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SSPD Conference 2021 - Welcome 

Dear Colleagues, 

 

We warmly welcome you to this year’s SSPD Conference, our first hybrid conference. This event is the 

10th conference of the Sensor Signal Processing for Defence series and provides a chance to present, 

listen to and discuss the latest scientific findings in signal processing for defence.  

 

We are privileged to have our two keynote speakers, René Vidal from Johns Hopkins Mathematical 

Institute for Data Science and Hugh Griffiths from the Science Expert Committee (DSEC) / University 

College London. The SSPD 2021 conference also welcomes our invited speakers; Mark Briers, The Alan 

Turing Institute; Tien Pham, (CISD) U.S. DEVCOM ARL; Alan Hunter, University of Bath. 

 

A welcome also extends to our panel speakers from Defence, Industry and Academia and the presenters 

of scientific papers presenting their novel research through live oral presentations. We look forward to 

some interesting debate and discussion throughout the conference. 

 

We would like to take this opportunity to thank the speakers, reviewers, session chairs and the technical 

committee for their contribution to this event. 

 

We hope you enjoy our conference. 

 

 

Mike Davies 

 

Chair, SSPD 2021 

 

 

 

 
Technical sponsorship is provided by IEEE Signal Processing Society and the IEEE Aerospace and Electronic 

Systems Society. Proceedings will be submitted to the Xplore Digital Library. The conference is organised by 

the University Defence Research Collaboration (UDRC) in Signal Processing, sponsored by the Defence 

Science and Technology Laboratory (Dstl) and the Engineering and Physical Sciences Research Council 

(EPSRC).  
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Location: Playfair Library Hall, Old College, University of Edinburgh, South Bridge, 
Edinburgh EH8 9YL. 
Tuesday 14th September 2021 

8:30 to 9:00 Refreshments 
 
Session 1 – Imaging and Underwater Signal Processing - Chair Stephen McLaughlin, Heriot-Watt 
University 

9:00 Introduction and Welcome to Day 1/Session 1 – Stephen McLaughlin 

9:05 – 9:35 Invited Speaker: Multi-Spectral and Multi-Modal Underwater Acoustic Imaging, Alan 
Hunter, University of Bath. 

9:35 – 10:00 Fast Classification and Depth Estimation for Multispectral Single-Photon LiDAR Data, 
Mohamed Amir Alaa Belmekki1, Steve McLaughlin1, Abderrahim Halimi1, 1Heriot-Watt University. 

10:00 – 10:25 Spaceborne SAR based assessment of nuclear test effects: the case of North Korea, 
Nicomino Fiscante1, Filippo Biondi2, Pia Addabbo3, Carmine Clemente4, Gaetano Giunta1, Danilo 
Orlando5 1University of Study “Roma TRE”, 2University of Study of “L’Aquila”, 3University “Giustino 
Fortunato”, 4University of Strathclyde, 5University “Niccolo Cusano”. 

10:25 – 10:50 The Maximal Eigengap Estimator for Acoustic Vector-Sensor Processing, Robert L 
Bassett1, Jacob Foster1, Kay Gemba2, Paul Leary1, Kevin B. Smith1, 1Naval Postgraduate School, 2U.S. 
Naval Research Laboratory. 

10:50 – 11:20 Refreshments 

Session 2 – Mixed Panel Discussion and Posters - Chair - Jordi Barr, Dstl 

11:20 Introduction and Welcome to Session 2 – Jordi Barr 

11:20 – 12:20 Mixed Panel Discussion: The defence sector is inherently risk-averse in the face of 
disruptive R&D. How would you enable more rapid adoption of novel, beneficial technology? 
Moderator, Jordi Barr, Dstl. 

12:20 – 12:50 Lightning Presentations  

• P1. Joint surface detection and depth estimation from single-photon Lidar data using 
ensemble estimators, Kristofer Drummond1, Agata Pawlikowska2, Robert Lamb2, Steve 
McLaughlin1, Yoann Altmann1, 1Heriot-Watt University, 2Leonardo. 

