squares algorithms [2]. In order to operate analogously to the

estimation of statistics over N time instances in Sec. III-C,

we here select the Wiener solution to identify M separate L-

channel adaptive filter problems based on (5),

x̂m[n] =

L
∑

ℓ=1

ĥH
m,ℓuℓ[n] = ŵH

my[n] . (14)

In (14), ĥ∗
m,ℓ ∈ C

Lf contains the Lf estimated coefficients of

the impulse response hm,ℓ[n], and uℓ[n] = [uℓ[n], . . . , uℓ[n−
Lf + 1]]T is a tap delay line vector. For compactness of the

mean square error problem

ŵm,opt = min
ŵm

E
{

|xm[n]− x̂m[n]|2
}

, (15)

we can further define

ŵm =







ĥm,1

...

ĥm,L






, y[n] =







u1[n]
...

uL[n]






, (16)

as utilised in (14). With a sample covariance matrix R̂ and

a vector p̂m estimating the quantities E
{

y[n]yH[n]
}

and

E{y[n]xm[n]} over N time instances, we obtain [1], [2]

ŵm,opt = R̂−1p̂m (17)

as the minimum mean square error estimate of the coefficients

in the mth row of H[n].

B. Minimum Mean Squared Error

In the ideal case where ŵm,opt accurately reflects the

approriate coefficients of H[n], the variance estimate σ̂2
v is

equivalent to the minimum mean square error,

σ̂2
v,m = σ̂2

xm
− p̂H

mR̂−1p̂m , (18)

where σ̂2
xm

is the power estimated over the N samples of

xm[n]. Since we need to perform M multichannel adaptive

filter calculations, σ̂2
v can be averaged over the M different

evaluations of (18), such that σ̂2
v = 1

M

∑

m σ̂2
v,m.

C. Filter Length and Lag Support

Using the elements of the system matrix Ĥ[n] identified via

Sec. IV-A and the noise variance as discussed in Sec. IV-B,

we can estimate R[τ ] using (13). Similar to the un-biased

estimator, two terms contribute to the error ζSI defined akin to

(12) between H[n] and Ĥ[n]: (i) a truncation term in case the

adaptive filter length Lf falls short of the ground truth system

length LH ; and (ii) a perturbation term that impacts on the

coefficients of ŵm,opt in (17), which grows with the number

of coefficients. Therefore, we expect to find an optimum length

Lf,opt, where the two error terms are in balance.

Example. We perform an experiment with an ensemble

consisting of 300 instances of a parahermitian matrix R[τ ] ∈
C

2×2 with LH = 30. For the noise variance σ2
v , we define

an average SNR at the sensors,

SNR =

∑

n ‖H[n]‖2F
Mσ2

v

, (19)

where the numerator reflects the total power due to the sources

and the denominator the total power due to the additive noise
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Fig. 3. Ensemble results for ζ when obtaining R̂[τ ] in dependence of adaptive
filter length, Lf .

at the sensors measuring x[n]. In the experiments, we set

σ2
v to provide an SNR of 20 dB. The ensemble instances

are identified with Lf varying from 20 to 40 using various

sequence lengths N . The results are illustrated in terms of

normalised errors ζSI,n = ζSI/
∑

n ‖H[n]‖2F in Fig. 3, which

highlights the above trade-off: while for low values of Lf , the

truncation error dominates, the error at higher values of Lf

increases to the noisy coefficients in the adaptation process.

In addition, the ensemble optimum depends on the filter

length. In Fig. 3, note that Lf,opt is 28, 29 and 30 for N =
1e3, 1e4 and 5e4 respectively. The filter length, for which the

minimum is reached, therefore converges towards the ground

truth support LH .

V. SIMULATIONS AND COMPARISON

This section provides a comparison of the two approaches

to obtain R̂[τ ] discussed in this paper, and an assessment of

the consequences for the perturbation of its eigenvalues.

A. Performance Metric

The performance metric for a comparison of both methods

is given as

ζ =

∑

τ ‖R[τ ]− R̂[τ ]‖2F
∑

τ ‖R[τ ]‖2F
. (20)

Note that the numerator of this metric relates to the bin-wise

perturbation bound on the eigenvalues in (3) via Parseval’s

theorem [51]. The normalisation by the Frobenius norm of the

ground-truth ensures that the metric can be applied to extract

ensemble results for different instances of R[τ ].

B. Scenario and Parameters

To compare both methods, we employ an ensemble of 500

random instances of R[τ ] ∈ C
2×2 with moderately large

support LH = 30. The estimates are made over various

sample sizes N ranging from 103 to 106 and noise levels

of 10 and 20 dB SNR according to (19). The optimal lag

support for the unbiased estimator is selected on the basis of

the lowest value of ζ by varying the lag support between 1
and 29 because τopt < τgt = 30. In contrast, the support value

for SI estimate is set equal to τgt = 30.

10 3 10 4 10 5 10 6

10 -6

10 -4

10 -2

Fig. 4. Comparison of estimation methods via an ensemble of R[τ ] ∈ C2×2,
showing the theoretical and measured error via the unbiased estimator, ξest,n
and ζest,n, respectively, as well as the measured error using the system
identification approach, ζSI,n.

C. Ensemble Results

Fig. 4 shows the ensemble results for the experiment. The

normalised error ζest,n is adopted from (20) for the unbiased

estimator based on (10); likewise, ζSI,n is the normalised error

for the system identification approach. For each case, curves

for 10 dB and 20 dB SNR are shown, together with the bounds

within which 90% of the ensemble results fall. Further, the

theoretical normalised variance for the unbiased estimator, a

normalised version of (11), is underlaid in grey, and matches

the simulation results well.

We firstly observe that the unbiased estimator, which treats

measurement noise as part of the data, is independent of the

SNR. In contrast, the noise terms acts as observation noise for

the system identication approach, which therefore yields in-

creased accuracy as the SNR grows. All curves converge with

approximately 1/N , but the system identification approach

generally is capable of reaching better accuracy than the

unbiased estimator. This is due to the additional information

that in this case is known for the system — the source signals

uℓ[n]. In contrast, for lower SNR, the system identification

performance will drop below that of the unbiased estimator,

as the known signals uℓ[n] will be dwarfed by the unknown

observation noise vm[n] which then start to dominate.

VI. CONCLUSIONS

We have compared the unbiased estimator with a system

identification approach for the estimation of a space time

covariance matrix. The latter can be exploited in case the

source signals are known, and consists of the identification

of the convolutive mixing system by a Wiener filter approach,

and the estimation of the additive noise power via the min-

imum mean square error of the Wiener filter. An ensemble

experiment carried out at various noise levels demonstrates

that the system identification approach performs significantly

better than the unbiased estimator for reasonable to high SNRs.

This is important, as the enhanced accuracy results in a lower

bin-wise perturbation of the eigenvalue decomposition of this

matrix, which is key to formulating and solving a number of

relevant broadband array problems.
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Abstract—This work proposes a fast trajectory forecasting al-
gorithm to use with automatic identification system (AIS) broad-
casts of vessels. The algorithm involves fast sub-optimal model
parameter estimation from AIS messages and the computation of
Gaussian location predictions for a series of future timestamps.
The underlying trajectory model is a stochastic process that uses
six parameters to generate near-constant velocity trajectories.
These parameters include the desired cruise heading and speed
of the vessel and velocity standard deviations along the heading
direction and its perpendicular complement. We demonstrate the
performance of our approach using a real AIS data set.

I. INTRODUCTION

Accurate predictions of vessel locations are very useful in

maritime traffic safety [1], surveillance [2] and situational

awareness [3], [4] applications. Forecasting is often performed

using generative trajectory models. Stochastic process models

offer advantages in capturing the physics of motion and the un-

certainties involved: Examples include Gaussian processes [2],

bridging density models [5], [6], Ornstein-Uhlenbeck (OU)

process velocity models [7] and data-driven change-point

models [8].

This work is motivated by the real-time availability of

secondary surveillance data such as Automatic Identification

System (AIS) broadcasts from vessels. These broadcast mes-

sages inform recipients on the position of the transmitting

vessel as measured by the Global Positioning System (GPS),

its velocity vector in terms of its speed and heading angle with

respect to North, vessel’s class and similar traits, all tagged

by the vessel’s unique identification number – the maritime

mobile service identity (MMSI). AIS messages from the same

vessel thus form a trajectory data stream using which its future

state can be predicted.

Stochastic process models provide future position predic-

tions by extracting model parameters from data streams and

using these parameters in the model to evaluate the statistics of

the process at a future time instant. To model 2-D trajectories

observed at arbitrary time instants, [9] introduced a 2-D OU

velocity model with six parameters and studied their maximum

likelihood (ML) estimation and Cramér-Rao lower bounds

(CRLB). ML estimation in this model is a constrained problem

which can be solved using second order iterative methods.

The iterations, however, must start at a good initial point for

convergence to the global optimum.

Fig. 1. Example location forecasts and uncertainty ellipses for multiple time
steps separated by 1 000 s starting from the last message.

In this work, we propose a fast non-iterative approach

to find the parameters of AIS trajectories. We use these

estimates within the six-degree-of-freedom model to make

future location forecasts – an example is depicted in Fig. 1.

Then, we perform a performance study using an AIS data

set that contains all the cargo ship messages recorded during

February 2022 and made publicly available by the Danish

Maritime Authority [10].

The structure of the article is as follows: Section II gives

the mathematical problem definition followed by the six-

degree-of-freedom model used in Section III. The proposed

fast parameter estimation method is detailed in Section IV.

The results of the performance study performed using a real

AIS data set are given in Section V. Then, in Section VI we

conclude.

II. PROBLEM DEFINITION

A. AIS trajectories

Trajectory observations of a vessel are provided by its AIS

broadcasts tagged by the MMSI number. In particular, these

messages report the latitude and the longitude of the vessel

and its velocity vector. For processing, we consider projected

versions of these quantities on a plane using the universal

transverse Mercator (UTM) projection. The concatenation of

the projected position and velocity yield the target state vector.

The continuous trajectory of the vessel is a time function of

this evolving state vector x(t). Thus, L observations form the

continuous trajectory x form a 4 × L array x = [x1, ...,xL]
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where samples are collected at t = [t1, . . . , tL] , i.e., xk =
x(tk) for k = 1, . . . , L.

B. Forecasting with uncertainty quantification

The problem of forecasting is to find an estimate of the
state vector x(tf ) where tf is a time stamp in the future,
i.e., tf > tL. Let us denote this estimate by x̂tf . We are
also interested in finding the uncertainty associated with this
estimate, specifically a Gaussian distribution with density
N (.; x̂tf ,Σtf ) centred at the position and velocity forecast and
distributing the probability mass according to the covariance
matrix Σtf .

III. THE TRAJECTORY MODEL

We use the stochastic generative model introduced in [9]
to model x which is based on OU velocity processes. The
underlying assumption is that any vessel would maintain a
cruise velocity V and speed S related by

V =

[
cosα − sinα
sinα cosα

]
VC (1)

V =

[
vE
vN

]
, VC =

[
S
0

]
, (2)

where α is the cruise heading angle the vessel aims to maintain
and VC is the cruise velocity in the cruise coordinate system.
In other words, the cruise coordinates of the vessel with its
front as the first axis and the left perpendicular axis as the
second axis is rotated by α rad with respect to the East-North
plane.

In the cruise coordinate frame, the velocity coordinate along
the first axis is an OU process [11] with a mean value equals
to the speed S, i.e.,

v̇1(t) = γ1 (S − v1(t)) + σ1ṅ1(t), (3)

where n1 is a Wiener process. Along the second axis, the mean
value to maintain is zero (following (2) and (1)), i.e.,

v̇2(t) = −γ2v2(t) + σ2ṅ2(t), (4)

where n2 is a Wiener process independent from n1. As a result

v1(t) = v1(0)e−γ1t + S
(
1− e−γ1t

)
+ σ1

∫ t

0

e−γ1tdn1, (5)

along the heading direction and

v2(t) = v2(0)e−γ2t + σ2

∫ t

0

e−γ1tdn2, (6)

along the perpendicular direction. The position vector gener-
ated by these velocities equals their integration over time. The
block diagram of these processes is illustrated in Fig. 2.

The stochastic processes v1 and v2 in (3) and (4) will deviate
around S and 0, respectively, due to the stochasticity input
by the Wiener processes. This is easy to see if we discretise
(5) and (6) by uniform sampling with period ∆t yields the
following difference equations:

v1(t+ ∆t) = v1(t)e−γ1∆t + S
(
1− e−γ1∆t

)
+ ε1, (7)

v2(t+ ∆t) = v2(t)e−γ2∆t + ε2, (8)

+
-

Fig. 2. An OU velocity process generating position with parameters S , γ,
σ and initial conditions given by V0 and P0.

where the noise terms are normal with ε1 ∼ N (.; 0, 1
γ1
σ2

1(1−
e−2γ1∆t)) and ε2 ∼ N (.; 0, 1

γ2
σ2

2(1− e−2γ2∆t)).
Here, the deviations around S and 0 are first order auto-

regressive processes, respectively, and σ1 and σ2 specify the
standard deviations in these processes whereas γ1 and γ2

determine how fast step function like deviations tend to decay.
This model allows for prediction of the position at a future

time by inducing a probability density over the state when
the initial conditions of the stochastic differential equations
are set to the last observation values. Given α and S, starting
from the last observed position P0 = [p0,1, p0,2]T and velocity
V0 = [v0,1, v0,2]T at time t0 in the cruise coordinate frame,
the probability density over the state (i.e., the concatenation of
the position and velocity) at time tf is given by N (.; x̂tf ,Σtf )
where [9]:

x̂tf =


p0,1 + 1−e−γ1∆t

γ1
v0,1 + (∆t− 1−e−γ1∆t

γ1
)S

p0,2 + 1−e−γ2∆t

γ2
v0,2

v1,0e
−γ1∆t + S(1− e−γ1∆t)

v2,0e
−γ2∆t

 , (9)

where ∆t = tf − t0.
The variances associated with position variables in the state

forecast formula in (9), i.e., the first two diagonal entries in
Σtf are given by [9]

σ2
p,1 =

σ2
1

γ3
1

(2e−∆tγ1 − e−2∆tγ1/2 + ∆tγ1 − 3/2) (10)

σ2
p,2 =

σ2
2

γ3
2

(2e−∆tγ2 − e−2∆tγ2/2 + ∆tγ2 − 3/2).

The above model is characterised by six parameters θ =
[α, S, γ1, σ1, γ2, σ2], where α is the heading of the route the
vessel aims to follow, S is the speed aimed at, σ1 specifies
the magnitude of the stochastic fluctuations around S and
γ1 is the reciprocal system time constant along the route.
Similarly, σ2 tunes the standard deviation of the deviations in
the direction perpendicular to the route and γ2 is the reciprocal
time constant along this direction.

The next section discusses fast estimation of these pa-
rameters from AIS tracks to evaluate the forecast equa-
tions (9) and (10) at selected future time instants.
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IV. THE FAST FORECASTING ALGORITHM

The proposed approach is motivated by the non-iterative
maximum likelihood estimation results in [12] for 1-D OU
processes observed at uniformly spaced time instances. Given
α and S in the parametric model detailed in the previous
section, the estimation problem is split into two estimation
problems for finding the 1-D OU process parameters: The first
one is the process along the heading direction α and the second
one is the process in the perpendicular direction.

A. Sub-optimal model parameter estimation

1) Estimation of the heading α, S: Given L AIS trajectory
observations x = [x1, ...,xL], we use the sample average of
the velocity fields in x, i.e., third and the fourth rows, to
estimate the cruise velocity V . Let us denote this estimate
by V̂ = [v̂E , v̂N ]T . The cruise heading and speed estimates α̂
and Ŝ follow as

Ŝ =
√
v̂2
E + v̂2

N , (11)

α̂ = arctan(v̂N , v̂E).

2) Estimation of the OU process parameters: After finding
α̂, we use the transformation

xC =

[
ET , 0
0, ET

]
x, (12)

E =

[
cos α̂ − sin α̂
sin α̂ cos α̂

]
, (13)

to find the coordinates of the state vectors in the cruise
coordinate system — here, xC denotes the target state in the
cruise coordinate system. The third and the fourth row of xC
can now be treated as independent 1-D OU processes along
the direction of the cruise and its perpendicular complement,
respectively.

Following the results in [12], γ1 of the first process is found
by first finding y(l) = xC,3(l) − Ŝ where xC,3(l) is the
lth entry in the third row of the AIS trajectory x, and then
computing

γ̂1 =
−1

∆̄t
log

∣∣∣∣∣
∑L
l=2 y(l)y(l − 1)∑L

l=2 y(l)2

∣∣∣∣∣ , (14)

where ∆̄t is the average time step between two messages, i.e.,
∆̄t = 1/(L− 1)

∑L
l=2 tl − tl−1.

The standard deviation σ1 is estimated by [12]

σ̂1 =
( 2γ̂1

L(1− e−2γ̂1∆̄t)

L∑
l=2

(y(l)−y(l−1)e−2γ̂1∆̄t)2
)1/2

.

(15)

The parameters of the second process are similarly esti-
mated by first assigning y(l) = xC,4(l) and then computing
the right-hand-side of (14) and (15) to find γ̂2 and σ̂2,
respectively.

TABLE I
STATISTICS OF CARGO SHIP MESSAGES USED.

Time length
(h)

Number of
AIS messages per
MMSI trajectory

Speed
(ms−1)

Average 13.76 4 576.52 5.46
Maximum 23.99 31 367 11.95
Minimum 0.21 101 0

B. The algorithm

The computational steps of the algorithm are as follows.
1) Fetch the AIS messages for a selected MMSI, use UTM

conversion to create the AIS trajectory x.
2) Find the cruise heading and speed as described in

Section IV-A1.
3) Find the OU process parameters as described in Sec-

tion IV-A2.
4) Fetch the future time stamps from the user and evaluate

the future forecast equations in (9) and (10).
5) Display the position forecast (i.e., the first two fields

of (9)) and the uncertainty ellipse implied by the stan-
dard deviations in (10).

C. Implementation

The forecast algorithm is implemented using the Python
programming language. The system stores AIS data files into
a database and makes MMSI queries and similar operations
through the data base. For example, the message database can
be queried to select only messages from cargo ships. After
entries in the database are read, UTM conversion is used to
load AIS trajectories in the memory (Section II-A ). The user
enters an MMSI to run the forecasting algorithm. Fig. 1 shows
an example in which forecast positions (crosses in different
colours) and uncertainty ellipses for the blue AIS trajectory
for 1 000 s time steps from the last message are computed.
It can be seen that the uncertainty becomes larger for longer
forecast times.

V. PERFORMANCE STUDY

In this section, we demonstrate our approach using a real
AIS data set.

A. The data set

The data set consists of AIS messages received and recorded
by the Danish Maritime Authority [10]. In particular, a subset
that contains messages from only cargo ships with more
than 100 consecutive AIS messages in February 2022 are
used. Fig. 3 illustrates the corresponding AIS trajectories and
TABLE I gives fundamental statistics of this data set.

B. The test set-up and metrics

The performance study is based on backtesting, i.e., the
prediction model is tested using historical data. The afore-
mentioned AIS trajectories are divided into two segments: The
first segment holds the first 80% of the entire trajectory. The
remaining 20% of the trajectories are used to quantify the
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Fig. 3. All cargo ship messages recorded in February 2022 by the Danish
Maritime Authority [10]. Messages with different MMSIs correspond to
different ships and are depicted in different colours.

forecasts based on the first segments of the trajectories, i.e.,
the second segment is the validation set.

We use two methods to assess the accuracy of forecasts:
First, we find the distance error by finding the Euclidean
distance of the forecast positions to the ground truth of the
second segments of the trajectories. Second, we find “hits”
as a binary metric that indicates whether the ground truth is
inside the ellipse surrounding the significant probability mass
of the Gaussian uncertainty associated with the forecast. In
particular, we find ellipses centred at the forecast position and
have 4σ1, 4σ2 semi-minor/major axes for time horizons up to
one hour, and 3σ1, 3σ2 for time horizons larger than one hour,
respectively.

C. Results

Fig. 4(a) depicts the average forecast error versus the length
of the time step into the future. The average mislocation
increases linearly for approximately 250 minutes. Given that
the distance to horizon is approximately 5.1km, average errors
stay within the horizon limits up until 50 minutes. The
prediction uncertainties along the two directions as quantified
by the OU standard deviation parameters σ̂1 and σ̂2 are given
in Fig. 4(b) and Fig. 4(c), respectively, in the logarithmic
scale. Note that during the first 60 min the standard deviation
rapidly increases departing from overconfidence.

The predicted position and the associated uncertainty are
used to calculate hourly hit rates (see, Section V-B). Hit rates
versus increasing time in the hours scale is given in Fig. 5.
The bar plots indicate that predictive models found using
the proposed approach are overconfident until an hour long
prediction time. For prediction times longer than an hour, the
confidence of the predicted models become more reasonable
peaking at almost 70% hit rate for position forecasts between
2−3 hours into the future. For predictions up to and including
one hour, the hit rate is much smaller despite the use of
a radius of 4σ. This points at the overconfidence of the
predictive model. Note that the model errors both in average
error and the computed uncertainty become unreliable after
6 hours: The error regime in the average errors in Fig. 4a
becomes non-linear and despite increasing standard deviation
in Fig. 4b and Fig. 4c, the hit rate in Fig. 5 deteriorates
pointing to a loss of predictive power of the model in these
time scales into the future.