• P2. Detecting LFM Parameters in Joint Communications and Radar Frequency Bands, Kaiyu 
Zhang1, Fraser K Coutts1, John Thompson1, 1University of Edinburgh. 

• P3. Joint Spatio-Temporal Bias Estimation and Tracking for GNSS-Denied Sensor Networks, 
Sofie J. J. Macdonald1,2, James R Hopgood1, 1University of Edinburgh, 2Leonardo. 

• P4. Detection of Human Target Location Under Simulated Randomized Rubble Using Global 
Fresnel's Reflection Coefficient, Amit Sarkar1, Debalina Ghosh1, 1Indian Institute of 
Technology Bhubaneswar. 
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• P5. Semi-supervised domain adaptation via adversarial training, Antonin 
Couturier1, Anton-David Almasan1, 1Thales. 

• P6. Fast Givens Rotation Approach to Second Order Sequential Best Rotation Algorithms, 
Faizan Khattak1, Stephan Weiss1, Ian Proudler1, 1University of Strathclyde. 

• P7. Target Detection and Recognition of Ground Penetrating Radar using Morphological 
Image Analysis and Graph Laplacian Regularisation, Jun Dong1, Vladimir Stankovic1, Nigel 
Davidson2, 1University of Strathclyde, 2Dstl. 

• P8. Object Detection in EO/IR and SAR Images Using Low-SWAP Hardware, Richard O Lane1, 
Adam Wragge1, Wendy Holmes1, Stuart Bertram1, Tim Lamont-Smith1, 1QinetiQ. 

• P9. Exponential Filters for Passive Underwater Acoustic Detections - A Global Processing 
Gain Perspective, Stephane Blouin, Defence Research and Development Canada. 

12:50 – 14:00 Lunch and Poster Presentations – There will be an opportunity to view posters either 
online or at Edinburgh. 

Session 3 RF Sensing and Communications - Chair – Gary Heald, Dstl 

14:00 Introduction and Welcome to Session 3 – Chair – Gary Heald 

14:00 – 15:00 Defence Keynote Speaker: Why Defence Acquisition is Difficult, Hugh Griffiths, 
Defence Science Expert Committee (DSEC) / University College London. 

15:00 – 15:25 An Approximate Likelihood Ratio Detector for QTMS Radar and Noise Radar, David 
Luong1, Bhashyam Balaji2, and Sreeraman Rajan2, 1Carleton University, 2Defence Research and 
Development Canada. 

15:25 – 15:45 Refreshments 

15:45 – 16:10  Detection of Weak Transient Signals Using a Broadband Subspace Approach, Stephan 
Weiss1, Connor Delaosa1, James Matthews2, Ian Proudler1, Ben Jackson3, 1University of Strathclyde, 
2PA Consulting, 3Dstl. 

16:10 – 16:35 Rate Splitting Multiple Access for Multi-Antenna Multi-Carrier Joint Communications 
and Jamming, Onur Dizdar1, Bruno Clerckx1, 1Imperial College London. 

16:35 – 16:45 Closing remarks 

---------------------------- 
19:30 Conference Reception Drinks 
 
20:00 Conference Dinner 
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Wednesday 15th September 2021 

8:30 to 9:00 Refreshments 

Session 4 Distributed Processing and Tracking – James Hopgood, University of Edinburgh 

9:00 Introduction and Welcome to Day 2/Session 4– James Hopgood 

9:05 – 9:35 Invited Speaker: Optimising and Understanding the Impact of the NHS COVID-19 app 
Using Data Science Mark Briers, The Alan Turing Institute. 

9:35 – 10:00 Adaptive Kernel Kalman Filter, Mengwei Sun1, Mike E Davies1, Ian Proudler2, James R 
Hopgood2, 1University of Edinburgh, 2University of Strathclyde. 