Fig. 4. (a) Average prediction error versus the length of time step into the
future. (b) Predictive model standard deviation along the cruise direction with
heading α̂ versus the prediction time.(c) Predictive model standard deviation
along the direction perpendicular to the cruise direction versus prediction time.

Fig. 5. Prediction hit rate versus prediction time.
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VI. CONCLUSIONS

In this article, we proposed a fast trajectory forecasting
algorithm which works with Automatic Identification System
data streams. Using historical data for testing, we discussed
the reliability of this forecast algorithm through the average
distance error, uncertainties, and hit rate. We also give analysis
for the obtained forecast accuracy. This algorithm is sub-
optimal and can be further used to initiate iterative algorithms
to find optimal ML solutions.
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Abstract—Due to the Internet of Things (IoT) proliferation,
Radio Frequency (RF) channels are increasingly congested with
new kinds of devices, which carry unique and diverse commu-
nication needs. This poses complex challenges in modern digital
communications, and calls for the development of technological
innovations that (i) optimize capacity (bitrate) in limited band-
width environments, (ii) integrate cooperatively with already-
deployed RF protocols, and (iii) are adaptive to the ever-changing
demands in modern digital communications. In this paper we
present methods for applying deep neural networks for spectral
filling. Given an RF channel transmitting digital messages with a
pre-established modulation scheme, we automatically learn novel
modulation schemes for sending extra information, in the form
of additional messages, “around” the fixed-modulation signals
(i.e., without interfering with them). In so doing, we effectively
increase channel capacity without increasing bandwidth. We
further demonstrate the ability to generate signals that closely
resemble the original modulations, such that the presence of extra
messages is undetectable to third-party listeners. We present
three computational experiments demonstrating the efficacy of
our methods, and conclude by discussing the implications of our
results for modern RF applications.

Index Terms—deep learning, signal generation, communica-
tions, machine learning, radio frequency

I. INTRODUCTION

The Internet of Things (IoT) proliferation poses novel, and
complex challenges for digital communications [2], [13], [15].
Radio Frequency (RF) channels are increasingly congested
with new kinds of devices, which carry unique communication
needs [16]. Meeting these challenges requires the development
of new technologies that (i) optimize capacity in limited
bandwidth environments, (ii) integrate seamlessly with exist-
ing, already-deployed communications protocols, and (iii) are
adaptive to the continuous flux in consumption requirements
of modern digital comms environments.

Here we present novel methods for applying deep neural
networks (DNNs) for spectral filling. Given an RF channel
transmitting digital messages via some pre-established modu-
lation scheme, we show that we can automatically learn novel
modulation schemes to send extra information, in the form of
an additional message, “around” the fixed-modulation signals
(i.e., without interfering with them), thus increasing channel
capacity without increasing bandwidth. We further demon-
strate the ability to constrain the spectral shape of learned
signals, such that they resemble the original modulations or
conform to arbitrary spectral shapes.

*Pacific Northwest National Labs; Washington, USA
correspondance to: mattsetz@gmail.com and michael.girard@pnnl.gov
supporting information: https://arxiv.org/pdf/2204.01536.pdf

Recent years have seen a nascent, but growing interest
in leveraging deep learning for RF applications. One such
application is “spectrum sensing”, where DNNs are trained to
classify the modulations of signals in an RF environment [3],
[22]. Neural networks have also been trained to demodulate
RF signals [1], [12], [14], [18], [19], [26], and even for end-to-
end communications systems, although success of these efforts
has been mixed [7], [20]. Despite these early efforts, deep
learning in RF applications is still a relatively unexplored area,
and much remains to be learned about what kinds of model
architectures are well-suited to the RF domain and what kinds
of problems DNNs are apt to address.

In particular, the spectrum filling problem introduced in this
paper has not yet been addressed by the research community.
Earlier efforts have shown that DNNs can be used in model
communications systems, but it is not clear how they would
be deployed in real-world scenarios, in which the learned RF
signals would need to cooperate with existing signals defined
by pre-established modulation protocols. Conversely, in the
present work, insofar as we are able to learn modulations that
adapt to existing RF protocols, we demonstrate the suitability
of our methods to be integrated with already-deployed com-
munications systems in the wild.

Our work also differs from previous efforts in that our
DNN architectures utilize Transformer networks, which have
proven to be powerful architectures for modeling temporal
relationships in time-series data such as NLP, music, and
signal processing [5], [6], [10], [25]. This is a departure
from previous efforts, which have typically used convolu-
tional networks [21], [27], which were originally developed
in computer vision [9], [11], and thus not optimally-suited for
modeling time-series. There has been some work on applying
autoregressive Long-Short Term Memory (LSTM) networks to
RF data [3], [22], but these efforts lag behind the state-of-the-
art in deep learning, because LSTMs are almost unanimously
outperformed by Transformers in a variety of time-series
applications [8], [25]. To our knowledge, there has only been
one previous application of transformers to the RF domain
[24], which showed promising results, though it was not geared
towards the problem addressed here: spectral filling.

A. Problem Statement: Spectral Filling

We considered a scenario where two radios communicate
over a traditional digital signal pipeline (see Supporting In-
formation for a high-level schematic). This communication
scheme is bounded in its capacity by Shannon’s Limit [23],
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meaning that for the bandwidth the radios are using and the
amount of noise in their environment, the speed that they can
transmit information is fixed. This is defined by the equation

C = B log2

✓
1 +

S

N

◆
(1)

where C is the capacity in bits/sec, B is the bandwidth in Hz,
S and N are the power in the signal and noise respectively.
Modern digital communication schemes can come close to this
limit, however there is usually a gap in the actual speed of
data transmission and the theoretical maximum. This means
that there is the possibility for extra data to be transmitted
alongside the fixed, traditional scheme.

However, another important theorem of digital communi-
cations that stops full utilization of this gap is the central
coding limit theorem. The coding limit theorem states that
while the rate, R of data transfer in a channel is less than
Shannon’s capacity, R < C, the rate at which errors occur
in the communication channel can be made arbitrarily small.
If the rate exceeds the Shannon limit then the error rate will
be, in general, large. We plan to exploit this gap in actual vs.
theoretical rates of communication, while still being able to
make the error rates of communication small.

We label a traditional digital communication signal from
one radio to the other as the A message. This consists of a
sequence of ones and zeros and is generally long. If this signal
does not reach Shannon’s limit than there is the possibility for
a second message that uses some of the unused bandwidth.
This is the B message but is generally not as long as the A
message. We have developed a novel method for generating
a time series that can transmit these two different types of
messages without greatly affecting the accuracy of the A
message.

A secondary goal of ours is to constraint properties of
learned signals using auxiliary loss terms. In Experiment 1, we
constrain learned signals to resemble the original modulations,
such that a third-party would not be able to identify the
presence of message B based on spectral properties or other
signatures of the generated signals. In Experiment 2 we go
one step further and show that it is possible to constrain
learned signals to match to arbitrary spectral shapes, while
still retaining the ability to transmit both messages. In the
remainder of this paper we specify our methods, report results
from three experiments demonstrating success with respect to
each of our goals, and conclude by discussing the implications
for modern RF applications.

II. METHODS

Our goal is to transmit an RF signal1 that carries information
from two messages (A and B) over-the-air. Both messages
are sequences of discrete symbols. Experiments 1 & 2 utilize
Quadrature Shift Keying (QPSK), Message A comprises four

1RF signals typically comprise two orthogonal components, I and Q, which
can be thought of as cosine and sine components of a complex waveform.
Sampling from these components yields a two-dimensional IQ sequence,
which for the purposes of this paper is synonymous with an RF signal.

symbols. As reported in Section A, we also ran a preliminary
experiment utilizing Binary Phase Shift Keying (BPSK), in
which Message A comprises two symbols. In all experiments,
Message B was a binary sequence. The lengths of messages A
and B need not be equal, and we refer to length of A message
as lengthA and length of B message as lengthB (lengthB is
typically shorter than lengthA). In all experiments we assume
a sample rate of 1 Hz and oversampling of 1 with respect to
A, such that lengthA is equal to the number of IQ samples
in the signal.

A. Model Architecture

Our model includes two transformer-based DNNs — the
Modulator and Demodulator networks. These networks are
jointly trained to modulate and demodulate extra informa-
tion from message B without degrading the original signal
carrying message A. The model also includes fixed modules
for modulation and demodulation of message A, as well as a
channel model that simulates Additive White Guassian Noise
(AWGN). Complete details and a block diagram of the model
architecture are included in the Supporting Information.

Message A is first modulated with a standard RF protocol,
such as BPSK or QPSK. This yields a signal — an IQ
sequence of dimensionality (2, lengthA) — which we denote
IQA. The Modulator Network receives IQA and message B as
inputs, and outputs IQAB , an IQ signal encoding information
from both messages. IQAB is then passed through the channel
model, which applies AWGN according to a specified signal-
to-noise-ratio (SNR), producing IQchannel, a noised signal
representing what would be received over-the-air.

The received signal is then separately demodulated by
a fixed module, which uses standard demodulation (either
BPSK or QPSK) to recover Message A, and the Demodulator
Network, which predicts bits in Message B. The discrepancy
between ground-truth and predicted symbols in messages A
and B serve as two loss terms for training our models, as
described in Section II-B. Note that the fixed demodulator is
completely naive to the learned modulation; it processes the
transmitted signal as if it were a typical BPSK or QPSK signal.
Therefore, in order to achieve high accuracy with respect to
message A, the Modulator Network must not interfere with
the fixed modulation.

B. Training Procedure

Our models were jointly trained to minimize two loss terms:
lossA and lossB . For lossA we took the binary cross-entropy
(BCE) loss of each IQ sample in IQchannel compared to the
original IQA. For lossB we took BCE of each prediction logit
in the output of the Demodulator Network compared to the
bits in the ground-truth Message B. In both cases, prediction
logits were passed through a sigmoid function before BCE
was computed. These two loss terms were combined into a
single loss function that implicitly encouraged the Modulator
Network to modulate message B in such a way that it did not
degrade original QPSK message. The overall loss is:
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loss = ↵ lossA + (1� ↵) lossB (2)

where ↵ tunes the degree to which lossA is weighted with
respect to lossB .

Through preliminary experimentation, we found it was best
to initialize ↵ = 1 at the beginning of training (keeping it fixed
at 1 for first three epochs), and then gradually decrease it over
subsequent epochs (at a rate of 0.01 per epoch) until it reached
↵ = 0.5. This encouraged the model to first minimize lossA —
which should be trivial, since the Modulator Network is given
the ground truth QPSK IQ values for message A, and can in
principle learn to ignore message B — and then gradually learn
to include information from message B without degrading the
original IQ sequence. We also experimented with different
auxiliary losses for constraining various properties of the
generated signals, as described in subsequent sections.

A dataset consisting of 16,384 examples was synthesized.
Each example consisted of a tuple of (message A, IQA,
message B). 80% of these examples were used for training,
and the remaining 20% were held out as a test set. Unless
otherwise reported, the batch size was 64, and SNR was varied
across all examples within each batch by sampling over a
uniform distribution ranging from 5–15 dB. The AdaBelief
optimizer was used with a learning rate of 0.01 [28]. Models
were trained for 128 epochs, unless otherwise specified.

III. RESULTS AND DISCUSSION

Experiment 1: Constraining learned signals in time-domain

(QPSK)

In this experiment we used an auxiliary loss term to ex-
plicitly encourage the model to generate signals resembling
the original QPSK signal (IQA). We used mean-squared error
(MSE) on the learned IQ sequence (signalcombined), with
respect to the original QPSK signal (IQA). This loss term
is denoted lossMSE , and it was incorporated into the overall
loss function as defined by the equation:

loss =
↵

2
lossA + (1� ↵) lossB +

↵

2
lossMSE (3)

This closely resembles Equation 2, except that the weight
of ↵ is equally distributed across lossA and lossMSE . This
was done because these two loss terms are complementary
– constraining signalcombined to match IQA (via lossMSE)
necessarily makes it easier for a QPSK demodulator to recover
Message A by processing signalcombined as if it were a typical
QPSK signal. In this sense a high value of ↵ still biases
training to optimize for Message A, and low or intermediate
↵ values reward successfully transmitting and demodulating
Message B.

Model Performance: The best model from this training
run was evaluated on a held-out test set over a range of SNRs.
At each SNR, we passed every example in the test set through
the model, and independently evaluated Bit Error Rate (BER)
of messages A and B. Results are depicted in Figure 1. The
x-axis represents noise level at which our AWGN channel was

Fig. 1: High model accuracy across a range of noise lev-
els. y-axis represents empirically determined Bit Error Rate
(BER) for bits from Message A (blue points) and Message
B (yellow points). x-axis represents noise level at which our
AWGN channel was simulated, expressed in Es/N0 (energy
per symbol to noise power spectral density ratio), a normalized
SNR measure. Missing yellow points (at Es/N0 = 13
and Es/N0 = 18) are instances where 100% accuracy was
achieved for Message B. Both messages are consistently
transmitted and demodulated with high fidelity over a range
of noise levels.

Fig. 2: Fixed (QPSK-modulated) and learned signals for an
arbitrary example. The learned signal (bottom) carries Mes-
sage A and B, whereas the QPSK signal (top) only carries
Message A. I and Q components are colored blue and orange,
respectively.

simulated, expressed in Es/N0 (energy per symbol to noise
power spectral density ratio), a normalized SNR measure. The
y-axis represents empirically determined BER at each noise-
level. Blue points represent BER with respect to message A,
and the yellow points represent BER with respect to message
B. As expected, BER decreases with more favorable noise
levels, until it plateaus at an Es/N0 of about 8 dB. Most
importantly, the model achieves an acceptably low BER for
both messages, and this is robust across a range of SNRs.2

In response to our primary research question, this demon-
strates the ability to successfully learn a modulation that can
transmit extra information (Message B) in the same channel

2It is also worth noting that these BER values can be further enhanced
with forward-error correction strategies [17], which would be straightforward
to integrate with our model.
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Fig. 3: Constraining learned modulation to arbitrary spectral shapes. Top row presents constellation plots of target distributions,
and bottom row presents constellation plots of learned signals, color-coded by the ground-truth QPSK symbol encoded by each
IQ sample. Using an auxiliary loss term, we were able to constrain generated signals to conform to arbitrary spectral shapes,
while still retaining high fidelity with respect to both messages.

as a fixed-modulation signal without degrading the original
signal.

Next we turn to our secondary research question: can we
constrain the structure of learned signals? In this experiment
we were interested in constraining the learned signal to match
the original signalA. To get a sense of this, we visualized
examples of learned signals generated by our best-performing
model, and compared them to the original QPSK signals.
Figure 2 shows time-domain signals for an arbitrary example (I
and Q components are colored blue and orange, respectively).
The top plot shows signals corresponding to a vanilla QPSK
signal carrying Message A, and the bottom plot shows the
learned signal carrying Message A & B. (See the Supporting
Information for constellation plots of these signals.) There is
high resemblance between the two signals, indicating that not
only did our model successfully learn to transmit information
from both messages, it did so in such a way that the learned
signals were nearly identical to original modulations. This
has important implications for our methods in real world RF
applications – we can learn to transmit extra information in
“hidden” messages, such that the generated signals look nearly
identical to typical QPSK signals from the perspective of a
third-party.

Experiment 2: Constraining Constellation Plots of Learned

Signals (QPSK)

We also experimented with different methods for constrain-
ing the constellation plots of learned signals. In Experiment
1, we showed it is possible to produce a learned signal that
maximally resembles the fixed modulation; here we show that
related techniques can also be used for arbitrary signal shapes.

To learn a particular shape, we add an auxiliary term to
the loss function that encourages the distribution of values
in the learned signal to match a target distribution. Given a
sample of m points from a target distribution and a learned
signal, we define the n ⇥ m distance matrix M as: Mij =
MSE(si, qj) where each si is a single value sampled from
the learned signal, and each qi is from a sample of the target
distribution . The auxiliary loss is then:

lossshape =
1

n

nX

i=0

minj(Mij) +
1

m

mX

j=0

mini(Mij) (4)

This first sum encourages each learned signal value to be
near a point in the target distribution sample. The second
term ensures that the learned signal shape takes on the entire
target structure. For example, in the case of a multimodal
distribution, without the second loss term, the shape loss could
be minimized if all the learned signal points cluster on one
of the modes. Notably, this loss function does not require a
closed-form density function for the target distribution so the
learned signal can resemble any shape compatible with QPSK
or another established communication protocol. The complete
loss equation becomes:

loss = ↵ lossA + (1� ↵) lossB + � lossshape (5)

We have tested this with several shapes and depict the
results in Figure 3. From left to right, the first two shapes
were trained to resemble a QPSK signal at different noise
levels. We trained at a fixed SNR of 10 dB for 50 epochs. For
computational efficiency, the distance matrix was calculated
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using 2500 random values from the learned signal and 2500
random values from the target distribution. BER at SNR =
10 dB for the A message was 1.49e-7 and 5.19e-3 for the
less noisy and noisy targets, respectively. The BER for the B
message was zero for both models.

The other two shapes demonstrate the flexibility of this
method. For these two shapes, we trained with SNR fixed at 10
dB for 200 epochs using the sampling adjustment described in
the previous paragraph. For the elliptical distribution the BER
for the A message was 1.71e-5 and for the B message was 0.
For the circular distribution the BER for the A message was
2.4e-3 and 7.62e-5 for the B message. Thus, these methods
allow us to constrain generated signals to conform to arbitrary
spectral shapes, while still retaining high fidelity with respect
to both messages.

IV. CONCLUSION

We have demonstrated the ability to use deep, transformer-
based neural networks for “spectral filling.” Given an original
message (Message A), encoded with some pre-defined modu-
lation protocol (e.g., BPSK/QPSK), these networks can learn
to augment and reconstruct the IQ sequence, such that it carries
an additional message (Message B) without degrading the
original signal. This has promising implications for congested
IoT applications, as it establishes a methodology for increasing
the capacity of existing fixed-bandwidth RF channels without
costly human-engineered protocols, and without disrupting
existing communications protocols. This last point is crucial,
because a major challenge in leveraging generative deep learn-
ing for RF applications is how to deploy these technologies
without disrupting pre-established RF environments.

We have further demonstrated that with the help of auxiliary
loss terms, it is possible to constrain learned signals to
closely resemble the original signals, or to match arbitrary
spectral shapes, while still transmitting information from both
messages at high fidelity. The fact that extra information
can be sent without significantly altering the original signal
means this technique can be used in sensitive contexts, to
send additional in cognito messages, undetectable to third-
party listeners.
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Abstract—Generative models trained in an unsupervised man-
ner may set high likelihood and low reconstruction loss to
Out-of-Distribution (OoD) samples. This leads to failures to
detect anomalies, overall decreasing Anomaly Detection (AD)
performance. In addition, AD models underperform due to the
rarity of anomalies. To address these limitations, we develop
the OoD Minimum Anomaly Score GAN (OMASGAN) which
performs retraining by including the proposed minimum-anomaly-
score OoD samples. These OoD samples are generated on the
boundary of the support of the normal class data distribution
in a proposed self-supervised learning manner. Our OMASGAN
retraining algorithm leads to more accurate estimation of the
underlying data distribution including multimodal supports and
also disconnected modes. For inference, for AD, we devise a
discriminator which is trained with negative and positive samples
either generated (negative or positive) or real (only positive). The
evaluation of OMASGAN on image data using the leave-one-out
method shows that it achieves an improvement of at least 0.24 and
0.07 points in AUROC on average on the MNIST and CIFAR-10
datasets, respectively, over other benchmark models for AD.

Index Terms—Out-of-Distribution (OoD) detection, Anomaly
detection, Generative Adversarial Networks (GAN)

I. INTRODUCTION

In spite of progress in Anomaly Detection (AD), models,
including Generative Adversarial Networks (GAN) [1], learn to
assign high probability to the seen data, but are not trained to
assign zero probability to Out-of-Distribution (OoD) samples
[2], [3]. During inference, anomalies might still be assigned
non-zero probability, leading to failures to detect anomalies.
To address such limitations, we propose the OoD Minimum
Anomaly Score GAN (OMASGAN) which performs retraining
by including our proposed new minimum-anomaly-score OoD
samples. These OoD samples are generated on the boundary
of the support of the normal class distribution in a proposed
self-supervised learning manner. Our OMASGAN retraining
algorithm leads to more accurate estimation of the underlying
distribution including multimodal supports with disconnected
modes. For inference, for AD with negative sampling and
training [4], [5], we devise a discriminator which is trained
with negative and positive samples either generated (negative
or positive) or real (only positive). Our contributions are:
• We propose OMASGAN to more accurately (a) learn the

underlying data distribution for improved AD, and (b) discern
between the true and generated in-distribution and the self-
generated (near boundary) and provided negative samples.

• We perform model retraining by including samples on the
boundary of the support of the normal class data distribution.
To address the rarity of anomalies, we generate abnormal
samples using data samples only from the normal class.

• We train a discriminator to separate the data distribution from
its complement and use it as an inference mechanism for
AD. The evaluation of OMASGAN using the Leave-One-Out
(LOO) methodology shows that it achieves good performance
in the Area Under the Receiver Operating Characteristics
curve (AUROC) and outperforms benchmarks. Our OMAS-
GAN is also evaluated using One-Class-Classification (OCC),
outperforming GAN- and AE-based benchmark models.
OMASGAN performs retraining by including the learned

OoD samples generated on the boundary of the support of the
normal class data distribution, and not randomly somewhere
in the data space, to more accurately learn the underlying data
distribution. We address the generators knowing what they do
not know problem [2], [3] in an optimal manner, as the OoD
samples are as close as possible to the data distribution, i.e.
tightest-possible data description. All other methods allow for
slack space. Both [6] and [7] create OoD data samples in an ad
hoc way using a single-epoch generator and blurry low-quality
reconstructions. The pseudo-anomaly mixup module [6] leads
to a limiting definition of anomaly. [6] and [7] use a restrictive
definition of anomaly, as they create OoD samples that are not
well-scattered, not covering the OoD part of the data space.