10:00 – 10:25 Detection of Malicious Intent in Non-cooperative Drone Surveillance, Jiaming Liang1, 
Bashar I. Ahmad2, Mohammed Jahangir3, Simon Godsill1, 1University of Cambridge, 2Aveillant Thales 
Land and Air Systems, 3University of Birmingham. 

10:25 – 10:50 Modelling bi-static uncertainties in sequential Monte Carlo with the GLMB model, 
Murat Uney1, Alexey Narykov1, Jason F. Ralph1, Simon Maskell1, 1University of Liverpool. 

10:50 – 11:15 Graph Filter Design for Distributed Network Processing: A Comparison between 
Adaptive Algorithms, Atiyeh Alinaghi1, Stephan Weiss1, Vladimir Stankovic1, Ian Proudler1, 1University 
of Strathclyde. 

11:15 – 11:45 Refreshments 

Session 5 – Mixed Panel Discussion – Chair - TBC - Dstl 

11:45 Introduction and Welcome to Session 5 – TBC, Dstl  

11:45 – 12:45 Mixed Panel Discussion: The TRL model impedes algorithmic development. How does 
the defence community need to change to reduce barriers and increase opportunities?, Moderator, 
TBC, Dstl. 

12:45 – 13:45 Lunch 

Session 6 – Machine Learning and Information Processing – Chair Mike Davies, University of 
Edinburgh  

13:45 Introduction and Welcome to Session 6 – Chair – Mike Davies 

13:45– 14:45 Academic Keynote Speaker: Semantic Information Pursuit, René Vidal, Johns Hopkins 
Mathematical Institute for Data Science  

14:45 – 15:15 Invited Speaker: AI-enabled Multi-Domain Processing and Analytics for Decision 
Making, Tien Pham, (CISD) U.S. DEVCOM ARL. 

15:15 – 15:45 Refreshments 

15:45 – 16:10 Approximate Proximal-Gradient Methods, Anis Hamadouche1, Yun Wu1, Andrew M 
Wallace1, Joao Mota1, 1Heriot-Watt University. 

16:10 – 16:35 Learning a Secondary Source From Compressive Measurements for Adaptive 
Projection Design, Fraser K Coutts1, John Thompson1, Bernard Mulgrew1, 1University of Edinburgh. 
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16:35– 16:45 Closing remarks 
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Keynote Speakers 

Professor René Vidal, Johns Hopkins Mathematical Institute 

for Data Science 

Rene Vidal is the Herschel Seder Professor of Biomedical 

Engineering and the Inaugural Director of the Mathematical 

Institute for Data Science at The Johns Hopkins University. 

He has secondary appointments in Computer Science, 

Electrical and Computer Engineering, and Mechanical 

Engineering. He is also a faculty member in the Center for 

Imaging Science (CIS), the Institute for Computational 

Medicine (ICM) and the Laboratory for Computational 

Sensing and Robotics (LCSR). Vidal's research focuses on the 

development of theory and algorithms for the analysis of 

complex high-dimensional datasets such as images, videos, 

time-series and biomedical data. His current major research 

focus is understanding the mathematical foundations of 

deep learning and its applications in computer vision and 

biomedical data science. His lab has pioneered the 

development of methods for dimensionality reduction and clustering, such as Generalized Principal 

Component Analysis and Sparse Subspace Clustering, and their applications to face recognition, 

object recognition, motion segmentation and action recognition. His lab creates new technologies 

for a variety of biomedical applications, including detection, classification and tracking of blood cells 

in holographic images, classification of embryonic cardio-myocytes in optical images, and 

assessment of surgical skill in surgical videos. 