We improve upon the work in [8] on invertible models by
using negative retraining and extending the methodology to a
greater class of models. The gain and novelty of OMASGAN is
its technical simplification, but more importantly the extension
of the methodology to a variety of metrics, i.e. f-divergence
distribution metrics, without using likelihood or invertibility.

II. OUR PROPOSED OMASGAN ALGORITHM

Flowchart. Figure 1 presents our OMASGAN model: We
train a f-divergence GAN to obtain the generator, G(z), where
z is a latent variable. We denote the latent space by Z ∈ Rl .
The GAN samples, G(z), and the data, x, lie in the data space,
χ ∈Rk, where l < k. We train a boundary data generator, B(z),
to obtain boundary samples to be used as negatives, for active
negative sampling. We compute the divergence between B and
G, and we then find the boundary of G. OMASGAN generates
samples corresponding to a generalized notion of the boundary
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Fig. 1: Flowchart of OMASGAN which generates minimum-anomaly-score OoD samples and then uses them for retraining.

of the support of the data distribution, which is the set of data
points such that they are OoD and have a minimum anomaly
score, measured as the f-divergence. OMASGAN generates
OoD data samples, and we incorporate these OoD Minimum
Anomaly Score (OMAS) samples in our algorithm. We perform
negative retraining using the OMAS samples and the implicit
distributions of G and B, and we train the generator G′(z) using
a discriminator, C(x). The samples G′(z) lie in χ . For AD, we
train the discriminator J(x) using the OMAS samples. During
inference, for AD, we compute our proposed anomaly score
and detect abnormal samples using J and G′. Specifically:

Establishing a distribution metric. We train a f-divergence
GAN to learn the data, x. Using z ∼ pz, x ∼ px, and G(z)∼ pg,

arg minG maxD Ex log(D(x))+Ez log(1−D(G(z))). (1)

Using conjugate functions, f ∗, [9], [10] and for example D(x)=
1/(1+exp(−VD(x)))andg f (v) =− log(1+exp(−v)), the first
f -divergence based optimization objective of OMASGAN is

arg minG maxD Ex g f (VD(x)) − Ez f ∗(g f (VD(G(z)))). (2)

Formation of the distribution’s boundary. To perform
active negative sampling, we train the distribution boundary
model, B(z), with model parameters θbθbθb. The optimization is

arg minθbθbθb −m(B(z;θbθbθb),G(z))+µ d(B(z;θbθbθb),G(z))
+ν s(B(z;θbθbθb),z),

(3)

where m(B,G) is the distribution metric from (1), i.e. any f-
divergence in its variational representation expressed in terms
of the conjugate function, f ∗(t), as in (7) in [9], where t is a
variational function taking as input a sample and returning a
scalar. The special cases of Kullback–Leibler (KL) and Pearson
are f ∗(t) = exp(t−1) and f ∗(t) = 0.25t2+ t, respectively. The
first term in (3) is a decreasing function of a distribution metric.
This metric m(B,G) is between the boundary and the data.

OMAS distribution: We generate minimum-anomaly-score
OoD samples and perform learned negative data augmentation.
We use a f-divergence GAN discriminator for the distribution
metric, m(B,G). The first two terms in (3) lead the B(z) samples
to the boundary of pg. We use lp-norm distance and dispersion
regularization. We denote the l2-norm distance between the
point B(z) and the set x by d(B(z),x). To avoid mode collapse

[8], [11] and generate OMAS samples, we use the scattering
measure s(B(z),z). The distance, d(B(z),G), and s(B(z),z) are

d(B(zi),G(z)) = min j=1,...,Q ||B(zi)−G(z j)||2, (4)

s(B(zi),zi) =
1

N −1

N

∑
j=1, j ̸=i

||zi − z j||2
||B(zi)−B(z j)||2

, (5)

where N and Q are batch and inference sizes. A variation of the
point-set distance, d(B(z),G), is the Chamfer distance [12]. In
(3), µ and ν are hyperparameters. We find a reliable boundary
between normal and abnormal data for classification. OMAS-
GAN generates strong and specifically adversarial anomalies.
Strong anomalies lie near the boundary, while adversarial
anomalies are strong anomalies near high-probability data.

Active negative retraining. To address the learning-OoD-
samples problem of G [2], [3], we retrain by including the
OoD B(z) self-generated on the boundary. Thus, for G′(z),

argminG′ maxC Ez log(1−C(G′(z))) + α Ex log(C(x)) (6)
+ β Ez log(1−C(B(z))) + γ Ez log(C(G(z))),

where G′(z) ∼ pg′ lie in χ and C is a discriminator for f-
divergences [6], [13]. To compute distribution metrics in (6), i.e.
between B and (x,G), we use a weighted sum of f-divergences
[6], [13]. The optimization in (6) comprises four terms, and
it outputs the learned mappings C : χ → R, and G′ : Z → χ .
The first and fourth terms enforce the generated samples to the
data, as in Rumi-GAN [13]. The third term forces the samples
away from our strong anomalies, which are near the support
boundary of the data distribution and close to high-probability
data. The discriminator, C(x), is trained to separate B from
(x,G). G′ learns the data avoiding the generated OoD B(z).

Detection of strong abnormal boundary samples. Separa-
tion of generated and real normal from generated abnormal:
To address the learning-OoD-samples problem and to perform
active negative training, we train the discriminator J(x),

arg maxJ Ez log(J(B(z)))+δ Ex log(1− J(x)) (7)
+(1−δ )Ez log(1− J(G′(z))).

Inference mechanism. We use the Anomaly Discriminator, J,
and the f-divergence distribution metric for AD, [9], [1]. The
f-divergence is used for training, and we also use it during
inference. The GAN discriminator computes f-divergences; for
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the distributions P and R, we write this metric as fD(P, R).
We compute fD(G′, δ ∗

x ) for a test sample x∗ where G′ is the
learned distribution after retraining and δ ∗

x is a Dirac function
centered at x∗. For any x∗ ∈ χ , the Anomaly Score (AS) is

AS(x∗) = J(x∗) + λ fD(G′,δ ∗
x ). (8)

The classification decision is the following. x∗ is from the
normal class if J(x∗)+λ fD(G′,δ ∗

x )< τ , where τ is a threshold,
and x∗ is abnormal otherwise. By including negative samples,
J(x) learns to discriminate between the data distribution and
its complement. We use J(x) to detect OoD samples, [6].

III. RELATED WORK

OMASGAN addresses the rarity of anomalies and provides
negative data augmentation by creating strong OoD data on the
distribution boundary, unlike [5], [14]. Our method performs
sampling of negative data points and generates optimal points
for negative training closest to the data, x, in contrast to [4]
which needs to have a process that programmatically creates
the OoD examples using image transformations. OMASGAN
learns to generate OoD samples. We perform retraining using
active negative sampling, setting the boundary points as strong
anomalies. This differs from creating OoD samples by using (i)
low-epoch blurry reconstructions [6], [7], (ii) rotated features
[4], and (iii) a CVAE [15]. Old is Gold (OGNet) creates weak
anomalies far from the boundary, low-quality reconstructions,
and pseudo-anomalies generated in an ad hoc manner without
any guarantee of coverage of the OoD part of the data space.
OGNet uses a pseudo-anomaly module to create OoD points. It
uses a restrictive definition of anomaly as single-epoch blurry
reconstructions. It also changes the discriminator (f-divergence
distribution metric) by using an Autoencoder (AE). Anomalies
that are far from the boundary are also created by [15].

Minimum Likelihood GAN (MinLGAN) and FenceGAN
generate boundary samples to subsequently use the discrimina-
tor score for AD [16], [17], while our OMASGAN performs
active negative retraining. In contrast to the Boundary of Distri-
bution Support Generator (BDSG) [8], OMASGAN performs
retraining of the normal class distribution by including negative
samples self-generated on the boundary, uses any f-divergence
distribution metric, no invertibility, and a discriminator for AD,
[6]. Our self-supervised learning methodology involves model
retraining by including the learned distribution boundary.

The rarity of anomalies is not addressed by [18] and [13], as
they do not perform learned negative data augmentation. Rarity
is addressed by GEOM, GOAD, and Deep Robust One Class
Classification (DROCC) [19]. Here, GEOM trains a multi-
class AD model to discern between geometric transformations,
horizontal flipping, translations, and rotations. It learns feature
detectors that identify anomalies based on the model’s softmax
statistics. The classification-based model GOAD generalizes
transformation methods using affine and geometric transfor-
mations. In contrast, our OMASGAN does not use such data
augmentation techniques. DeepSVDD minimizes the volume
of a hypersphere to enclose the data using a deep kernel-based
AD loss. However, DeepSVDD suffers from representation

Fig. 2: Performance of OMASGAN on MNIST data in AUROC
compared to GAN and AE baselines using LOO evaluation.

Fig. 3: Performance of OMASGAN in AUROC on CIFAR-10
data compared to GAN and AE baselines using LOO evaluation.

collapse. Representations richer than a hypersphere are needed.
DROCC is robust to representation collapse and assumes that
the data lie on a locally linear well-sampled low-dimensional
manifold, but does not find the data distribution boundary.

IV. EVALUATION OF OMASGAN

We evaluate OMASGAN using AUROC. The LOO evalua-
tion is used; we set K classes of a dataset with (K+1) classes
as normal and the leave-out class as abnormal. LOO evaluation
is more challenging than One Class Classification (OCC) used
by MinLGAN, OGNet, and [20]–[22] which is setting a single
class of a dataset as normal and all the remaining classes of
the dataset as abnormal. LOO evaluation is more realistic and
also closer to typical real-world scenarios than OCC [23].

Models. We train Convolutional Neural Networks (CNN)
with batch normalization model architecture, and we use the
f-divergence-based KL-Wasserstein GAN (KLWGAN) [10].

Baselines. We evaluate OMASGAN using LOO on MNIST
and compare it to the GANs EGBAD [24] and AnoGAN [25], to
the likelihood models BDSG and TailGAN [8], [26], and to the
AEs GANomaly and VAE. We evaluate OMASGAN using LOO
on CIFAR-10, and we compare it to EGBAD, AnoGAN, BDSG,
GANomaly, and FenceGAN [16]. We compare OMASGAN to
GOAD, GEOM, and DROCC using OCC on CIFAR-10.

Evaluation of OMASGAN on MNIST. Setup: We evaluate
our f-divergence-based OMASGAN using LOO. We use pz =
N128(0,1), Q= 1024, N = 256, µ = 0.2, and ν = 0.25. We train
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Fig. 4: Ablation study analysis of OMASGAN in AUROC on
MNIST image data using the LOO evaluation methodology.

OMASGAN and generate G(z), B(z), and G′(z). We evaluate
OMASGAN and its discriminator J(x) using histogram plots
of the anomaly scores for normal and abnormal samples.

LOO Evaluation in AUROC: Figure 2 shows that on average
and for all the MNIST digits, OMASGAN outperforms the
GAN benchmarks EGBAD, AnoGAN, BDSG, and TailGAN.
Also, Figure 2 shows that OMASGAN outperforms the AE-
based models GANomaly and VAE. We evaluate OMASGAN
and compare it with GANomaly when using the same inference
conditions as those in OMASGAN: training set statistics rather
than test set statistics for the batch normalization layers.

OMASGAN achieves on average an AUROC of 0.85 on
MNIST and outperforms the benchmarks by at least 0.24 points
in AUROC, by a percentage of 41%. Our OMASGAN model is
robust and achieves the lowest standard deviation (SD) averaged
over all the MNIST digits, i.e. 0.036, compared to EGBAD,
AnoGAN, BDSG, TailGAN, GANomaly, and VAE. These AD
benchmarks have SDs when averaged over all the MNIST digits
0.153, 0.093, 0.24, 0.059, 0.074, and 0.199, respectively.

Evaluation of OMASGAN on CIFAR-10. Setup: In (6)
and (7), we use α + γ = 0.7, β = 0.7, and δ = 0.5, as in [6],
[13]. LOO Evaluation in AUROC: Figure 3 shows that the
performance of OMASGAN using LOO is better than that of
the GAN models AnoGAN, EGBAD, FenceGAN, and BDSG
both on average and for all the examined LOO AD tasks.

On average and for almost all classes, the proposed OMAS-
GAN outperforms the AE AD benchmarks GANomaly, VAE,
ADAE, and AED. OMASGAN outperforms the benchmarks in
AUROC, averaged over all the classes. It is robust achieving
the lowest SD, 0.056, compared to the AD benchmarks. It
outperforms the benchmarks on average over all tasks by at
least 0.07 AUROC points, by a percentage increase of at least
11%. OMASGAN, on average, achieves an AUROC of 0.71
(AUPRC 0.68) on CIFAR-10 data using LOO evaluation.

Ablation study of OMASGAN on MNIST. Figure 4 shows
that, on average and for all the MNIST digits, OMASGAN im-
proves the performance of the KLWGAN model implemented
in (1) and (2) (i.e. Task 1) for OoD detection. Comparing the
training objective in (1) to the loss in (6) (i.e. Task 3) and to
the final loss in (7), OMASGAN improves the performance
of the base model. The base model KLWGAN achieves an

Fig. 5: Ablation study of OMASGAN in AUROC on CIFAR-10
data, and the impact of our losses, using LOO evaluation.

Fig. 6: Performance of OMASGAN in AUROC on CIFAR-10
data using OCC evaluation. Comparison to AD baselines.

AUROC of 0.59 averaged over all the MNIST digits, increasing
to 0.71 using the loss in (6), and then to AUROC 0.84 using
our final OMASGAN model (AUPRC 0.82), and this is the
contribution of the proposed negative training methodology.

Ablation study of OMASGAN on CIFAR-10. Figure 5
presents the ablation study on the losses of OMASGAN on
CIFAR-10 in AUROC, using the LOO evaluation methodology.
Our chosen base model, KLWGAN in (1), yields an AUROC
of 0.57 averaged over all the LOO classes, and this increases to
0.64 using OMASGAN in (6) and to 0.71 using OMASGAN.
The improvement of 0.14 points in AUROC is the contribution
of our retraining and negative data augmentation methodology.
The average SDs over all the AD LOO classes are 0.05, 0.05,
and 0.06 for Task 1, Task 3, and OMASGAN, respectively.

Evaluation of OMASGAN on CIFAR-10 using OCC. In
Figure 6, we evaluate OMASGAN, and we compare it to GAN
and AE models, as well as to GOAD and GEOM. OMASGAN
achieves an average AUROC of 0.85 (and AUPRC 0.88). It
outperforms the GAN models AnoGAN and MinLGAN, as
well as the AE AD models VAE and DeepSVDD. OMASGAN
also outperforms the discriminator-based model DROCC [19].
OMASGAN also achieves robustness across the AD tasks.

OMASGANaug uses data augmentation comprising geomet-
ric image transformations, i.e. horizontal flipping and also color
augmentation, during training and slightly improves the AD
performance of OMASGAN. The performance of OMASGAN
and OMASGANaug is comparable to that of the classification
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AD model GEOM. GOAD uses data augmentation comprising
geometric image transformations, such as flips and rotations,
as well as affine transformations, and slightly outperforms
OMASGANaug on average in OCC by approximately 2%.

The classification models GEOM and GOAD use features to
discriminate between transformations. In contrast, OMASGAN
does not use manual processes, human intervention, and feature
engineering. This is desirable and strengthens scalability and
applicability. It makes no assumptions about the underlying
data distribution and is not ad hoc. AD is an automatic outcome
of our negative training, which can improve upon many of the
existing methods to more accurately and robustly learn px.

V. DISCUSSION AND CONCLUSION

We have proposed OMASGAN, a retraining methodology
for AD using active negative sampling and training, and self-
supervised learning. OMASGAN performs negative retraining
by including the generated boundary which has the effect
of “pushing” the distribution away from the OoD samples to
improve the learning of the data distribution. The evaluation
outcome results on both MNIST and CIFAR-10 data, using the
LOO methodology, show that OMASGAN achieves state-of-
the-art performance and outperforms the GAN- and AE-based
benchmarks, as illustrated in Figures 2 and 3. The ablation study
analysis in Figures 4 and 5 shows that OMASGAN improves
the base model for AD using LOO evaluation on MNIST and
CIFAR-10. Using the AUROC, OMASGAN yields on average
(i) an improvement of at least 0.24 points on MNIST over the
benchmarks, achieving values of 0.85, and (ii) an improvement
of at least 0.07 points on CIFAR-10, achieving values of 0.71
using the LOO methodology. LOO evaluation is more realistic
than OCC; in real-world scenarios, we have a large number of
items that are not rare, and we are interested in detecting objects
that are significantly different from these items. Figure 6 shows
that OMASGAN outperforms the GAN and AE benchmarks
MinLGAN, AnoGAN, VAE, DeepSVDD, and the discriminator-
based model DROCC on CIFAR-10 using OCC evaluation,
and achieves an average AUROC of 0.85. OMASGAN also
achieves a level of robustness across different AD tasks.
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Abstract—Deep learning (DL) framework is gradually 
applied to solve the problem of DOA estimation in array signal 
processing. DL-based DOA estimation methods are much more 
efficient than conventional model-based methods in the testing 
stage. However, the generalization of DL-based methods is 
limited in the presence of array phase errors, because array 
phase errors may change in different environments, leading to 
the difference between the phase errors in the training and the 
ones in testing. In this paper, we explore the magnitude property 
of array received signal to develop robust deep neural network 
(DNN)-based framework for DOA estimation, named as 
magnitude-based DNN method (shorten as MDNN). The 
proposed MDNN method performs independently of array 
phase errors and enjoys a simpler network than the original 
DNN method. Simulation results in different scenarios 
demonstrate that the MDNN method behaves much more robust 
to array phase errors than the original DNN-based method. 

Keywords—Direction of arrival (DOA) estimation ； Deep 
neural network; Phase-error independence 

I. INTRODUCTION  
1Direction-of-Arrival (DOA) estimation in array signal 

processing is an important topic in wireless communication, 
radar, sonar and so on [1],[2]. According to the procedure 
how the DOAs are obtained, most of existing DOA 
estimation methods can be categorized as parametric methods 
[3-6], spectral-based methods[7]-[9], and sparse 
representation (SR) method [10],[11]. In the aforementioned 
methods, it is assumed that the array manifold is known in 
prior. However, this assumption is rarely guaranteed in 
practice. The array errors such as gain and phase errors, sensor 
position errors, and mutual coupling seriously degrade the 
performance of most DOA estimation algorithms [12],[13]. 
Among array errors, array phase errors significantly degrade 
the performance of most DOA estimation methods. In 
addition, array phase errors are more difficult to be calibrated 
to small values due to inherent hardware impairments, 
especially for extremely high frequency carriers such as 
millimeter wave [14]. Therefore, in this paper, we investigate 
robust DOA estimation in the presence of array phase errors.  

In order to address robust DOA estimation in the presence 
of array errors, the parametric methods were developed by 
taking array errors as array unknown parameters and 
estimating them, which are classified as two categories. The 
first category [15],[16] employs the sources with known 
DOAs to estimate and compensate the array errors in the 
calibration stage. Afterwards, the unknown DOAs of the 
wanted source signals are estimated. In most of cases, the first 
category can calibrate the array well. However, the DOAs of 
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source signals in the calibration stage must be precisely known, 
which is difficult to be satisfied during operation of the array. 
Therefore, the second category [17-20] was proposed to self-
calibrate  the array, which estimates array errors together with 
the DOAs of source signals. Most of self-calibration methods 
suffer from the suboptimal convergence in the case of large 
array errors [17],[18], limited to particular geometries [19], or 
the increment of spatial spectral searching load because the 
spatial spectrum becomes two-dimensional [20]. The robust 
DOA estimation methods in [21] and [22] provides robust 
DOA estimation in the presence of array errors, with the 
assumption the statistics of the array model errors are known.  

In recent years, the deep learning (DL) framework[23-29] 
has been applied to solve the problem of DOA estimation, 
which provides better generalization ability than the 
conventional machine learning methods such as RBF- and 
SVR-based DOA estimation methods [30],[31]. Moreover, 
after the training of the DL network is finished, the 
calculations in the testing only involve additions and 
multiplications which are much more efficient than the high-
dimensional nonlinear searching in conventional parametric 
methods, and the eigendecomposition and spectral searching 
in spectral-based methods. Among the methods in [24-29], the 
deep neural network(DNN)-based method in [25] and the 
CNN-based method in [26] investigate the performance of the 
DL-based DOA estimation in the presence of array errors. It 
was illustrated that with the array imperfections embedded in 
the training datasets, the trained DNN network gains the 
robustness to array imperfections. However, they did not 
consider the more general case that array imperfections in the 
testing stage may be different from those in the offline training 
stage due to the varying environment. 

In this paper, we aim to further increase the generalization 
of the DL-based DOA estimation in the presence of array 
phase errors. We propose a magnitude-based DNN method 
(Named as MDNN). In particular,  in order to eliminate the 
effect of array phase errors, we explore the magnitude of the 
received array signal and construct a phase-error independent 
signal vector. Afterwards, the phase-error independent signal 
vector is used to form an input vector of the next DNN of 
which the output vector is the labeled spatial spectrum. At the 
end, by searching the peaks of the spatial spectrum, the DOA 
estimation is accomplished. Due to the phase-error 
independence, the MDNN method benefits the robustness to 
array phase errors and a simplified network.  

In this paper, the superscripts *, T, and H represent the 
conjugate, transpose, and conjugate transpose, respectively; E 
represents expectation operations and j is the imaginary unit. 
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II. BACKGROUND 

Consider an array with M omni-directional sensors 
deployed on the same plane and numbered 1 through M, where 
Sensor 1 is used as reference. Assume that there are K narrow-

band, far-field, zero-mean, stationary signals   
1

K

k i k
s t


 and 

the DOAs  1

K

k k
 . In addition, the source signals and the array 

sensors are assumed in the same plane. The array output can 
then be expressed as 

        
1

K

k k
k

t s t t


 r a n , (1) 

where  tn  is the zero-mean Gaussian noise vector and it is 

independent of the source signals, and  ka   is the steering 

vector of the k-th source, denoted as  

  
2, ,

T2 2

1, , ,
k M kd d

j j

k e e
  

  
  

a 
 
  , (2) 

where   is the center wavelength of source signals, ,m kd  is 

the distance from Sensor 1 to Sensor m along k , that is,

, cos sinm k m k m kd x y   ,  mx  and my  are the values of x 

axis and y axis of the m-th sensor, respectively. It is noted that 
since the first sensor is taken as references, we have  

0m mx y  . 

Eq. (1) can be written in a compact form as 

      t t t r As n ,  (3) 

where A is an M K  matrix with 

     1 2, , , K   A a a a    and  ts  is a K-dimensional 

vector with         T

1 2, , , Kt s t s t s t   s  . 

For simplicity, in the following, we omit the time variable. 
The covariance matrix of the array output vector can be 
written as 

 H H 2E s n M    R rr AR A I ,  (4) 

where 

 HEs    R ss .  

 Denote the phase error of the m-th sensor as m . As the 

first sensor is taken as reference, 1 0 . In the presence of 

array phase errors, Eqs.(3) and (4) can then be rewritten as 

  r ΦAs n  (5) 

 H H 2
s n M R ΦAR A Φ I , (6) 

where Φ  are diagonal matrices with their m-th diagonal 
elements Φmm  equal to mje  . 

In practice, the number of samples is finite. Thus, the 
covariance matrix R  need be estimated by 

     H

=1

1
=

N

t

t t
N
R r r , (7) 

where N  is the number of snapshots,   denotes the estimate 
of the quantity over which it appears. 

Thus, the problem addressed here is to develop the DOA 
estimation method with robustness to array phase errors.  

III. MAGNITUDE-BASED DNN METHOD 

In order to obtain DOA estimation which is robust to array 
phase errors, we propose a magnitude-based DNN method, 
shorten as MDNN. The scheme of MDNN method is given in 
Fig.1, which mainly contains two parts: construction of phase-
error independent signal vector and DNN.  

A. Construction of phase-error independent signal vector 

We construct the element-wise product of the array output 
vector and its conjugate as 

 *
ew r r r , (8) 

where   denotes element-wise multiplication.  

It is noted that ewr  is composed of the square of the 
element-wise magnitude of the array output vector and thus it 
eliminates the effect of array phase errors. Based on ewr , we 
construct a new covariance matrix below 

 TEew ew ew   R r r ， (9) 

It is noted that ewR  is independent of array phase errors 
since it only contains the information of the squared-
magnitude of array output vector. Moreover, it is noted that 

ewR  is real-valued. Thus, *
ew ewR R  and T

ew ewR R . We 

define  ewR  as the estimate of ewR  under limited snapshots. 
Therefore, we only need to take the off-diagonal upper right 

elements of the matrix  ewR  as a vector z, that is 

         R 1, 2 , ,R 1, , ,R 1,ew ew ewM M M   z    (10) 

where   R ,ew i l  represents the i-th row and j-th column 

element of  the matrix  ewR . 

Fig. 1  Scheme of MDNN  
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 We notice the vector z is always positive and thus its mean 
is larger than zero.  In order to increase the convergence speed 
of the following deep neural network, we obtain a new vector 
z0 by making the vector z with zero-mean and normalize it 
below 

  0 2
( ) / ( )mean mean  z z z z z  (11) 

where ( )mean z  stands for taking the mean of the vector z.  

B. DNN  

After getting the phase-error independent signal vector, we 
employ the fully connected DNN framework developed in [25] 
for DOA estimation. The DNN framework is composed of a 
multitask autoencoder and a series of parallel multilayer 
classifiers. The autoencoder performs as a group of spatial 
filters, which helps to reduce the burden of subsequent 
classifiers. The outputs of the classifiers are concatenated to 
reconstruct a spatial spectrum for DOA estimation. For clarity, 
we name the method in [25] as the original DNN method.  

In the DNN, the multitask autoencoder is composed of one 
input layer, one hidden layer, and one output layer. On the 
other hand, each classifier contains one input layer, two 
hidden layers, and one output layer. The size of each layer of 
the MDNN and original DNN is given in Table 1.  

In Table 1, IL, HL, and OL stand for input layer, hidden 
layer, and output layer, respectively; 0J  is the  size of the 
input layer  (i.e., the dimension of z0)  in the MDNN method; 

1J  is the size of the input layer in the original DNN method. 
According to Eqs.(8)-(11), we obtain  

 
2

0 2

M M
J


 . (12) 

 Considering that the original DNN method takes the real- 
and imaginary-part of off-diagonal upper right matrix 
elements as input of the DNN, we have  

 2
1J M M  . (13) 

Table 1. Size of each layer of MDNN and original DNN methods 
Proposed 
MDNN  

(J=J0); 

Original 
DNN  

(J=J1) 

Multitask 
autoencoder 

Each Classifier  

IL  HL OL IL HL1 HL2 OL 

J  

2

J 
  

P J  J  2

3

J 
  

 
4

9

J 
  

0I  

 

 It is noted that in Table 1, a    represents the largest 

integer not larger than a ; P  is the number of parallel 
multilayer classifiers, which is equal to the number of parallel 
classifiers; 0I  is the size of the output layer of each classifier. 
We assume that the angle-searching range of the targets is 
 min max,G G  and define the searching grid as  , we then have  

 max min
0

G G
I

P


 . (14) 

Suppose 11M  , min 60G    , max 60G   , 1   , and 

6P  , we have 0 55J  , 1 110J  , and 0 20I   according to 
Eqs.(12)-(14). In this case, from Table 1, we obtain that the 
number of neural nodes in the proposed MDNN method is 

approximately half of that in the original DNN method, which 
greatly reduces memory requirement and computational load 
as well. 

In addition, considering that in practice, the SNR in the 
testing stage is commonly unknown, different from the 
original DNN method, we train the DNN with the data at 
multiple SNRs together instead of training the DNN at each 
individual SNR. Afterwards, the trained DNN is applicable to 
the cases of SNRs from low to high SNRs without knowing 
the specific SNR in the testing stage.  

IV. SIMULATION RESULTS 

This section demonstrates the performance of the 
proposed MDNN method in different scenarios. The 
comparisons of the proposed MDNN methods and the original 
DNN method [25], MUSIC method [9], and the WF method 
[17] are also provided.  

 In the simulations, we use an array of M=11 sensors with 
a configuration same as that in [20]. In addition, we consider 

min 60G    , max 60G   , 1   , and 6P  , then we obtain 

0 55J  , 1 110J  , and 0 20I  . The MDNN method and 
original DNN method assign the DNN structure according to 
Table 1. Moreover, the nonlinear activation involved in the 
aforementioned two methods is an elementwise hyperbolic 
tangent function. The Pytorch is used to implement the 
MDNN network, and the gradients are computed using its 
embedded tools.  

The training dataset consists of two equal-power source 
signals. The intersignal angle   is within the set of 

 3 ,6 , ,60   . We assume the DOA of the first source signal 

1  is sampled with an interval of 1  and 1 60 ,60    
  . 

Then, we have the DOA of the second source signal 

2 1    . In addition, we consider the data at multiple 
SNRs {0, 5, 10, 20}dB for training the network 
simultaneously and set the number of snapshots for estimating 
the covariance matrix as 400 in the training stage. Furthermore, 
10 groups of snapshots are collected for each direction setting 
with randomly generated noise. For one group of snapshots 

and each SNR, we have  1 60 , 59 , ,60         and 

2 1     . We have  1 60 , 59 , ,57        which 

contains 117 elements, when 3    . Therefore, the 
number of covariance vectors  is equal to 117.  Similarly, 
when 6   , the number of covariance vectors  becomes 114. 
As a result,  117 114 60 10 4 70800      covariance 

vectors are collected as the training dataset, where 4 is the 
number of SNRs and 10 is the number of groups of snapshots. 
For the MDNN and original DNN methods, when training the 
spatial filter, the minibatch training strategy is used with a 
batch size of 32 and learning rate of μ1 = 0.001, and 1000 
epochs are taken for the training with the data set shuffled in 
each epoch. Afterwards, when training classifier, the 
minibatch training strategy remain the same expect that 300 
epochs are taken for the training.   

In practice, array phase errors may not have the specific 
values as given in [25]. Referring to [17], we consider the 
more general case for array phase errors, that is, the phase 

errors   1

M

m m
 of the sensors are randomly generated by 
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 12m m   , (15) 

where m  is independent and identically distributed random 

variables distributed uniformly over [-0.5, 0.5], and  is the 

standard deviation of m . 

Since array phase errors cannot be known in prior, we set  
10 

  and train the original DNN network and MDNN 

network with randomly-generated array phase errors. In 
testing data, the array phase errors are generated randomly 
according to Eq.(15) once and then used for 100 times Monte-
Carlo simulations to obtain the RSME of the DOA estimates. 
Note that in the testing stage, the randomly-generated array 
phase errors are ensured to be different from those in the 
training dataset. 

In addition, considering that the noises and source signals 
are generated by Gaussian random process, we make sure that 
the noises and source signals used in the testing stage are 
different from those used in the training stage. In order to 
further test the generalization ability of the trained network 
when the DOAs of targets are off-grid, the testing dataset 
consists of two equal-power source signals with the DOAs of 
10.2  and 50.5 , respectively. The following results are 
obtained in the testing stage.  

A. Spatial Spectrum 

We set 20   , SNR = 10dB, and keep other 

simulation parameters the same as mentioned above.  The 
spatial spectrum of aforementioned methods is given in Fig. 
2. From Fig. 2, we can see that the MDNN method has two 
sharp peaks at the angles very close to the true DOAs of 
targets. The WF method performs similarly. In contrast, the 
two largest peaks of the original DNN method and MUSIC 
method both deviate from the true DOAs of targets obviously. 
The failure of the original DNN method is caused by the fact 
that the array phase errors in the testing stage is different from 
the training stage. In addition, the cause of the poor 
performance of the MUSIC method is that it was developed 
with assumption of the absence of array phase errors.  

 

Fig. 2. Spatial spectrum  

B. RMSE 

The RMSE of DOA estimation is defined as  

 2
,

1 1

1 ˆ= ( - )
L K

k l k
l k

RMSE
LK  
                (16) 

where 100L   is the number of Monte Carlo simulation 

experiments; = 2K  is the number of source signals. ,k̂ l  

denotes the DOA estimation value of the k-th source in the L-
th experiment, and k  is the true DOA of the k-th source. 

In the following, we investigate the RMSE of DOA 
estimation versus different variables.  

1) Phase errors 
In the testing, we remain the other parameters and change 

the phase-error standard deviation  . We verify the 

performance of the MDNN, original DNN, WF, and MUSIC 
methods versus different   , which is given in Fig. 3. From 

Fig. 3, we can see that the MDNN method performs regardless 
of array phase errors as its input of  the network is independent 
of array phase errors. In contrast, the MUSIC method 
significantly degrades in the presence of array phase errors. 
The WF and original DNN methods have certain robustness 
to array phase errors. However, they fail in large phase errors.  

 
Fig. 3. RMSE versus   of array phase errors 

2) SNRs 
In the testing, we set 20   , vary SNRs, and remain 

the other parameters. We provide the performance of the 
MDNN, original DNN, WF, and MUSIC methods versus 
SNRs, as shown in Fig. 4. From Fig. 4, it is illustrated that the 
performance of all aforementioned methods is getting better 
as the SNR increase. Among them, the MDNN performs the 
best. In addition, the MUSIC and original DNN methods have 
an estimation accuracy almost unchanged when the SNR is 
larger than -5dB, because of array phase errors. 

 

Fig. 4. RMSE versus SNR 

3) Number of snapshots 
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 In the testing, we set 20   , SNR = 10dB, vary the 

number of snapshots, and remain the other parameters. We 
provide the performance of the MDNN, original DNN, WF, 
and MUSIC methods versus the number of snapshots, as given 
in Fig. 5. From Fig. 5, it is illustrated that the performance of 
MDNN and WF methods behave better as the increment of the 
number of snapshots. However, the MUSIC and original DNN 
methods remain the same performance when the number of 
snapshots becomes larger, due to array phase errors. 

 
Fig. 5. RMSE versus number of snapshots 

V. CONCLUSION 

In this paper, the problem of DOA estimation in the 
presence of array phase errors is addressed. The proposed 
MDNN method explores the magnitude of array data to 
remove array phase errors from the input of the following 
DNN network. As a result, the MDNN method is independent 
of array phase errors. Furthermore, the network input vector 
of the MDNN method is half-length of that in the original 
DNN method, and thus reduces the number of neural nodes to 
nearly half of that in the original DNN method. This implies 
that the MDNN method can significantly reduce memory 
requirement and computational load.  Simulation results under 
different scenarios illustrate that the MDNN method is always 
more robust than the DNN method in the presence of array 
phase errors. In addition, it is demonstrated that the MDNN 
method has good generalization in different number of 
snapshots and SNRs when the DOAs of targets are off-grid.  
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Abstract—A voice activity detection (VAD) algorithm identifies
whether or not time frames contain speech. It is essential
for many military and commercial speech processing applica-
tions, including speech enhancement, speech coding, speaker
identification, and automatic speech recognition. In this work,
we adopt earlier work on detecting weak transient signals
and propose a polynomial subspace projection pre-processor to
improve an existing VAD algorithm. The proposed multi-channel
pre-processor projects the microphone signals onto a lower
dimensional subspace which attempts to remove the interferer
components and thus eases the detection of the speech target.
Compared to applying the same VAD to the microphone signal,
the proposed approach almost always improves the F1 and
balanced accuracy scores even in adverse environments, e.g.
-30 dB SIR, which may be typical of operations involving noisy
machinery and signal jamming scenarios.

Index Terms—Voice activity detection, polynomial matrix
eigenvalue decomposition, multi-channel signal processing

I. INTRODUCTION

A voice activity detection (VAD) algorithm identifies
whether or not time frames contain speech. VAD is essential
for many military and commercial speech processing appli-
cations such as speech enhancement [1], speech coding [2],
speaker identification [3], [4], and automatic speech recog-
nition (ASR) systems [5]. For example, speech enhancement
algorithms may facilitate communication among operators in
military operations where the acoustic environment is very
challenging, e.g., very noisy machinery and signal jamming
scenarios. Such algorithms, however, usually rely on noise es-
timators, which can be derived from the VAD pre-processing.

Classical statistics-based VAD approaches such as [2], [6]–
[8] exploit the statistics of speech and noise. These approaches
compute the model parameters based on the assumptions of the
speech and noise distributions. However, the performance of
these algorithms degrades when the assumed signal statistics
are violated and the speech presence probability, which the
VAD algorithms usually exploit, is difficult to deduce analyt-
ically [9]. Furthermore, during noise-only segments, rapidly
changing noise can result in transient interference [10].

Machine learning-based VAD methods have also been pro-
posed to implicitly model the data without using an explicit

The work of S. Weiss was supported by the Engineering and Physical Sci-
ences Research Council (EPSRC) grant no. EP/S000631/1, and the UK MOD
University Defence Research Collaboration in Signal Processing. The work
of P. A. Naylor was funded through the UK EPSRC grant no. EP/S035842/1.

noisy signal model [10]–[12]. Amongst many, a VAD algo-
rithm, which uses a Gaussian mixture model (GMM) trained
in recognizing speech features, has been widely adopted for
real-time applications in the WebRTC system [13]. The algo-
rithm cannot cope with noisy environments where it becomes
challenging to extract speech features, severely degrading its
performance [9], [11].

In [14], a broadband subspace-based approach is used to
detect weak transient signals. The approach applies a poly-
nomial matrix eigenvalue decomposition (PEVD), which is
iteratively approximated by algorithms such as the second-
order sequential best rotation (SBR2) [15], [16] and sequential
matrix diagonalization (SMD) [17], [18] in the time-domain or
[19], [20] in the discrete Fourier transform (DFT)-domain, to
generate the eigenvectors and eigenvalues. Filtering the signal
through the eigenvector filterbank yields a syndrome vector,
which is more discriminative towards detecting a transient
signal [14].

In this work, we adapt [14] and investigate the idea of weak
transient signal detection for multi-microphone VAD. The
novel contributions of this paper are (i) a subspace-projection
approach for VAD instead of the syndrome vector approach
used for weak transient signal detection in [14], (ii) the use of
realistic speech signals and measured room impulse responses
(RIRs) and (iii) a comparison of the proposed approach against
benchmark VAD algorithms in adverse environments. We first
describe the goal of a VAD algorithm and provide a review
of PEVD in Section II. The proposed method based on a
multi-channel polynomial subspace projection is presented in
Section III. Simulations and results are discussed in Section
IV and Section V concludes our findings.

II. PROBLEM FORMULATION

A. Signal Model

The received signal at the q-th microphone is

xq(n) =
P∑

p=1

hT
p,q(n)sp(n) , (1)

where hp,q = [hp,q(0), . . . , hp,q(J)]
T represents the RIR

from the p-th source to the q-th microphone, modelled
as a J-th order finite impulse response filter, sp(n) =

[sp(n), . . . , sp(n− J)]
T is a tap delay line vector formed from

the p-th source signal, n is the sample index, and [·]T is the
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transpose operator. The data vector over Q microphones is
x(n) = [x1(n), . . . , xQ(n)]

T .
Since the P source signals are not simultaneously excited

all the time, the goal of a VAD algorithm is to identify time
segments when the p-th source is active.

B. Polynomial Matrix Eigenvalue Decomposition
The space-time covariance matrix, parameterized by time

lag τ ∈ Z, is computed using [21]

R(τ) = E{x(n)xT (n− τ)} , (2)

where E{·} is the expectation operator over n. Each element,
rp,q(τ), is the correlation sequence between the p-th and q-th
microphone signals. This produces auto- and cross-correlation
sequences on the diagonals and off-diagonals, respectively.

The z-transform of (2),

R(z) =
∞∑

τ=−∞
R(τ)z−τ , (3)

denoted by R(τ) R(z), is a para-Hermitian polynomial
matrix satisfying R(z) = RP (z) = RH(1/z∗), where [·]∗,
[·]H , [·]P are the complex conjugate, Hermitian and para-
Hermitian operators respectively. The para-Hermitian eigen-
value decomposition (EVD) of (3) is [21], [22]

R(z) = U(z)Λ(z)UP (z) , (4)

where the columns of U(z) are the polynomial eigenvectors
and the elements on the diagonal matrix Λ(z) are the poly-
nomial eigenvalues. Iterative PEVD algorithms based on the
SBR2 [15], [16] and SMD [18], [23] are used to approximate
(4) by Laurent polynomial factors.

Exploiting the orthogonality between subspaces and assum-
ing L signal components, (4) can be partitioned into

R(z) =
[
Us(z) U⊥(z)

] [ Λs(z) 0
0 Λs̄(z)

] [
UP

s (z)

UP
⊥(z)

]
,

(5)

where 0 is a zero matrix, Λs : C → CL×L contains the L
principal eigenvalues of the signal-related components with its
eigenvectors on the columns of Us(z) : C→ CQ×L while the
eigenvalues Λs̄ : C→ C(Q−L)×(Q−L) defines the noise floor
along with the orthogonal complement or noise-only subspace
spanned by the columns of U⊥(z) : C→ CQ×(Q−L).

III. POLYNOMIAL SUBSPACE PROJECTION APPROACH FOR
VOICE ACTIVITY DETECTION

A. Polynomial Subspace Projection
Typically, VAD algorithms operate directly on the micro-

phone signals. In the presence of strong interfering signals,
however, the performance of these algorithms degrades, as will
be investigated in Section IV.

Assuming that the first few frames contain only the inter-
ferer components, the space-time covariance matrix in (2) can
be estimated without bias using [24], [25]

R(τ) ≈ 1

N − |τ |

N−1∑
n=0

x(n)xT (n− τ) . (6)

Whenever we have assurance that only the stronger interfer-
ing signals are present, R(τ) can be re-estimated using (6)
based on appropriate interference-only segments in x(n). The
PEVD is computed on the z-transform of (6) to generate the
orthogonal complement subspace U⊥(z) based on (5).

In [14], a syndrome vector is obtained by filtering the mi-
crophone signals through the eigenvector U⊥(z) U⊥(n).
This syndrome vector is used to detect the entry of a new target
source that may be weaker in power than the L interferers,
assumed to be stationary for a period of time. The syndrome
energy increases in the presence of a new source which is
likely to protrude into the subspace U⊥(z). Furthermore, since
U⊥(n) is designed to be causal [26] and may introduce bulk
delays to the microphone signals for signal alignment, the
syndrome vector may no longer be temporally aligned with
the microphone signals. Hence, the syndrome vector cannot
be directly used to generate a VAD mask for the microphone
signals.