Abstract: Semantic Information Pursuit 

In 1948, Shannon published a famous paper, which laid the foundations of information theory and 

led to a revolution in communication technologies. Critical to Shannon’s ideas was the notion that a 

signal can be represented in terms of “bits” and that the information content of the signal can be 

measured by the minimum expected number of bits. However, while such a notion of information is 

well suited for tasks such as signal compression and reconstruction, it is not directly applicable to 

audio-visual scene interpretation tasks because bits do not depend on the “semantic content” of the 

signal, such as words in a document, or objects in an image. In this talk, I will present a new measure 

of semantic information content called “semantic entropy”, which is defined as the minimum 

expected number of semantic queries about the data whose answers are sufficient for solving a 

given task (e.g., classification). I will also present an information-theoretic framework called 

``information pursuit'' for deciding which queries to ask and in which order, which requires a 

probabilistic generative model relating data and questions to the task. Experiments on handwritten 

digit classification show, for example, that the translated MNIST dataset is harder to classify than the 

MNIST dataset. Joint work with Aditya Chattopadhyay, Benjamin Haeffele and Donald Geman. 
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Professor Hugh Griffiths, Defence Science Expert Committee (DSEC) / University College London 

Hugh Griffiths holds the THALES/Royal Academy Chair of RF 

Sensors at University College London and is Chair of the 

Defence Science Expert Committee (DSEC) in the UK Ministry 

of Defence.  From 2006–2008 he served as Principal of the 

Defence Academy College of Management and Technology at 

Shrivenham. He received the MA degree in Physics from 

Oxford University in 1975, the n spent three years working in 

industry, before joining University College London, where he 

received the PhD degree in 1986 and the DSc(Eng) degree in 

2000 and served as Head of Department from 2001–2006. 

His research interests include radar systems and signal 

processing (particularly bistatic radar and synthetic aperture 

radar), and antenna measurement techniques.  He serves as 

Editor-in-Chief of the IET Radar, Sonar and Navigation journal. 

He has published over five hundred papers and technical 

articles in the fields of radar, antennas and sonar.  He has 

received several awards and prizes, including the IEEE Picard 

Medal (2017), IET Achievement Medal (2017), the IEEE AES 

Mimno Award (2015), the IET A.F. Harvey Prize (2012) and the IEEE AES Nathanson Award (1996). He 

is a Fellow of the IET and a Fellow of the IEEE. He was appointed OBE in the 2019 New Year’s 

Honours List, and in 2021, he was elected Fellow of the Royal Society. 

Abstract: Why Defence Acquisition is Difficult 

The acquisition of defence equipment – whether tanks, aircraft carriers or fast jets – is notoriously 

difficult.  On the occasions when it goes wrong we hear of cancelled projects or costly spending 

overruns, amounting to billions of pounds of taxpayers’ money. This is not just a UK problem – it 

happens in other countries too.  

This presentation looks at the process of defence acquisition, and particularly the research and 

development that underpins it. Examples are given of both successes and failures. In particular, it 

examines the nature of innovation and of low-TRL research and considers the appropriate balance 

between risk and ambition.  

xi



Invited Speakers 

Professor Mark Briers, Alan Turing Institute 

Mark Briers is Programme Director for The Alan 

Turing Institute's Defence and Security partnership. 

Prior to joining Turing, Mark worked in the defence 

and security sector for over 16 y ears, directing 

research programmes in the area of statistical data 

analysis, and leading large teams to drive impactful 

research outputs. He completed his PhD in 2007 at 

Cambridge University where he developed Sequential 

Monte Carlo based techniques for state-space 

filtering and smoothing. In recent months, Mark has 

been providing independent advice to scope the 

technical development and help to oversee modelling 

and analytics of the NHS Test and Trace app. 

He is an Honorary Senior Lecturer at Imperial College 

London, where he teaches methodological 

techniques for use in a Big Data environment and 

conducts research into statistical methods for cyber security, and he is a Council Member at the 

Royal Statistical Society. He is an Industrial Fellow alumnus of the Royal Commission for the 

Exhibition of 1851. Mark is a co-investigator on the EPSRC funded programme grant Computational 

Statistical Inference for Engineering and Security. 

Mark is also Co-Chair of the Institute's Research and Innovation Advisory Committee, which steers 

scientific direction at the Turing. 