Instead of generating a syndrome vector in [14], a poly-
nomial subspace projection P(z) = U⊥(z)UP

⊥(z) ∈ CQ×Q

is performed on the microphone signals x(n) to project
them onto a reduced (Q − L) dimensional subspace. This
will generate time signals y(n) with a reduction in energy
contributions of the estimated L interferer components using

y(n) =
∑
k

∑
m

U⊥(k)U
H
⊥ (k −m)x(n−m) . (7)

Note that L is the estimated rank of the interferer com-
ponents. In general, because of errors incurred in estimating
(2) and because PEVD algorithms such as SBR2 and SMD
encourage spectral majorization of the extracted eigenvalues,
leakage occurs across the subspace, i.e., some signal compo-
nents leak into U⊥(z) [27]. More notably, in the context of
dereverberation [28], the direct-path and early reflections are
captured by the subspace associated with the first principal
eigenvalue while the late reverberant components are observed
in the other subspaces [29]. While an over-estimation of L
may be advantageous in minimizing the energy spread of the
interferer components, the projection of the target signal onto a
lower (Q−L) dimensional subspace may not yield significant
components in y(n).

B. Voice Activity Detection on Projected Component

In order to detect a change point due to an emerging target
speaker in the syndrome vector, a VAD algorithm [2] can be
applied to the q-th processed signal yq(n) to generate a more
reliable binary mask mq(n) than the microphone signal xq(n)
which contains some interferer components. The segments
containing the target source are then extracted using

ŝq(n) = mq(n) · yq(n) , (8)

where ŝ(n) is the estimated target speech in the q-th processed
signal, and mq(n) takes on the value 0 or 1 since it is binary.
The proposed method is summarized in Algorithm 1.
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Algorithm 1 Polynomial Subspace Projection-Based VAD.

Inputs: x(n) ∈ RQ, L.
R(τ)← E{x(n)xT (n)} // interferer-only frames, see (2)
R(z)← Z{R(τ)} // see (3)
U(z),Λ(z)← PEVD {R(z)} // use SMD [18]
y(n)← project{U⊥(n),x(n)} // see (7)
mq(n)← VAD{yq(n)} // apply VAD [2] on q-th signal
ŝq(n)← mq(n) · xq(n) // extract target activity, see (8)
return ŝq(n).

IV. SIMULATION AND RESULTS

A. Setup
Measurements of the speech signals and Q = 8 channel

cafeteria RIRs were taken from the VCTK corpus [30] and
Kayser database [31], respectively. The interferer signals com-
prising F16 cockpit and destroyer engine room noise were
extracted from the Noisex database [32]. If necessary, signals
were resampled to match the sampling rates of 48 kHz. The
speech and interferer signals were separately convolved with
the RIRs before being added together at each microphone. The
source-to-interferences ratio (SIR) [33] at the first microphone,
taken to be the reference, was varied from -30 dB to 20 dB.
The target speaker and directional interferer are respectively
1.02 m in front (along the y-axis) and 1.62 m to the right (along
the x-axis) of the listener, at positions A and D in Fig. 1 [31].

The VAD algorithms used include Sohn’s approach [2]
and the approach used by WebRTC [13]. WebRTC operates
at modes 0–3 from the least to the most aggressive setting.
The microphone signals were processed in 30 ms frames. The
first 15 frames were assumed to contain only the interferer
signals and were therefore, used for calculating (5). We also
applied [2] to the projected signal y(n) to investigate if there
is any advantage of pre-processing with (7) using different
rank estimates, L = 1, 2, 5, 7 (R1, R2, R3, R7).

B. Ground Truth Labels
A similar procedure described in [34] is used to establish

the ground truth (GT) labels. The RIR from the target to
the first microphone, chosen as the reference, is truncated
approximately 5 ms after the direct-path peak. The truncation
is necessary to ensure that the target speech is time aligned
with the microphone signals while minimizing reverberation.
The anechoic target speech signal is then convolved with the
truncated RIR to generate the target speech in x1(n). The
VAD algorithm Mode 3 [13] is applied to the target signal to
generate the ground truth VAD labels as shown in Fig. 2(a).
For the short target speech used later in Experiment 2 shown
in Fig. 2(a)(ii), the positive label ‘1’ at approximately 2.8 s
corresponds to a bilabial sound made with both lips [5], as also
observed in informal listening examples [35]. In this paper,
results for only the first microphone are presented.

C. Evaluation Measures
The counts for the ground truth and predicted labels are

tabulated using a confusion matrix [36]. The absence or

D
1.62 m

A

1.02 m

Fig. 1: Experiment setup in the cafeteria from [31].

presence of speech is indicated by the label ‘0’ or ‘1’. True
positive (TP) and true negative (TN) are obtained when both
labels are ‘1’ and ‘0’ respectively. False negative (FN) occurs
when the predicted label is ‘0’ but the ground truth is ‘1’ while
false positive (FP) happens when the predicted label is ‘1’ but
the ground truth is ‘0’. This allows the use of F1, true positive
rate (TPR), true negative rate (TNR), and balanced accuracy
(BACC) scores defined as [36]

TPR =
TP

TP + FP
, TNR =

TN
TN + FN

,

F1 =
TP

TP + 0.5× (FP + FN)
, BACC =

TPR + TNR
2

. (9)

D. Results and Discussions

1) Experiment 1: Comparison of VAD on Destroyer Noise.
The results are summarized in Table I. At 20 dB SIR, G0 and
G3 outperform the other approaches. Slight improvement in F1
and BACC scores arising from an increase in TP is observed
when we apply Sohn to the signals projected onto the lower-
dimensional subspace (R1, R2, R3, R7) over the microphone
signal.

As shown in Table I(b) at 10 dB SIR, the VAD outputs
of G0 and G3 are consistently 1, resulting in very high TP
and FP. This gives a F1 score of 0.866 but poor BACC
score of 0.500 arising from zero negative labels. The proposed
approach to perform Sohn [2] on the projected signals shows
a slight improvement in F1 score over direct processing on the
microphone signal.

At -30 dB SIR where the target signal is significantly
weaker, Table I(c) highlights the more significant improvement
in the proposed approach over the baseline Sohn. The subspace
projection approach increases TP by up to 57 for R7, although
this was traded against a drop in TN by 12.

At a high SIR of 20 dB, subspace leakage into the orthog-
onal complement subspace from the interferer-only subspace
is less likely. Hence, R1, R2, R5 and R7 performed similarly.
However, at low SIR, e.g. -30 dB, the interferer-only subspace
is likely to have leaked into the complement subspace. This
promotes high-rank, e.g. R7, so that the microphone signal can
be projected into a 1-dimensional subspace where interferer-
only components are mostly removed. Note that this small
dimensional subspace projection will likely contain only a
fraction of the target signal, and hence, the selection of the
rank L represents a trade-off.

2) Experiment 2: Different Target Speech Durations. The
target speech is corrupted by -20 dB SIR directional F16
cockpit noise. The VAD outputs are shown in Fig. 2(b) for the
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(a) Ground truth (GT) labels.
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Fig. 2: Comparison of VAD binary outputs m1(n) using Sohn VAD [2] on the microphone signal x1(n) (Sohn), proposed
approach by applying [2] on projected signal y1(n) using different estimated ranks (R1-R7), WebRTC using modes 0 and 3
(G0, G3) [13]. The plots show (a) the ground truth (GT) labels for (i) long and (ii) short target signal component in x1(n);
(b) long noisy and (c) short noisy segments of speech corrupted by -20 dB SIR F16 cockpit noise from Noisex database [32].

TABLE I: Confusion matrix and scores for VAD output on target speech in directional destroyer noise at various SIR.
(a) SIR = 20 dB

Method TP TN FP FN F1 BACC
Sohn 283 175 104 32 0.806 0.763
R1 287 174 105 28 0.812 0.767
R2 286 175 104 29 0.811 0.768
R5 287 173 106 28 0.811 0.766
R7 291 171 108 24 0.815 0.768
G0 311 249 30 4 0.948 0.940
G3 293 273 6 22 0.954 0.954

(b) SIR = 10 dB
Method TP TN FP FN F1 BACC

Sohn 271 238 41 44 0.864 0.857
R1 275 233 46 40 0.865 0.854
R2 275 224 55 40 0.853 0.838
R5 280 227 52 35 0.866 0.851
R7 277 231 48 38 0.866 0.854
G0 315 0 279 0 0.693 0.500
G3 315 0 279 0 0.693 0.500

(c) SIR= -30 dB
Method TP TN FP FN F1 BACC

Sohn 94 226 53 221 0.407 0.628
R1 111 227 52 204 0.464 0.651
R2 102 235 44 213 0.443 0.642
R5 138 226 53 177 0.545 0.688
R7 151 214 65 164 0.569 0.699
G0 315 0 279 0 0.693 0.500
G3 315 0 279 0 0.693 0.500

TABLE II: Confusion matrix and scores for VAD output on
long target speech in directional F16 noise at -20 dB SIR.

Method TP TN FP FN F1 BACC
Sohn 130 241 38 185 0.538 0.638
R1 136 249 30 179 0.565 0.662
R2 158 244 35 157 0.622 0.688
R5 148 247 32 167 0.598 0.678
R7 136 224 55 179 0.538 0.617
G0 315 0 279 0 0.693 0.500
G3 315 0 279 0 0.693 0.500

same long speech segment as Experiment 1. The target signal
and the GT labels are shown along with the other VAD outputs.
As described in the earlier experiment, the G3 VAD output is
always 1, which implies that it always predicts the presence of
speech. This results in a high TP and, subsequently, good F1
score but is penalized by the poor BACC score arising from
high FP, as shown in Table II.

When the target speech segment is short, as shown in
Fig. 2(c), the G0 and G3 VAD outputs are also always 1.
However, this time, the FP tremendously increases to 410
and this severely affects the F1 score. The proposed approach
demonstrates that pre-processing the microphone with the
subspace projection almost always improves the F1 and BACC
scores. In this case, R2 provides an improvement over [2] in
F1 and BACC scores by 0.176 and 0.119, respectively.

TABLE III: Confusion matrix and scores for VAD output on
short target speech in directional F16 noise at -20 dB SIR.

Method TP TN FP FN F1 BACC
Sohn 28 334 76 56 0.298 0.574
R1 30 342 68 54 0.330 0.596
R2 45 349 61 39 0.474 0.693
R5 32 344 66 52 0.352 0.610
R7 32 325 85 52 0.318 0.587
G0 84 0 410 0 0.291 0.500
G3 84 0 410 0 0.291 0.500

V. CONCLUSION

In this work, a polynomial subspace projection approach
has been proposed as a pre-processor to improve VAD per-
formance. We have shown that performing this multi-channel
pre-processor prior to applying the single-channel Sohn VAD
algorithm [2] almost always improves the F1 and balanced
accuracy (BACC) scores even in adverse environments, e.g.,
-30 dB SIR. This improvement over the baseline of applying
VAD to the microphone signal is less significant at high SIRs
and more significant at low SIRs. Note that it is particularly
in the low SIR regime, i.e., for weak speaker signals, where
we set out to boost VAD performance. We have also shown
that the rank estimate of the interferer-only subspace directly
impacts the orthogonal complement subspace used for the
projection and, subsequently, the VAD performance. Informal
listening examples are available [35]. An end-to-end PEVD-
based VAD algorithm has also been proposed recently [37].
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Abstract—We present a new approach to finding optimal
patterns for the placement of fields of sonobuoys in a complex
undersea environment. The problem is modelled as a biobjective
one, where the aim is to both minimize uncertainty over target
localization and minimize sensor placement time. We develop a
two-phase algorithm, where an offline multiobjective evolutionary
phase finds initial Pareto-nondominated solutions to a static
problem, and then an online multiobjective reinforcement learn-
ing phase finds improved solutions using updated information.
Initial results show that our approach generates significant
improvements over standard grid patterns.

I. INTRODUCTION

Consider a theatre of operations into which a number of
sensors are to be placed for target localization; for example,
a field of passive DIFAR sonobuoys in an anti-submarine
warfare (ASW) context. Fixed and regular deployment patterns
could be selected based on mission objectives, including
curved screening patterns [1], surrounding circles or ovals [2],
[3], chevrons, and variations on grid patterns [4], but it may
not be clear which if any of these are optimal, especially in
a complex undersea environment where patterns optimized to
current local conditions might perform better.

We consider a scenario in which two possibly conflicting
objectives must be satisfied simultaneously: localization of
the target of interest (TOI) with minimum uncertainty, and
minimization of the time taken to place a pattern of N sensors.
In a discretized two-dimensional l × w lattice of hexagons

of equal side length b, there are
(

l · w
N − 1

)
possible valid

placement patterns, so for example using 12 sensors and
a 100 × 100 lattice, there are approximately 2×1039 such
patterns. In general, it is impossible to exhaustively calculate
the objective values associated with all possible patterns even
before factoring in the varying effects of noise and clutter on
the localization uncertainty objective. Hence efficient heuristic
optimization methods are required that can produce an accept-
able set of Pareto-nondominated solutions with respect to the
two objectives within reasonable computation time.

Evolutionary algorithms (EAs) are a well-studied and
widely used iterative technique to solve high-dimensional,
nonlinear combinatorial optimization problems with complex
constraints. In [5], an enhanced genetic algorithm (GA) is

used for optimal placement of irregular patterns of passive
and active-bistatic sonobuoys, and [6] extends the use case
to multistatic-active sonobuoy fields using a combination of
coherent and incoherent processing. In [7], a multiobjective
EA (MOEA) is used to produce a Pareto front (PF) of
nondominated solutions for deployment of drifting acoustic
sensor networks for cooperative track detection.

EAs can have long run times and do not necessarily cope
well with dynamically updating information. Reinforcement
learning (RL) algorithms on the other hand can be designed
to indicate optimal actions, or sequences of actions, in the
presence of dynamic information, and have been applied to
sensor management and scheduling problems [8] as well as to
tracking in an underwater environment [9]. In recent years,
multiobjective reinforcement learning (MORL) has gained
popularity in addressing Markov decision processes (MDPs)
with more than one objective [10], [11]. However, RL ap-
proaches can produce poor results and/or converge very slowly
when the state space is very large, as is the case with the
sonobuoy placement problem.

Recently, researchers have attempted to combine RL and
EA approaches to leverage the strengths and mitigate the
weaknesses of each [12], [13]. We extend this hybrid approach
to a multiobjective setting in a two stage process, in which
an MOEA initially addresses a static offline sensor placement
problem and then an online MORL algorithm updates the
Pareto front (PF) after updated information is received.

The remainder of this paper is organized as follows. Section
II explains our methodology for modelling the constrained
biobjective optimization problem. Section III details the two-
stage machine learning algorithm. Section IV presents exper-
imental results; concluding remarks follow.

II. MODELLING

To represent uncertainty over localization of the TOI, mea-
surements are taken from 3 · r · (r − 1) possible contact posi-
tions in the hexes surrounding the real position (but excluding
ground truth), where r is the number of surrounding concentric
rings of hexes. The contacts have the same bearing and speed
but different current positions. The chosen coordinate system
uses complex numbers to express the position of objects in

978-1-6654-8348-3/22/$31.00 ©2022 IEEE 86



Fig. 1. Sonobuoy and contact locations
Purple circles represent locations of a grid pattern of 12 sonobuoys,
numbered by order of placement. Red crosses represent contact
locations. Black lines represent the paths for measurement from
contact to sensor. The colour intensity on the hexagonal grid indicates
the amount of noise and clutter.

the hex lattice, with the origin at the centre of the grid. A
complex number presentation of positions is used principally
for convenience of calculation; compared to using a vector to
represent position in the x, y plane, any array involving these
data has at least one dimension less than would otherwise be
the case. This makes vectorization of the code more efficient,
reducing computation time.

Let there be P different patterns of sensor placement loca-
tions to be evaluated. We specify each pattern k ∈ {1, . . . , P}
as a complex-valued offset pk,n, n = 1 . . . N to the centroid of
the contact positions ĉi,n, i ∈ {1, . . . , C} at the time the n-th
sensor is placed; see Figure 1. By expressing sensor locations
as offsets in the complex plane, rather than absolute positions,
we generate patterns that can be moved and reassessed, so that
they may remain valid as the contact locations are perturbed.
Sensor n is placed at location ĉn + pk,n, where:

ĉn =
1

C

C∑
i=1

ĉi,n. (1)

We wish to simultaneously minimize both total sensor
placement time and localization uncertainty. We formulate the
biobjective optimization problem as follows:

Minimize

Π∗ = argmin [g (Γ) ,h (Υ)] , (2)

subject to:

τi,n ≤ dmax ∀i ∈ {1 . . . P} , n ∈ {1 . . . N} , (3)
τi,n ≥ dmin ∀i, n, (4)

where:
• Π∗ is the optimal policy matrix of non-dominated sensor

patterns;

• Γ is the P × N − 1 matrix of times τn = sa ·
d (pk,n, pk,n−1) , k = 1 . . . P, n = 2 . . . N taken in
seconds between placements at each successive position
where P is the number of sampled schedules considered,
sa is the speed of the agent in m/s and d (pk,n, pk,n−1)
is the Euclidean metric;

• g (Γ) is a vector-valued function, the output of which is
a P × 1 vector, the k-th entry of which gives the total
placement times in seconds for pattern pk;

• Υ is a P ×C matrix of azimuth measurements for each
sensor in each pattern with respect to each contact;

• h (Υ) is a vector-valued function, the output of which
is a P × 1 vector, the k-th entry of which represents an
aggregate measure of uncertainty over the localization of
the TOI for pattern pk after sensor placement is complete;

• dmax and dmin are maximum and minimum allowable
placement distances between sensors, respectively.

For the first objective, the total placement time for sensor
pattern k can be expressed as:

gk(Γ) = t̂k,1 + χ · (N − 1) +
N∑

n=2

τk,n, (5)

where t̂k,1 is the approach time in seconds, that is, the time
taken for the agent (for example, an ASW helicopter) to arrive
at the first placement location ĉ1 + pk,1 from the base (for
example, a static ship) at b0, and χ is a constant representing
time taken in seconds for the placement procedure for each
sensor. Placing the base at the origin so that b0 = 0 + 0 ·
I, I ≡

√
−1, the distance from the base to the first placement

location is
∣∣∣ĉ0 + v̂c · t̂k,1 + pk,1

∣∣∣, where ĉ0 is the centroid of
the initial contact positions, and v̂c is a complex-valued vector
representing the movement of the contact :

v̂c = ŝc ·
[
cos
(
θ̂c

)
+ I · sin

(
θ̂c

)]
, (6)

where ŝc and θ̂c are the speed and bearing of the contact,
respectively. We thus have:

|va| · t̂k,1 =
∣∣∣ĉ0 + pk,1 + v̂c · t̂k,1

∣∣∣ ,
va = sa · [cos (θa) + I · sin (θa)] , (7)

where va represents the movement of the agent and θa is the
bearing of the agent. Squaring both sides of this expression,
substituting terms and rearranging, we obtain a quadratic
expression in t̂k,1:(
t̂k,1
)2 · (s2c − s2a)+ 2 · ŝc · t̂k,1 ·

[
cos
(
θ̂c

)
· <
(
ĉ0 + pk,1

)
+sin

(
θ̂c

)
· =
(
ĉ0 + pk,1

)]
+
∣∣∣ĉ0∣∣∣2 = 0, (8)

which we can solve for the approach time using standard
means. Since we can assume sa > sc (helicopters are faster

than submarines, for example),
(
s2c − s2a

)
·
∣∣∣ĉ0∣∣∣2 < 0 and

Equation 8 has one positive root.
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For the second objective, we need to approximate the
uncertainty from the entire pattern of sensors, which we model
as a function of the transmission losses, the noise and clutter
on the paths from sensors to contacts, and the position of each
pair of sensors with respect to each contact. A noise/clutter
map is generated using D bivariate Gaussians with random
means and covariance matrices. Under the assumption that
detection ranges are comparatively small against likely ocean
depth, we model the transmission loss in dB as spherical so
that:

TLk,i,n = 20 · log10
(∣∣∣ĉi,N − ĉN − pk,n∣∣∣) , (9)

and measure the noise and clutter level NCk,i,n between
sensor n in pattern k and contact i by sampling over over the
line Lk,i,n and approximating a line integral using Simpson’s
rule.

To represent localization uncertainty with a pattern of N
sensors and with C contacts, we introduce the following
measure:

hk (Υ) =
1∑N

n=1 βk.n,j
, j 6= n, (10)

where βk,n,j represents the mean expected information gain
from triangulation with respect to a pair of sensors with offsets
pk,n, pk,j , j 6= n and the contacts, calculated as follows:

βk,n,j =
1

C
·

C∑
i=1

|sin (arg (pk,n)− arg (pk,j))|
TLk,i,n + TLk,i,j +NCk,i,n +NCk,i,j

.

(11)

Note that the numerator in Equation 11 approaches 1 as
[arg (pk,n)− arg (pk,j)] → (1 + 2 · k) · π/2, k ∈ Z and
approaches 0 as [arg (pk,n)− arg (pk,j)] → k · π, so that
information gain is maximized for a given sensor pair as the
placement of the pair approaches an orthogonal attitude to
a contact and the distance to the contact decreases, whilst
information gain approaches zero as the position of a pair
lines up with the contact and the distance increases.

III. MACHINE LEARNING ALGORITHM

The algorithm operates in two phases. In the first phase,
an offline MOEA determines a number of nondominated
solutions. All valid patterns generated and evaluated at each
generation are added to an archive. In the second phase,
an online MORL uses and builds on the archive passed
from the MOEA, recalculating objective values based on new
information and using the archived objective values to obtain
approximate biobjective Q-values.

A. MOEA phase

In the first phase, a specialized MOEA is implemented to
generate the initial optimal policy matrix Π∗, as well as an
archive of unique assessed patterns. All stages of the MOEA
must satisfy Inequalities 3 and 4. The following stages of the
MOEA are iterated until a generation limit is reached, or all
solutions are nondominated.

1) Initialization: The population consists at each generation
of P patterns of N sensor locations pk,n. Generated place-
ment patterns are subsequently rotated to match the estimated
bearings of the contacts. The patterns are stored in a single
array of constant size P × N . Initialization starts from the
origin and for each sensor n ∈ {2 . . . N} generates a random
hex within the discretized l × w hex lattice that excludes all
previously generated locations. The sensor is presumed placed
at the centre of the hex.

2) Fitness evaluation: Calculation of fitness values, espe-
cially for the second objective, is computationally intensive.
However, the computational requirement at each generation
during the MOEA phase (and each rollout of the MORL)
can be substantially reduced by precalculating matrices of all
possible values for βk.n,j for each possible contact position
during the placement process.

3) Elitism: Elite individuals are passed unaltered to the next
generation, but are also passed to genetic operators, so that
new individuals can be generated that share some or all of the
elite individuals’ schemata.

4) Tournament selection: We follow [14] by using complete
permutations of the population and finding a PF for each
tournament, rather than using a ranking, in an efficient batched
process that can be parallelized.

5) Mutation: We employ an adaptive mutation rate µ,
described in more detail in Section IV. All individuals passed
to genetic operators undergo either mutation or crossover.
The algorithm chooses a sensor at random from each pattern
allocated to mutation, then chooses at random one valid
adjacent hex.

6) Crossover: Parent pairs are generated from complete
permutations of the available population. Parent patterns are
first concatenated twice, with one concatenation having the
first parent pattern followed by the second, and the other con-
catenation the other way round. For each concatenation, du-
plicate sensor locations are discarded, and provided sufficient
candidate sensors remain, two cutpoints are randomly selected
and two children produced, one from each concatenation, by
joining the sequences before the first and after the second
cutpoints.

B. MORL phase

1) Initialization: Once the MOEA has completed, a PF can
be presented to an operator who will decide which Pareto-
optimal pattern to choose, based on operational preferences
over the trade-off between length of placement time and
accuracy of localization. To simulate the new information, the
location of each contact is perturbed by randomly moving
them to adjacent hexes after the placement of the second
sensor and made available to the algorithm immediately after
the third sensor is placed. A subset of the archive passed from
the MOEA is identified that consists of all patterns that match
the chosen PF pattern up to the third sensor location, and the
uncertainty objective value is updated for each.

2) Learning: As the state space is too large to use an ex-
plicit Q-table, we use an approximation function. We consider
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final returns for each complete rollout, so Rn,j,N = hj (Υ)
for some pattern [pj,1, . . . , pj,N−1, pj,N ]. Hence for the second
objective, for any partial pattern p = [pj,1, . . . , pj,N−k] , k ∈
{1, N − 3}:

Qp (Sp,N−k−1|Sp,N−k) =
1

m
·

m∑
j=1

Qj (Sj,N−k|Sj,N−k+1)

=
1

m
·

m∑
j=1

hj (Υ) , (12)

where m is the number of already assessed patterns for which
[pi,1, . . . pi,K−k] = [pj,1, . . . pj,K−k] , i 6= j, so that Equation
12 becomes a simple average of the sensor uncertainties.
Hence, given that the Q-value from first objective can likewise
be modelled as a simple average of the total placement times
of all the reachable patterns, we can approximate biobjective
Q−values using means of the objective values of all reachable
patterns which have already been assessed. As updated contact
location information is received after each sensor placement,
objective values for archived patterns must be recalculated.

There are four scenarios when approximated Q-values are
calculated:

1) if an initial check against a hyperparameter ε ∈ (0, 1)
is made, the algorithm chooses all remaining sensor
locations at random;

2) If there are no non-zero Q-values, i.e. no reachable
pattern exists in the archive, again a random choice is
made;

3) If all Q-values are non-zero, a PF is calculated and the
next sensor location is chosen at random from those on
the PF;

4) If there is a mix of zero and non-zero Q-values, then
depending on the outcome of a second check against
ε, the algorithm chooses at random amongst either the
subset of available sensor locations with zero Q-values
or the subset of available sensor locations with non-zero
Q-values.

The reason for using this more complicated decision structure
rather than the standard ε-greedy approach is that there is, at
least initially, a large proportion of next sensor locations with
no reachable associated pattern in the archive, so were we
to employ the common RL strategy of allowing exploration
of all the states with zero Q-values, there will be very little
exploitation until the algorithm has run for a large number
of episodes. Thus the MORL serves as a form of (partially)
greedy local search, extending the more general search carried
out initially by the MOEA, as well as being a framework for
dynamically updating based on new information.

IV. EXPERIMENTAL RESULTS

We first conducted 30 runs with 100 generations in the
MOEA phase and 1000 episodes in the MORL phase for
N = [8, 9, . . . 12], with a starting population of 1000 and a
different randomly generated noise/clutter map on a 50 × 50
hex lattice with b =100 m hex side lengths for each run. We

set r = 3 and so consider contacts in 18 hexes which form
one larger hexagonal pattern, excluding the central hex, which
is ground truth. Noise/clutter maps are generated with D = 20
random Gaussians and values are then linearly rescaled to fall
within 10dB/km and 30dB/km. To provide a baseline, since in
practice grid patterns are commonly used for such problems,
grid patterns with all combinations of spacings in [5, 6, . . . , 10]
hexes were generated, with the orientation and order of sensor
placement optimized according to the direction of approach
of of the placing agent. These grid patterns were included in
the initial population of the MOEA and in the pattern archive
passed from the MOEA to the MORL, so that if nondominated,
they would be included in the PFs.

We set the tournament size to 2 since binary tournaments
have lowest selection pressure, maximizing exploration. The
mutation rate is initially set to a low value, µ =0.0001, so
that crossover has a chance to find good solutions without
destruction of any alleles. However, at each generation in
which the PF does not change, the value of µ doubles to a
maximum of 0.4096, but falls immediately back to the initial
value as soon as the PF changes at any generation. The value
of ε in the MORL phase is fixed at 0.1.

For the purposes of the experiments, we assumed that the
operator would choose the solution with lowest modulus, i.e.
with normalized objective values closest to the origin when
considered in the complex plane. Because the contacts are
perturbed and objective values recalculated after the MOEA
phase, there is no guarantee that the nondominated patterns
found by the MOEA will have high fitness in the MORL
phase. We analyse performance in terms of improvement in
the recorded minimum normalized modulus at each generation
of the MOEA phase and each episode of the MORL phase,
starting with the PF of the initialized population in each phase.
Results are shown in Table I.

MOEA improvement after 100 generations over the initial
population, which includes the generated optimized grid pat-
terns, peaks when 11 sensor patterns are used, whilst MORL
improvement over the pattern archive passed from the MOEA
peaks with 9 sensor patterns. It is also instructive to examine
the percentage of runs that show any improvement; for the
MOEA, this improves monotonically to 100% for 12 sensors,
whilst for the MORL, the proportion peaks at 30% for 9
sensors but declines with larger numbers of sensors. This may
be in part because of the increased difficulty of finding new
nondominated patterns with larger numbers of sensors, but
also because the higher success rate of the MOEA for larger
numbers of sensors makes it more difficult for the MORL to
improve on the results obtained by the MOEA on any run.

To investigate performance with longer runs, we then per-
formed 30 experiments each for N = 8 and N = 10 using the
same noise/clutter maps as before, with an initial population
1000 including grid patterns, 1000 generations of the MOEA
so that the archive passed to the MORL approached 1 million
patterns, and 5000 episodes of the RL. With N = 8, the mean
improvement in the minimum modulus objective values over
the initial PF including grid patterns for the MOEA phase,
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TABLE I
IMPROVEMENT STATISTICS: 100 MOEA GENERATIONS + 1000 MORL EPISODES

Sensors MOEA mean MORL mean MOEA maximum MORL maximum MOEA improvement MORL improvement
8 3.0% 1.1% 9.4% 11.3% 83.3% 20.0%
9 3.4% 1.3% 9.5% 11.9% 80.0% 30.0%

10 5.1% 0.8% 15.3% 8.8% 90.0% 20.0%
11 5.5% 0.8% 11.5% 6.2% 96.7% 20.0%
12 4.1% 0.3% 7.7% 3.5% 100.0% 16.7%

A summary of improvement statistics for the MOEA and MORL phases respectively, for N = [8, 9, . . . 12] . The first two columns show
for each N the mean improvement in the minimum normalized modulus solution across 30 runs for the MOEA and MORL respectively; the
third and fourth columns show the maximum improvement for any run; the final two columns show the percentage of runs showing some
improvement.

rose from 2.8% for 100 generations to 6.9%, with a maximum
improvement for any run of 19.4%, and the percentage of
runs showing no improvement fell from 50% to 5.7%. For
the MORL phase, the mean improvement in the minimum
modulus objective values rose from 0.1% to 7.03% with a
maximum improvement of 27.6%, and the percentage of runs
showing no improvement fell from 86.7% to 26.7%.

For N = 10, results for the MOEA phase showed a
9.1% average improvement, better than the performance with
8 sensors, with a maximum improvement of 14.8%; runs
showing no improvement were just 3.3%. However, the MORL
phase showed lower improvement of 0.4% average and 5.7%
maximum, with 76.7% of runs showing no improvement,
almost treble the figure for N = 8. The performance of the
MORL suggests that the rate of improvement drops steeply
with the number of sensors, and that a much greater number
of runs is required to deal with the larger state space and
dynamic updates; it is notable that this is not necessarily the
case for the MOEA, which copes better with path dependency
and local minima in the static problem.

V. CONCLUSIONS

The combination of an MOEA and MORL produces
promising initial results for the problem of optimally placing
sonobuoys in a complex environment with the dual objectives
of minimizing placement time and minimizing localization
uncertainty. The MOEA conducts a general search in a static
environment, and is designed with promotion of diversity in
the final pattern archive in mind; this archive is then passed
to the MORL which performs local search around a chosen
member of the PF from the MOEA, and also dynamically
updates based on new information from the sensors.

In evaluation, the algorithm has shown good results with
modest numbers of sonobuoys for both the MOEA and MORL
phases in terms of improvement in localization and/or speed
of placement of sonobuoys over generic grid patterns. For
larger numbers of sensors the increased size of the search
space may require a more sophisticated value approximation
function for the MORL, as well as further measures to improve
computational speed and efficiency. An improved approxima-
tion function and higher computational efficiency are areas
for future research, as are the effects of complexities such as
sensor failure, sensor drift, and more complex oceanographic
simulation.
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Abstract—Moving targets typically appear smeared in syn-
thetic aperture radar (SAR) imagery, often making the task of
target recognition more difficult. Recently, research has yielded
an ability to perform Arbitrary Rigid Object Motion Autofocus
(AROMA) to generate automatically focused target images for
cases of arbitrary target rotation and translation during the
coherent processing interval of SAR collections. The current
research analyzes the efficacy of AROMA processing for targets
undergoing complicated rolling maneuvers against a background
of measured Ku-band image clutter. The results of this analysis
reveal that AROMA can yield focused target imagery that
correlates well with the true structure of the target.

Index Terms—Synthetic aperture radar, radar imaging, moving
target imaging

I. INTRODUCTION

SAR collection systems measured radar data returns over
a synthetic aperture to yield focused images of stationary
scenes for general weather conditions, day or night. However,
often moving targets exhibit smearing to an extent that target
recognition is degraded. Many investigations have examined
the properties of moving targets within SAR image data, in-
cluding Raney [1], Barbarossa et al. [2]–[4] DiPietro et al. [5],
Jakowatz, Wahl, and Eichel [6], Perry, Dipietro, and Fante [7],
and Kirscht [8]. Additionally, moving target detection has been
considered by Fienup [9] and Dias and Marques [10]. Also,
attempts to refocus such moving targets have been examined
as well [11]–[21].

Some investigations have included cases involving target
rotation, including Chen and Ling [22], Chen and Martorella
[23], Berizzi, Martorella, and Giusti [24]. Additionally, fo-
cusing for more general target motion has been examined
using methods that track individual target scattering centers,
including Weness et al. [25], Werness, Stuff, and Fienup [26],
and Carrera, Goodman, Majewski [27]. Also, the investigation
of Rigling [28] applies entropy optimization in the refocusing
of rotating targets.

Recently, an investigation has yielded an Arbitrary Rigid
Object Motion Autofocus (AROMA) capability that automat-
ically generates refocused images of targets that are permitted
to have arbitrary target rotation and translation during the
SAR synthetic aperture collection time. In effect, AROMA
is a three-dimensional (3-D) extension of the standard Phase
Gradient Autofocus (PGA) methods of Wahl, Jakowatz, et
al. [6], [29]–[31] that are applied to focus stationary scenes.

In particular, AROMA applies a 3-D maximum likelihood
methodology to estimate the defocus corrections arising from
arbitrary target rotation and translation. The use of multi-
dimensional maximum likelihood techniques is presented in
several references [32]–[34]. In addition, methods similar to
AROMA have been examined in two dimensions for the case
of atmospheric bending and delay of radar waveforms [35]–
[38]. Furthermore, the input of AROMA is comprised of the
usual complex-valued images as input, so that various image
formation methods [27], [30], [39]–[43] can be applied in
tandem with AROMA.

This analysis considers the use of AROMA refocusing for
cases of complicated target roll maneuvers during the SAR
collection interval. In particular, known target roll motion is
injected into complex SAR image data comprised of measured
Ku-band SAR images. This investigation reveals that AROMA
yields good target refocus for many cases of target rolling
maneuvers by generating focused imager which correlates well
with the true target shape.

II. AROMA PROCESSING

The major processing steps of AROMA are given in Fig-
ure 1. Multiple iterations can be applied in the overall AROMA
processing, such that the refocused target image from a given
iteration becomes the input image at the successive iteration.
This strategy can be applied by using either a fixed number
of iterations or some optimization metric, such as sharpness
or entropy.

AROMA applies maximum likelihood methods to yield
estimates of the temporal profiles of three unknown phase dif-
ference error vectors {∆ζn,∆µn,∆νn} that quantify changes
from one radar pulse to the next. Then, these phase error
vectors are integrated along the radar pulses of the synthetic
aperture to yield the required estimates of the phase error
vectors {ζn, µn, νn}. These phase error vectors are applied
to generate the refocused image at a particular iteration in the
overall AROMA processing. For the subject investigation, 15
iterations were applied to generate the final AROMA refocused
target images.

III. TARGET ROLL MANEUVERS

AROMA focus quality is evaluated by using synthetic
radar data that is generated from the reflection of radar
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Fig. 1. A functional block diagram of AROMA [44].

Fig. 2. The individual scattering centers corresponding to the emulated
synthetic target has the outline of a mobile tank target.

waveforms from point scattering centers in combination with
a background of Ku-band SAR imagery [45]. In generating
the synthetic radar data, the same radar collection parameters
as the measured Ku-band data are used. These SAR data were
collected using a broadside imaging geometry wherein the
radar main beam is orthogonal to the radar velocity vector
and the radar travels at constant altitude, speed, and heading.
For these data, the speed of the radar is V0=71.3763m/s, and
the altitude of the radar is Z0 = 1.496 km. Additionally, the
mean value of the ground-range distance between the midpoint
of the radar ground track and the imagery scene center is
X0 = 2.914 km. Furthermore, the coherent time interval of
the SAR collection is T0 = 2.017 sec. In these data, the
radar bandwidth is given by 829.6MHz, and the radar center
frequency is fc=16.8GHz.

The individual scattering centers corresponding to the emu-
lated synthetic target has the outline of a mobile tank target, as
given in Figure 2. The various graphs showing the true motion
of the injected synthetic target are given in Figures 3 and 4.
In particular, Figure 3(a) presents the true target trajectory
projected into the ground plane. Also, Figures 3(b), 4(a), and
4(b) show the true speed, heading, and roll of the injected

(a)

(b)

Fig. 3. The injected synthetic target has relatively light maneuver: (a) The
true target trajectory projected into the ground plane; (b) True speed of the
target.

synthetic target, respectively.
The injected synthetic target having the relatively light

maneuver of Figures 3 and 4 is combined with measured Ku-
band SAR image data {Imagery available via Sandia National
Lab}. The magnitude image of the combined data is presented
in Figure 5(a). For processing within AROMA, a smaller
rectangular region is selected about the moving target smear,
as given in Figure 5(b).

The selected image chip of Figure 5(b) is applied as the
input image for the AROMA processing of Figure 1. The use
of 15 iterations of the AROMA process generates the estimates
of the three phase error vectors of {ζ̂n, µ̂n, ϕ̂n}. The final
AROMA refocused AROMA target image is given in Figure 6,
revealing relatively good correspondence with the synthetic
tank target of Figure 2.

As another example, the amplitude of the variations in roll,
heading, and speed are increased significantly, as presented
in the truth curves of Figures 7 and 8. Then, the selected
image chip of Figure 9(b) is applied as the input image for the
AROMA processing of Figure 1. The use of 15 iterations of
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(a)

(b)

Fig. 4. The injected synthetic target has relatively light maneuver: (a) True
heading of the target; ;(b) True roll of the target.

the AROMA process generates the estimates of the three phase
error vectors of {ζ̂n, µ̂n, ϕ̂n}. The final AROMA refocused
AROMA target image is given in Figure 10, revealing more
degraded refocus in comparison with the synthetic tank target
of Figure 2.

IV. CONCLUSIONS

The present investigation has examined the quality of
AROMA refocus for cases of varying levels of target maneuver
per variations in target roll, heading, and speed. In the case of
a relatively small degree of target maneuver, relatively good
target focus was obtained in comparison to the true outline of
scattering centers for the injected synthetic target. However,
the resulting target focus was degraded for the case of more
moderate maneuver in terms of roll, heading, and speed.
Future work will include a more comprehensive examination
of AROMA performance for more general target maneuver.
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Abstract—Recent research has uncovered information-
theoretic means to design projection matrices in scenarios
where one information source is compressively sampled in the
presence of a secondary source. Furthermore, if both sources
can be approximated by Gaussian mixture (GM) models, it has
been shown that it is possible to learn the characteristics of
the secondary source from compressive measurements only. In
this work, we investigate techniques that exploit low-rank GM
approximations to the true distributions to reduce computational
complexity and memory requirements during source learning
and projection design. Two novel alternative projection design
strategies are also introduced. These are tested against an
existing strategy to determine which approach is superior for
low size, weight, and power (SWAP) applications. Experimental
results validate the benefits of the proposed low-rank strategies
and reveal that all projection design algorithms offer similar
levels of performance.

I. INTRODUCTION

Designing effective compression strategies is an important
problem for both civilian and defence applications. In general,
such strategies must dispose of some information to reduce
complexity and memory requirements down the signal pro-
cessing chain. In particular, when designing solutions that
are constrained by low size, weight, and power (SWAP)
requirements, data reduction is a primary step.

Linear compression strategies often make use of com-
pressive sensing [1] (CS) for effective data reduction. This
involves the projection of high-dimensional input data to lower
dimensions via random projection matrices. In practice, a
random projection might not be the best choice if we know
the statistics of the source data [2]. For example, if one is able
to effectively characterise source data via a Gaussian mixture
(GM) model, information-theoretic methods can be utilised to
design projection matrices that can prioritise signal reconstruc-
tion or classification [3]–[7]. Importantly, GM distributions can
model source data up to an arbitrary level of precision if the
number of parameters involved is unbounded [8]. Furthermore,
GM models (GMMs) can outperform sparse signal models in
some scenarios [9]. Projection matrices designed using GMMs
have been shown to be effective in a number of applications,
including in image [5] and radar processing [6].

Recent research in [5]–[7] has generalised the projection de-
sign approach for a single information source presented in [4]
by considering the presence of multiple signals of interest
prior to compression. By incorporating secondary information
sources, these more recent works are better suited to more
general signal processing scenarios. For example, in defence
applications, new — potentially adversarial — secondary

sources might appear; in this context, adequately extracting
information from or mitigating such secondary sources could
be vital. Work in [7] addressed this issue by giving specific
attention to the learning of secondary information sources
via compressive measurements — i.e., without accessing the
source data directly. Following the source learning process, it
was possible to deploy a more informed compression strategy.

While the adaptive projection design approach in [7] is
capable of dealing with new or changing secondary sources,
its memory and computational complexity requirements are
not ideal for online, low SWAP implementations. This pa-
per explores novel extensions of existing methods to test if
lower complexity options are available for GMM-based source
learning and information-theoretic projection design. Three
novel contributions are provided. The first introduces tech-
niques to learn low-rank GMM approximations to secondary
source distributions from compressive measurements. These
techniques are extended from the single-source case described
in [10]. The second contribution provides some insight into the
complexity reductions possible during projection design when
incorporating low-rank GM distributions. Finally, we introduce
two alternative projection design strategies and test their
efficacy against the established strategy of [5] to determine
if cost savings can be achieved via algorithms with faster
convergence. These alternative strategies are adapted from the
literature [5], [6], [12] to consider our specific signal model.

Below, Sec. II introduces our signal-plus-noise compressive
sensing model. Sec. III then relates this signal model to our
information-theoretic projection design framework. Sec. IV
introduces a novel approach for learning low-rank GMM
representations for secondary sources from compressive mea-
surements. Sec. V reveals the key expressions required to
implement alternative projection design strategies with the
goal of reducing convergence time. Sec. VI and Sec. VII
provide experimental results and conclusions, respectively.

Notation: Straight bold lowercase and uppercase symbols
denote vectors and matrices, respectively, and In is an n×n
identity matrix. Italicised uppercase letters denote random vec-
tors and variables; their realisations are lowercase equivalents.
Operators {·}H, E[·], diag{·}, vec{·}, and tr{·} evaluate the
Hermitian transpose, expectation, diagonal, vector form, and
trace, respectively.

II. SIGNAL MODEL

We utilise the following complex-valued signal-plus-noise
compressive sensing model:

Y = Φ(X + N) + W , (1)
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with Y,W ∈ Cm, X,N ∈ Cn, Φ ∈ Cm×n, and m� n. Such
a model generalises typical compressive sensing scenarios
where the secondary source N is not present. To facilitate the
modelling of non-Gaussian X and N, we assign the following
complex-valued GM distributions:

X ∼ px(x) =
∑Jx

c=1
zc
∑O

o=1
πc,o CN (x;χc,o,Ωc,o) , (2)

N ∼ pn(n) =
∑Jn

g=1
υg
∑K

k=1
sg,k CN (n;µg,k,Γg,k) . (3)

Here, X possesses Jx classes with probability zc, c =
1, . . . , Jx. Each class is represented by a sum of weighted
Gaussians, with weights πc,o such that

∑
o πc,o =

∑
c zc = 1,

mean vectors χc,o, and covariance matrices Ωc,o. In this
paper, we consider Gaussian measurement noise; i.e., we have
W ∼ CN (w;ν,Λ).

III. OPTIMISATION FRAMEWORK

As in previous works [5]–[7], we iteratively seek the linear
projection Φ that maximises an information-theoretic objective
function. In this case, we consider the following weighted sum
of mutual information (MI) terms:

F (Φ,β)=β1I(X;Y)+β2I(C;Y)+β3I(N;Y)+β4I(G;Y) . (4)

Here, I(X; Y) quantifies the MI between input X and output Y,
and β = [β1, β2, β3, β4] ∈ R4 controls the relative importance
of the MI terms. The classes of X and N are represented by
random variables C and G, respectively. Note that negative
elements of β will result in a Φ that reduces the relevant
information term. Research in [5] has illustrated that positive
values for β1 and β3 will yield a projection matrix with lower
reconstruction errors for X and N. Also, choosing β2, β4 > 0
will improve classification for the two sources [6].

IV. LEARNING A LOW-RANK APPROXIMATION TO THE
SECONDARY SOURCE DISTRIBUTION

A. Adapted Expectation-Maximisation Approach
We have shown in [7] that it is possible to learn the GM

distribution of a secondary source N under the signal model
of (1) via an expectation-maximisation [11] (EM) approach.
The computational complexity and memory requirements of
this approach increase with the signal dimension n due to the
required manipulation of the GMM covariance matrices. We
therefore impose a near-low-rank structure on the covariance
matrices of the learned secondary source N such that we have

Γk = FkF
H
k + η In , k = 1, . . . ,K , (5)

where Fk ∈ Cn×rk , rk � n, and 0 < η � 1. By manipulating
the ‘tall’ matrix Fk in the below approach, we reduce our
memory footprint and incur lower computational costs than
if we were to use Γk directly. Here, we have considered a
secondary source N̂ with only one class:

N̂ ∼
∑K

k=1
sk CN (n̂;µk,Γk) . (6)

We use this single-class form throughout this section to
simplify the description of the source learning process.

We learn the distribution of N̂ from Ns measurements

{yi = Φin̂i + ŵi} , i = 1, . . . , Ns , (7)

where the matrices Φi are randomly generated with elements
drawn from CN (0, 1). Each vector ŵi is an instance of

Ŵi ∼
∑D

d=1
τd CN (ŵi;νid,Λ

i
d) , (8)

τd = zc′πc′,o′ , νid=Φiχc′,o′ +ν, Λi
d=ΦiΩc′,o′Φ

H
i +Λ ,

D = JxO , c′ =
⌈
d
O

⌉
, o′=((d−1) modO)+1.

Learning the multiple classes described by the full GM distri-
bution of N can be achieved by executing the source learning
process for several batches of size Ns and recognising similar
GM distributions via, e.g., the Kullback–Leibler divergence.
Different classes will yield suitably different GM distributions.

In this low-rank form, we can express a sample from the
kth GM component of N̂ as

n̂k = Fkb + µk + u , (9)

where pb(b) = CN (b; 0, Irk) and pu(u) = CN (u; 0, ηIn). We
can therefore write

N̂∼
∑K

k=1
sk

∫
CN (n̂;µk+Fkb, ηIn) CN (b; 0,Irk) db. (10)

We use an EM approach to find the system parameters θ that
maximise the marginal log-likelihood

log py|θ(y|θ)=log
∑
k,d

∫∫
py,n̂,k,d,b|θ(y,n̂,k,d,b|θ)dn̂db . (11)

Unlike the procedure in [7], we iteratively update Fk instead
of Γk by extending the single-source work of [10]. In iteration
(t+1), we maximise the expected value of the complete log-
likelihood given access to the current system parameters θ(t):

`EC

(
θ
∣∣∣θ(t))=∑Ns

i=1
E

n̂,k,d,b|yi,θ(t)

[
log piy,n̂,k,d,b|θ(yi,n̂,k,d,b|θ)

]
.

(12)
Here, the superscript i indicates the reliance of the distribution
function on i via Φi. With θ omitted for brevity, we can write

piy,n̂,k,d,b(yi,n̂, k, d, b) =

piy|n̂,d(yi|n̂, d)pn̂|b,k(n̂|b, k)pb(b)skτd . (13)

With b̃ = [bT, 1]T and F̃k = [Fk,µk], the gradient of
`EC(θ|θ(t)) with respect to F̃k is

∇F̃k
`EC

(
θ
∣∣∣θ(t))=

Ns∑
i=1

E
n̂,k,d,b|yi,θ(t)

[
∇F̃k

log pn̂|b,k(n̂|b,k)

]
=

Ns∑
i=1

E
n̂,k,d,b|yi,θ(t)

[
−∇F̃k

(
n̂−F̃kb̃

)H
(ηIn)

−1
(

n̂−F̃kb̃
)]
. (14)

Setting the gradient to zero yields the updated parameters[
F

(t+1)
k ,µ

(t+1)
k

]
=
∑
i,d

pik,d|y(k,d|yi)
[
Ai
k,d+µ̃ik,dη̃

i
k,d

H, µ̃ik,d

]

×

∑
i,d

pik,d|y(k, d|yi)

[
Bi
k,d + η̃ik,dη̃

i
k,d

H η̃ik,d
η̃ik,d

H 1

]−1, (15)

pik,d|y(k, d|yi) = sk τd p
i
y|k,d(yi|k, d) / piy(yi) , (16)

piy|k,d(yi|k, d) = CN (yi; Φiµk + νid,ΦiΓkΦ
H
i + Λi

d) , (17)

µ̃ik,d = µk + Ci
k,dΦ

H
i (Λi

d)
−1 (yi −Φiµk − νid

)
, (18)
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η̃ik,d = FH
k ΦH

i

(
Λi
d + ΦiΓkΦ

H
i

)−1 (yi−Φiµk−νid
)
, (19)

Ai
k,d = Fk − ΓkΦ

H
i

(
Λi
d + ΦiΓkΦ

H
i

)−1
ΦiFk , (20)

Bi
k,d = Irk − FH

k ΦH
i

(
Λi
d + ΦiΓkΦ

H
i

)−1
ΦiFk , (21)

Ci
k,d = Γk − ΓkΦ

H
i

(
Λi
d + ΦiΓkΦ

H
i

)−1
ΦiΓk . (22)

Similarly, under a constraint of
∑
k sk = 1, we can obtain

s
(t+1)
k =

∑Ns

i=1 pk|y(k|yi)∑Ns

i=1

∑K
k′=1 pk|y(k

′|yi)
=

∑Ns

i=1 pk|y(k|yi)
Ns

. (23)

The above equations enable the iterative update of the low-
rank GM parameters for N. The iterative process ceases if the
log-likelihood in (11) is no longer significantly increasing, or
if a preselected number of iterations have elapsed.

B. Benefits of Reduced Rank
As a simple, representative example of the benefits of a low-

rank representation, consider the matrix multiplication opera-
tion ΦΓkΦ

H, which evaluates the covariance of component
k of N̂ after projection via Φ. Due to the iterative update of
Φ in methods such as [5], this operation must be executed
at each iteration of the information-theoretic projection design
algorithm with a complexity of order O(mn2 +m2n). If we
instead compute ΦFkF

H
k ΦH to approximate this operation

using our low-rank representation with rk = r ∀ k, we require
a complexity of order O(mnr + m2r). Since r ≤ n, our
approximation will generally have lower complexity require-
ments. Considering that such matrix multiplications form a
significant cost at each iteration of the utilised projection de-
sign algorithms, reduced computation and increased algorithm
speed should be expected. As r approaches n, the complexity
of a low-rank projection design algorithm should approach
that of a full-rank implementation. Additional benefits can be
expected if X is also given a low-rank representation.

V. TWO-STAGE INFORMATION-THEORETIC ALGORITHMS

In this section, we derive two alternative strategies for the
iterative design of projection matrix Φ subject to the objective
function in (4) with the goal of achieving faster convergence
and therefore lower system complexity.

Applying the singular value decomposition and eigenvalue
decomposition to the projection matrix and measurement noise
covariance matrix, respectively, yields Φ = UΦDΦVH

Φ and
Λ = UΛDΛUH

Λ. If UΦ = UΛ, we can choose

Ȳ = D
−1/2
Λ UH

Λ Y = D
−1/2
Λ DΦVH

Φ(X + N) + W̄ , (24)

with W̄ ∼ CN (0, Im) (assuming zero mean without loss of
generality). Below, Ez is a weighted sum of minimum mean-
square error (MMSE) matrices according to

Ez = β1Ez,x + β2Ez,c + β3Ez,n + β4Ez,g , (25)

where Ez,x and Ez,c are complex-valued versions of the
MMSE matrices for X and its classes C from [5] and Ez,n
and Ez,g are the MMSE matrices for N and its classes G.

Theorem 1 (Gradient expressions for F (Φ,β)). With G =

DΦΘ, Θ = VH
Φ, H = D

−1/2
Λ , P = GHHHHG, DΦ =

D̂ΦÎ, and Î = [Im,0], we can evaluate the following gradients
of F (Φ,β) for the signal model of (24):

∇GF (Φ,β) = HHHGEz , (26)

∇ΘF (Φ,β) = DH
ΦD−1Λ DΦΘEz , (27)

∇PF (Φ,β) = Ez , (28)

∇D̂2
Φ
F (Φ,β) = diag

{
diag

{
ÎΘEzΘ

HÎHD−1Λ

}}
. (29)

Proof. See derivations in [12] and adapt to the signal model
of (24) by using the gradient expressions in [5], [6]. �

With the above expressions, our task is now to iteratively
seek the best G = DΦΘ by updating DΦ and Θ in
sequence. Fortunately, we know ∇D̂2

Φ
F (Φ,β) and at odd

iteration numbers can update the squared singular values via
D̂2

Φ ← D̂2
Φ +µD∇D̂2

Φ
F (Φ,β) for some step size µD, subject

to a power constraint.
We consider two options for the update of the unitary matrix

Θ, which occurs at even iteration numbers. The first is a
simple gradient ascent operation such that Θ ← orth{Θ +
µΘ∇ΘF (Φ,β)}, where orth{·} identifies the nearest or-
thonormal matrix. The second approach extends the work
of [12] and expresses Θ as product of Givens rotations
Upq(ωpq, νpq) weighted by a diagonal matrix DΘ:

Θ = DΘ

1∏
p=n−1

n∏
q=p+1

Upq(ωpq, νpq) . (30)

Matrix P(ωpq, νpq) is therefore a function of ωpq and νpq .
We identify the parameter changes (δωpq, δνpq) required to
enforce a change of P(ωpq+δωpq, νpq+δνpq)−P(ωpq, νpq) =
δP(ωpq, νpq) = µP∇PF (Φ,β) = µPEz, for some step size
µP . A first-order approximation to this change is:

δP ≈ [δΘ]HÎHD−1Λ D̂2
ΦÎΘ + ΘHÎHD−1Λ D̂2

ΦÎ[δΘ] , (31)

δΘ =
1∑

p=n−1

n∑
q=p+1

∂Θ

∂ωpq
δωpq +

1∑
p=n−1

n∑
q=p+1

∂Θ

∂νpq
δνpq . (32)

Thus, if we reindex with (ωj , νj), j = 1, . . . , NG, and NG =
n(n− 1)/2, we can write

vec(ΘHÎHD−1Λ D̂2
ΦÎ[δΘ]) =

NG∑
j=1

[
vec(ΘHÎHD−1Λ D̂2

ΦÎ
∂Θ

∂ωj
),

vec(ΘHÎHD−1Λ D̂2
ΦÎ
∂Θ

∂νj
)

]
×
[
δωj , δνj

]T
, (33)

vec(δP) ≈
∑NG

i=j
Ξj

[
δωj , δνj

]T
= Ξϑ , (34)

where Ξj , Ξ, and ϑ can be inferred from the preceding equa-
tions. To update Θ, we find the parameters ϑ that minimise
‖vec(δP) − Ξϑ‖22, subject to angle constraints on ωpq and
νpq , via constrained least-squares optimisation.

VI. EXPERIMENTAL RESULTS

A. Quality of Low-Rank Approximations

1) Experiments with Synthetic Data : In this section, we
conduct simulations to confirm that low-rank approximations
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Fig. 1. (a) Log-likelihood of compressive measurements after source learning
via EM and (b) reconstruction error for N versus assumed rank of covariance
matrices Γk for actual ranks r ∈ {2, 3, 4, 5}.

to the GM distributions of secondary sources can be obtained
from compressive measurements. Synthetic input data of di-
mension n = 16 is generated for single-class inputs X and N
(Jx = Jn = 1) with O = K = 3. The weights πc,o and sg,k are
drawn from the standard uniform distribution and normalised.
The mean vectors χc,o and µg,k comprise elements drawn
from CN (0, 3

√
2/10), and the covariance matrices Ωc,o and

Γg,k are approximately low-rank and equal to instances of
FFH + ηIn, where F = QDr ∈ Cn×r, Q ∈ Cn×n is a
random unitary matrix, Dr = [D,0]T, and D ∈ Rr×r is a
diagonal matrix with elements drawn from U(10−6, 10−2) and
normalised such that tr

{
D2
}

= 0.1 for N and tr
{
D2
}

= 0.01
for X. We demonstrated the impact of the relative powers
between X and N on source learning performance in [7]. We
use a value of η = 10−4 over 102 simulation instances and
average the results. We use Ns = 1000 random measurements
and 250 iterations during the training of the GMM for N. Our
compressive measurements are of dimension m = 8. The mea-
surement noise is characterised by W ∼ CN (w; 0, 10−6Im).

In Fig. 1, we demonstrate the impact of an incorrect assump-
tion of the rank of Γk. Fig. 1(a) highlights that as the assumed
rank exceeds the true rank r ∈ {2, 3, 4, 5}, we reach a plateau
in terms of distribution log-likelihood. The log-likelihood here
quantifies the quality of fit of a distribution to the data, with
a higher log-likelihood signifying a better fit. These results
are bolstered by Fig. 1(b), which compares the mean-square
reconstruction errors obtained for N when utilising ground
truth or estimated distributions. Here, N is reconstructed from
compressive measurements obtained using a fixed, random
projection matrix and the Bayesian inference model described
in [5]. A more accurate estimation of the distribution of N will
yield a lower reconstruction error. In general, increasing the
assumed rank improves performance in terms of log-likelihood
and reconstruction error; however, there is an associated cost
in terms of computational complexity. Table I illustrates this
by comparing the assumed rank with the time taken for source
learning to complete. An approximately linear relationship is
observed, with each increase in assumed rank increasing the
run time by 7.2 seconds on average.

To test how low-rank models benefit projection design
complexity, we paired GMMs with known rank with a low-
rank-optimised version of the method of [5]. Using this

TABLE I
SOURCE LEARNING RUN TIME VERSUS ASSUMED RANK

Rank 1 2 3 4 5

Time 61.6 s 69.6 s 76.0 s 82.4 s 90.3 s

4 6 8 10 12

5.5

6

6.5

7

Fig. 2. GMM rank versus required projection design execution times. The
original method of [5] is compared with a low-rank-optimised version.

version, we were able to design projection matrices with
m ∈ {2, 4} that maximised the objective function of (4) with
β = [1, 0, 0, 0]. Fig. 2 compares the algorithm run times
(averaged over 102 instantiations) after 100 iterations when
using low-rank covariance matrices for X and N — with
the distributions for each input as given above and known
a priori during projection design. Here, we can observe an
approximately linear relationship between rank and algorithm
execution time for the optimised implementations, with an
approximate 10% decrease in computation time for a rank
of r = 4. As the rank increases, we return to the execution
times demanded by a non-rank-optimised projection design
implementation.

2) Experiments with Real Radar Data : In this section,
we test the ability of the proposed low-rank source learning
methodology to estimate the distribution of an unknown sec-
ondary source. For this, we use a radar dataset that emulates
a test scenario in which two helicopters are present. The data
is in the form of recorded micro-Doppler [13] radar returns
from two static fans with rotating blades. Each fan had three
potential speeds, which we consider as classes. The returns
from the first and second fans are assigned to inputs X and N
respectively, in a fashion that replicates the steps of [6], [7].
We refer the reader to these works for a full description of the
data processing involved.

Our test scenario involves a priori knowledge of the GM
distribution for X, which is of dimension n = 32 and has
Jx = 3 classes with O = 1 component each. We deploy a
low-rank version of the method from [7] on a vector-valued
sequence of radar returns of length NT = 4250 obtained when
Fan 1 (X) is rotating at its slowest speed (class 1). The middle
3000 samples of this sequence are corrupted by additive noise
in the form of Fan 2 (N) rotating at its slowest speed. Under
the assumption of N ≈ 0, we have an initial Φopt ∈ C4×n

that has been designed to maximise the classification accuracy
for X according to Sec. III with β = [0, 1, 0, 0]. We wish
to use compressive measurements of dimension m = 16
obtained from the middle 3000 samples to approximate the
distribution of the present class of N with K = 1, and to
use this approximation to design a more effective Φopt. Our
measurement noise covariances during source learning and
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TABLE II
CLASSIFICATION ACCURACY (CA) FOR X VERSUS ASSUMED RANK

Rank 8 10 12 14 16

CA 60.3% 65.8% 70.6% 71.1% 71.2%
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2
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0.08

0.09

0.1

Fig. 3. Reconstruction error for X versus algorithm iteration for the original
gradient ascent approach as implemented in [5] and the developed (i) dual
gradient ascent and (ii) Given’s rotation-based two-stage implementations.

projection design are 10−6Im and 10−6I4, respectively.
Our low-rank learning approach is applied to the data se-

quence for assumed ranks r ∈ {8, 10, 12, 14, 16}. The source
learning process was allowed to run for 2000 iterations or
until the change in log-likelihood between iterations dropped
below 1. Table II shows the resulting classification accuracies
for X for an identically constructed, unseen sequence of data
following the redesign of Φopt for each assumed rank. As
with the synthetic data, we see the performance increase with
the assumed rank until the underlying rank is matched —
at which point, the performance plateaus. From this, we can
ascertain that this class of N can be adequately modelled with
a covariance matrix of rank r=16; however, r=12 would re-
duce complexity without significantly impacting performance.
The classification accuracy when using the original Φopt —
without accounting for the presence of N — was 29.7%.

B. Comparing Projection Design Strategies

In this section, we deploy the projection design strategies
of [5] and Sec. V with β = [1, 0, 0, 0] on a full-rank version
of the simulation scenario of Sec. VI-A1 with m = 3 and
n = 9. Results are averaged over 102 randomised instances
with source parameters as defined above. Here, we do not
normalise tr

{
D2
}

and we use W ∼ CN (w; 0, 10−2Im). All
projection matrices were normalised such that tr

{
ΦΦH

}
= m.

By plotting the mean-square reconstruction error for input
X over 200 projection design iterations, Fig. 3 demonstrates
that all considered strategies perform similarly on average,
subject to small deviations in algorithm convergence due to
the respective gradient ascent step sizes, which were deter-
mined experimentally. Here, for a low number of algorithm
iterations, the proposed two-stage implementations offer a
slight advantage. While they do not allow us to concretely
favour one algorithm over another, these simulations validate
earlier research that utilised a more straightforward gradient
ascent approach [5], [6], since performance upon convergence
is approximately equal for all methods.

VII. CONCLUSIONS

In this paper, we have investigated techniques that exploit
low-rank GMM approximations to source data distributions to
reduce computational complexity and memory requirements
during source learning and projection design. Simulations with
both real and synthetic data have validated the benefits of
the proposed low-rank strategies. Importantly, reducing the
rank can decrease computational complexity for low SWAP
applications while only slightly lowering performance. The
proposed techniques can be extended to existing applications
in imaging [5] and radar [6], and to additional scenarios in
which unseen secondary sources of information might appear.

Two novel projection design strategies were introduced
and tested against an existing method to determine which
approach offers superior convergence and therefore could
be more advantageous in low SWAP applications. Since all
algorithms performed similarly, the simple gradient ascent
approach proposed in [5] is likely to be the best choice.
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Abstract— There is an increasing deployment of Internet-of-

Things (IoT) networks, from smart meters and smart lighting to 

humidity soil sensors and medical wearable devices. Long Range 

(LoRa) is one such over-the-air (OTA) transmission IoT 

standard, having a wide range of applications in smart cities, 

agriculture and health. It facilitates the inter-connection of 

services and smooth exchange of information. However, owing 

to its wireless interface, it is susceptible, as all wireless networks 

are, to OTA attacks. In this paper, we initially obtain the Bit 

Error Rate (BER) and Packet Error Rate (PER) of LoRa, in 

order to investigate the impact of continuous and reactive 

jamming attacks on it. We show that overall, LoRa can achieve 

a good performance even under a jamming attack, subject to 

parameters such as the transmit power, the Spreading Factor 

(SF) and the Coding Rate (CR). Moreover, it is proven that the 

impact on BER and PER is similar irrespective of whether the 

attack occurs with total frame synchronization or is 

synchronized to after the preamble transmission. Lastly, we 

apply a detection scheme, based on previous values of Received 

Signal Strength Indicator (RSSI) and PER to successfully 

identify malicious attacks. 

Keywords—LoRa, LoRaWAN, PHY Security, Jamming. 

I. INTRODUCTION  

There is a wide deployment of Internet of Things (IoT) 

networks in smart cities/buildings, healthcare, and industrial 

applications. However, wireless networks in general are 

susceptible to cyber-attacks. Therefore, it is crucial to “build” 

secure and agile future networks by developing detection and 

defense mechanisms. 

   A well-known IoT technology is the Long Range (LoRa) 

standard, developed by Semtech. It has wide ranging use 

cases such as smart parking, waste management, smart 

meters, lighting, agriculture, healthcare, smart industrial 

control, supply chain and logistics [1]. In the UK, The Things 

Network (TTN) has been initially deployed in Cambridge and 

is expanding elsewhere. TTN is based on Long Range Wide 

Area Network (LoRaWAN) [2], a Low Power Wide Area 

Network (LPWAN) technology that operates on top of the 

proprietary LoRa protocol stack (originally developed to 

connect battery and low-power devices wirelessly to the 

internet) [2]. It constitutes a STAR network topology that 

uses gateway devices for receiving data from nodes and 

forwarding it onto LoRaWAN servers [3]. LoRaWAN allows 

geographically spread devices connectivity, securing bi-

directional communication, mobility, and localisation 

services, and provides open-source software for hardware 

gateways and backend services [4].  

   LoRa features low-power operations, long range 

communications and low data rates. Table I provides an  

Table I. LoRa Specifications (Europe). 
Parameter Values (approx.) 

Frequency 868-870 MHz 

Bandwidth (UL) 125/250 kHz 

(DL) 125 kHz 

EIRP max 20dBm 

Link Budget 155 dB 

Spreading Factor 7-12 

Data Rate 250bps – 50kbps 

Battery Life 106 months (2000mAh) 

Coverage (urban) up to 5km 

(rural) up to 15km 

 

overview of LoRa specifications in Europe. Ten channels are 

defined in total, with eight having multi data-rate of 250bps- 

5.5Kbps, a single channel with high data rate (11Kbps), and 

a single Frequency Shift Keying (FSK) channel at 50kbps [3]. 

As LoRa is an over-the-air (OTA) transmission standard, it is 

susceptible to cyber-attacks. There are two levels of security 

in LoRa: (a) network level security (authentication of node, 

providing integrity between the device and the network server 

- NwkSKey), and (b) application layer security 

(confidentiality with end-to-end encryption between the 

device and the application server - AppSKey) [4]. Most 

important identified LoRa vulnerabilities are related to the 

encryption keys, which are the key to attack the network once 

compromised [3,4]. 

   State-of-the-art research has shown that additional security 

can be attained by employing physical layer (PHY) security. 

In general, PHY security entails: information-theoretic 

security, artificial noise aided security, security-oriented 

beamforming techniques, diversity-assisted security 

approaches, and physical-layer secret key generation [1,2]. 

The latter has gained a lot of attention in the LoRa standard. 

In [3], authors investigate the employment of different 

algorithms based on PHY key generation to a LoRaWAN 

network, looking at both static and mobile scenarios, 

achieving 13Mbit/s and 21Mbits/s key establishment rates. 

Moreover, [4] presents indoor and outdoor LoRa network 

experiments on secure key generation achieving higher key 

establishment rate of 31Mbits/s in mobile scenarios. In [5], 

the authors show that wireless key refreshment is feasible 

even in cases where an eavesdropper is close to the legitimate 
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nodes. Interestingly enough, [3] presents a Machine Learning 

approach on generating security keys by converting wireless 

signals into structured datasets. In [4], PHY key generation is 

employed to LoRaWAN by using differential equations to 

achieve a great degree of randomness. 

   In this paper, we aim to initially evaluate the performance 

of LoRa, by building a LoRa-like Matlab simulator. 

Performance results are benchmarked to published results [5] 

to ensure the correct operation of our simulator. Then, we 

investigate the impact of various jamming attacks on the 

performance for different Spreading Factors (SF) and Coding 

Rates (CR). A detection mechanism is then applied, based on 

setting a threshold, related to Packet Error Rate (PER) and 

Received Signal Strength Indicator (RSSI), that provides the 

LoRa-like simulator with the opportunity to correctly identify 

a potential threat, i.e., jamming attack. 

   This paper is organised as follows: Section II presents the 

generic LoRa architecture, the PHY and the frame format, as 

well as the working specifications of the LoRa simulator 

developed in the University of Bristol. Section III gives an 

overview of performance results, starting from mean Bit 

Error Rate (BER) and PER under normal operation, and then 

analysing the performance impact of different jamming 

attacks. Finally, Section IV discusses the results of our 

research along with recommendations for future work.  

II. LORA PHY 

A. Architecture 

   In a LoRa-LoRaWAN network, as depicted in Fig. 1, the 

end nodes, for e.g., smart meters, communicate with the 

gateways via the LoRa PHY. The gateways are connected to 

the network server via 3G/Backhaul Ethernet, and the 

network server communicates with the application server 

based on the TCP/IP SSL secure payload. Our focus in this 

paper falls on the connectivity between the end-nodes and the 

gateways, as we investigate LoRaWAN from the PHY layer 

perspective (LoRa). 

   LoRaWAN uses three different classes of devices to trade 

off network downlink (DL) communication latency against 

battery duration and optimise performance [3]. Class A 

entails bi-directional end-devices, whose UL transmission is 

followed by two short DL receive windows [3], based on 

ALOHA-type of protocol. This is the lowest required power 

class for applications that only require DL communication 

from the server shortly after the UL transmission. Class B 

comprises of bi-directional end-devices that require 

scheduled receive slots, allowing the server to identify active 

end-devices that are listening. Finally, bi-directional end-

devices with maximal receive slots fall into the Class C 

category, with devices almost constantly opening receive 

windows [3]. In this Section, we focus on the LoRa PHY 

standard, discussing the frame format, the encoding and 

decoding process, and the modulation/demodulation 

employed by the standard. Since LoRa is a proprietary 

standard, the description of LoRa architecture and operation 

is based on research papers, online available material and 

reverse engineering results.  

   Overall, the LoRa PHY architecture is depicted in Fig. 2. It 

should be noted that some sources [6] define that data-

whitening proceeds Hamming encoding. As shown in Fig. 2, 

there are four distinct operations comprising the LoRa 

encoding: (a) Hamming encoding, which adds parity bits, (b) 

data-whitening, which provides de-correlation of data, 

removing DC-bias in the transmitted data, (c) bit-

interleaving, which scrambles bits to provide better immunity 

to burst errors (fading), and (d) gray-mapping, which reduces 

errors in adjacent bits by making adjacent symbols in the 

original representation only differ by one bit in the gray 

representation [6].  

   Encoding is followed by modulation. The LoRa standard 

uses Chirp Spread Spectrum (CSS) modulation. CSS 

modulation uses wideband frequency modulated chirp pulses 

to encode data. A chirp refers to a sinusoidal signal that 

increases/decreases in frequency over time.  

   The input symbol is spread on different frequencies and 

different time instances. The value of the SF, which takes 

values from 7 to 12, denotes the number of raw bits that can 

be encoded by the symbol and all the possible chip values 

(2�� ). The number of samples for every input symbol is 

given by the sampling frequency divided by the symbol rate, 

and for each sample the symbol value is cyclically shifted. To 

encode a LoRa symbol � in a chirp, a starting offset is added 

to the frequency sweep. The starting offset is given by [6]:  

          �����	
 = �
��ℎ
2��� � �, where    � ∈ �0, 2�� − 1�.         (1)                                             

The bandwidth is restricted to ��� − 
��ℎ 2� , �� + 
��ℎ 2� � , 

and thus, the instantaneous frequency is linearly increased to 

the maximum frequency (�� + 
��ℎ 2� ), and then wrapped to 

the minimum frequency ( �� − 
��ℎ 2� ). The instantaneous 

Fig. 1 LoRaWAN Architecture [6]. 

Fig. 2 LoRa PHY. 

Fig. 4. Example of Bit Interleaving. 

Fig. 3. LoRa frame format. 
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frequency of the LoRa symbol � at time �, with � ∈ �0 ��� 

and �� denoting the symbol period, is given by [10]: 

          ���� = � !"
#
$%& + ' !"
#

()
�  �*+, 
��ℎ ,              (2)     

where '  defines if we have an upchirp ( ' = 1 ) or a 

downchirp (' = −1).  

   Demodulation and extracting symbols in a LoRa packet 

requires: (a) channelising and resampling the signal to the 

chirp bandwidth, (b) de-chirping with a locally generated 

signal, (c) taking the Fast Fourier Transform (FFT) of the de-

chirped signals (where the number of FFT bins equals the 

spreading factor), and (d) extracting the maximum value from 

each FFT to obtain the symbol. Accurate synchronisation on 

the Start Frame Delimiter (SFD) is essential for 

demodulation. This is because incorrect synchronisation can 

spread the symbol energy between adjacent FFTs, resulting 

in incorrect demodulation. Lastly, the receiver performs 

synchronisation and frequency-offset estimation and 

compensation prior to demodulation. More details on the 

operation of the aforementioned blocks are given in Section 

II.B, with regards to the LoRa simulator developed in Matlab. 

Lastly, Fig. 3 depicts the LoRa frame format. 

B. LoRa-Like Simulator 

   A LoRa-like simulator is developed using Matlab, partially 

based on the work presented in [5]. The frame consists of 8 

symbols in the preamble, 2 symbols in the frame 

synchronisation field and 2.25 symbols in the frequency 

synchronisation field, 7 symbols in the header, variable 

length payload filed (depending on the simulation), and a 2-

byte CRC field. 

 

1) LoRa Encoding 

   The input data is randomly generated in binary format and 

converted to decimal (and back) depending on the stage of 

the encoding: 

   a) Hamming Encoding: Hamming codes (HC) belongs to 

the family of cyclic redundancy codes that check the integrity 

of the received message. A hamming encoder adds a number 

of parity bits that helps to detect and/or correct errors at the 

receiver during decoding. In LoRa, four CRs are available: a) 

4/5 (simple parity check), b) 4/6 (shortened HC), c) 4/7 

(common HC), and d) 4/8 (extended HC), with the first two 

CRs providing only error detection and the last two able to 

support error correction as well. 

   b) Data Whitening: During the data whitening, the 

transmitter XORs the transmit frame with a pseudorandom 

sequence, and the receiver XORs the received frame with the 

same sequence. Randomising data in this way attains receiver 

synchronisation similar to Manchester coding. However, 

unlike Manchester coding, it provides the advantage of 

keeping the same data rate at the cost of not having the 

guarantee of removing any DC-bias albeit with a very high 

probability of removing it [6]. 

   c) Bit-Interleaving: Interleaving is a very-well known 

process in communications systems. The aim is to spread the 

bits comprising a codeword between multiple symbols. There 

are several ways of scrambling data during interleaving. Most 

sources in LoRa are not specific on the kind of interleaving 

employed. In our simulator, we perform simple interleaving 

by taking the transpose of the original data whitened matrix 

and mixing bits as shown in the Fig. 4.  Reverse engineering 

work performed claims to have identified a special way of 

interleaving data in LoRa, based on using diagonals to 

scramble the bits [6]. 

Fig 5. LoRa I/Q symbols for SF=7 and CR=4.      

Fig. 7: Mean BER for CR=1 and (left) SF=7,8,9, (right) 

SF=10,11,12. 

Fig. 8: Mean PER for CR=1 and (left) SF=7,8,9, and (right) 

SF=10,11,12. 

Fig. 9: Performance for SF=7,8,9 and CR=4 and (left) BER, 

(right) PER. 

Fig. 6: LoRa network with one jammer attempting to attack 

the network. 
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   d) Gray Mapping: In general, gray-mapping entails the 

mapping between a symbol, in any numeric representation, to 

a binary sequence. The input to the gray-mapper is XOR’d 

with a shifted version of itself. The Gray code we apply is 

given by -. = 
. /01 �
. ≫ 1  where 
.  is the left 

most significant bit binary representation of 3. On top of the 

mapping, a shift of -1 is used. At the receiver, a reverse to the 

encoding process is applied in order to retrieve the original 

symbols. 

 

2) LoRa Modulation/Demodulation 

   The input to the modulator is a vector containing decimal 

values from �0, ⋯ ,  2�� − 1�. The modulation process follows 

the steps defined in Section IIB. For every symbol (decimal 

value), there are 5�  samples. Once the instantaneous 

frequency is chosen (2), the instantaneous phase of the LoRa 

symbol � at time � (� ∈ �0 �6�) is calculated: 

                          7��� = 28���� �                                      (3) 

Lastly, the complex LoRa symbol at time � (� ∈ �0 �6�  is 

given by: 

                      6�� = 9+67��� + :6;37���                           (4)           
 

   At the demodulator, a default sequence of all zeros is CSS 

modulated and multiplied by the received sequence, 

separately for the preamble, and separately for the 

header/payload field. Then, having a choice between non-

coherent and coherent detection, the data is demodulated. In 

the case of non-coherent detection, the maximum of the FFT 

window is taken. When coherent detection is active, then the 

resulting data is convolved with an ideal FSK signal, and the 

maximum real value is chosen. As shown in Section III, 

coherent detection offers a better performance. The I/Q LoRa, 

for the case of SF=7 and CR=4, are depicted in Fig. 5. 

 

3) LoRa Cyclic Redundancy Code (CRC) 

   CRC is available only at the UL and has a size of 2 bytes. 

It belongs to the family of block codes and is applied to detect 

changes (errors) to the transmitted data. It entails a binary 

division of the actual data by a predetermined divisor, 

generated using polynomials. Based on [6], the polynomial 

used in LoRa is given by 

                            <=> + <=$ + <? + 1.                               (5)                        

Moreover, findings in [3] show that the CRC bytes in the 

payload are not taken into account in the CRC calculation, 

but they are used as the final XOR value. 

III. LORA SYSTEM PERFORMANCE 

   LoRaWAN performance results are captured from several 

Matlab simulations in terms of the Bit Error Rate (BER) and 

Packet Error Rate (PER). The length of the payload is set to 

17 bytes with all other fields in the frame having a pre-fixed 

length according to simulator definition parameters given in 

Section IIB. We consider one LoRa sensor transmitting to a 

gateway, and one jammer attempting to intrude the network, 

as depicted in Fig. 6. Unless stated otherwise, the transmit 

power at the legitimate node is set to 12dBm.  

A. LoRa General Performance 

   We consider transmission over an Additive White Gaussian 

Noise (AWGN) channel  

@�� = 6�� + A��                                    (6) 

where @��  is the received signal at the gateway, 6��  is the 

CSS modulated LoRa signal transmitted by the LoRa sensor, 

and A��  represents the AWGN, with A ∈ BC�0, D$ . We 

consider both coherent and non-coherent detection. Fig. 7 

(left) presents the BER for a rate code (1- = EF
EFG=, where -1 

Fig. 10. BER (left) no jamming, and (right) with CW 

jamming.  

Fig. 11. Reactive jamming: Mean BERs for SF=7 and CR=1 

Fig. 13. Jamming Preamble BER (SF=7, CR=1), (left) total 

sync, (right) attack after preamble. 

Fig. 12. Schematic of a preamble related attack. 

Fig. 14. Reactive jamming detection with RSSI and PER 

threshold. A set of attack-sessions denoted by 1 (left) mixed 

with no attack-sessions denoted by 0 (left) are simulated. 
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is the coding rate) of 4/5 (i.e., CR=1), and all available SFs, 

i.e., SF=7-12. For the same specifications, Fig. 7 (right) 

depicts the respective PER. Fig. 8 depicts the mean BER and 

PER for a coding rate 4/8 (i.e., CR=4) and SF=7,8,9. Overall, 

it can be observed that the higher the SF, the better the BER 

and PER. This is because higher SFs attain higher symbol 

energy. Moreover, as we switch from CR=1 to CR=4, an 

improved BER performance can be observed, as expected. It 

should be noted that our results are aligned with published 

results in [5], thus validating the accuracy of our LoRa-like 

simulator, using similar parameters. It can be observed that 

Fig. 8 (left) attains similar PER as in Fig. 9 for SF=7,8,9 as 

in [5]. 

B. LoRa Performance Under Attack 

   There are various types of attacks that can be anticipated in 

a LoRa network. Investigation is performed on two types of 

jamming: (a) continuous jamming, where the jammer 

continuously transmits independently of whether a legitimate 

transmission takes place or not, and (b) reactive jamming, 

where the jammer attempts an attack only when they sense a 

legitimate transmission [2]. Initially, the case of having a 

continuous jammer is simulated. Assuming that the attacker 

transmits an asynchronous continuous wave (CW) signal at 

868MHz over an AWGN channel for SF=7 and CR=1, the 

degradation in performance is depicted in Fig. 10. As 

compared to the case without jamming, for asynchronous 

jamming, a much higher SNR is required to maintain the 

same BER. For example, whilst a mean BER of 10HI  is 

attained at an SNR of -10dB under normal LoRa operation 

(Fig. 10 left), at similar SNRs, the BER degrades by two 

orders of magnitude to 10H=  under asynchronous CW 

jamming (Fig. 10 right). Moreover, considering reactive 

jamming, the received signal at the gateway is given by 

@�� = 6J�� + 6K�� + A��                       (8) 

where @��  is the received signal at the gateway, 6J��  is the 

CSS modulated LoRa signal transmitted by the legitimate 

LoRa sensor, 6K��  is the CSS modulated LoRa signal 

transmitted by the attacking node and A��  represents the 

AWGN. For SF=7, Fig. 11 shows the mean BER for the case 

of CR=1. The ratio of the legitimate node’s transmit power 

over the power of the attacker is denoted by L . It can be 

observed that for L < 0.9, the system breaks, i.e., packets 

cannot be transmitted correctly. 

   Lastly, we consider the case that a reactive jamming attack 

is performed either in total frame synchronisation between 

the attacker and the legitimate node, or right after the end of 

the preamble transmission from the legitimate node’s end, as 

described in Fig. 12. For SF=7 and CR=1, the comparison 

between the two cases is depicted in Fig. 13. Taking O�P as 

the transmit power of the attacker varying from 4dBm to 

15dBm, with the legitimate node having a transmit power of 

12dBm, we can observe that when the attacker transmits at 

13dBm or lower, a good BER can be achieved. Furthermore, 

no major difference, on the performance, is observed if there 

is no total synchronisation between the transmissions of the 

attacking and the legitimate node. 

C. LoRa Detection of Attacks 

   One of the most popular detection mechanisms against 

cyber-threats is the establishment of a threshold, typically 

related to RSSI and PER, based on their values from previous 

observations. This method is particularly suitable for 

networks in environments that are highly static or with slow 

changes (e.g., static sensor in a rural area) where severe 

changes in the environment are not anticipated allowing the 

setting of a threshold to detect any threats on the network. 

   We have chosen to set both an RSSI and a PER threshold. 

For SF=7 and CR=1, the values of the thresholds, based on 

previous observations (i.e., extensive simulations), were 

taken as -126dBm for the RSSI case, and 0.001 for the PER 

case. Again, for a payload length of 17 bytes and reactive 

jamming on the network, a set of attack-sessions (denoted by 

1) mixed with no attack-sessions (denoted by 0) are simulated 

(10 trials overall) to observe if attacks can be identified on 

both metrics. The sequence of events was 0011100010. As 

shown in Fig. 14, attacks were correctly detected. Moreover, 

for each event the corresponding RSSI value is depicted. 

IV. CONCLUSIONS 

      In this paper, we modeled transmissions between LoRa 

nodes and gateways. BER/PER under normal operation is 

assessed. Multiple jamming attacks were performed to study 

the networks’ performance under their impact. Asynchronous 

continuous jamming had an impact on the performance, 

however, transmissions were still possible. It was shown that 

the performance variation between attacking the network 

with total synchronisation and attacking it after the preamble 

transmission was not substantial. In the case of reactive 

jamming, if the transmit power of the jammer was not 

considerably higher than that of the legitimate node, good 

BERs were attained.  An RSSI and PER threshold were 

employed to successfully detect any possible threats. For 

future investigation, we propose using RSSI values to ‘train’ 

the LoRa network and apply PHY key generation exchange 

between the legitimate nodes to secure the network against 

malicious attacks 
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