Abstract: Optimising and Understanding the Impact of the NHS COVID-19 app Using Data Science 

The NHS COVID-19 app has been downloaded over 21 million times. It was the first app in the world 

to use the new Google / Apple  API, allowing novel Bayesian statistical methods to infer distance. 

Our latest research demonstrates that the app has reduced the number of cases by approximately 

600,000 in 2020. The app data are providing valuable insights into the evolution of the pandemic 

across England and Wales. This presentation will provide an overview of the NHS COVID-19 app, the 

impact results, and our potential future directions. 
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Dr Tien Pham, CISD) U.S. DEVCOM ARL 

Dr Tien Pham is the Chief Scientist for the Computational & Information Sciences Directorate (CISD) 

at U.S. DEVCOM ARL He oversees basic and applied research associated within the ARL 

Competencies in Military Information Sciences and Network, Cyber & Computational Sciences and 

the cross-cutting research efforts in Artificial Intelligence and Machine Learning. Has 30+ years of 

R&D and research program management experience and has published results in wide-ranging 

research areas from information sciences to networked sensing, multi-modal sensor fusion, and 

acoustics. He actively participates in a number of technical forums including IEEE, SPIE Defense + 

Commercial Sensing, Military Sensing Symposium, ISIF Fusion, AAAI Fall Symposium Series, Naval 

Applications of Machine Learning, Acoustical Society of America and NATO & TTCP. Dr Pham 

received his B.S. (Magna Cum Laude), M.S. and PhD degrees in Electrical Engineering at the 

University of Maryland, College Park, USA, in 1988, 1991 and 2006 respectively. 

Abstract: AI-enabled Multi-Domain Processing and Analytics for Decision Making 

The U.S. Army is evolving its warfighting doctrine to militarily compete, penetrate, disintegrate, and 

exploit peer adversaries in a Multi-Domain Operations (MDO) Joint Force. To achieve this vision, the 

Army requires Artificial Intelligence (AI) and Machine Learning (ML) capabilities to enable analytics 

from the full spectrum of multi-domain data for decision making by highly-dispersed teams of 

humans and robot agents. This highly diverse learning and reasoning span data types (e.g. video, 

open-source multi-media, electromagnetic (EM) signals, sensors), warfighting domains (e.g. land, air, 

cyberspace, spectrum), and warfighting functions (e.g. intelligence, command and control (C2), fires, 

protection). MDO presents unique challenges that must be overcome by any AI/ML application, 

including forwarding deployment in complex terrain, dynamic, distributed, resource-constrained 

environments, and highly contested settings. Moreover, these applications must consider the 

inherent uncertainties (model and environmental) and the operational timeliness requirements (i.e., 

time available to learn, infer, and act). 

The presentation will discuss the U.S. Combat Capabilities Development Command (DEVCOM) Army 

Research Laboratory (ARL) collaborative, cross-cutting AI research efforts for MDO to enable 

processing and analytics for decision making toward the tactical edge. The research efforts will 

address the technical challenges involving (i) learning and reasoning in complex MDO environments 

and (ii) resource-constrained AI processing at the point of need. 
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Professor Alan Hunter, University of Bath 

Alan was born in New Zealand and studied at the 

University of Canterbury (NZ), obtaining a BE (Hons I) 

degree in electrical and electronic engineering in 2001 

and a PhD on synthetic aperture sonar (SAS) in 2006. He 

left New Zealand for Europe in 2007.  

For the next three years, Alan was a research associate 

at the University of Bristol, where he worked with 

ultrasonic arrays for non-destructively inspecting 

engineering components. Here, he developed auto-

focusing algorithms for imaging the interiors of objects 

with complex geometries and material properties. 

In 2010, he moved to the Netherlands and spent four 

years as a defence scientist at TNO (Netherlands 

Organisation for Applied Research) in The Hague. At 

TNO, he developed underwater technologies for the Royal Dutch Navy, including sub-sediment 

imaging sonar, diver detection sonar, and autonomous naval mine-hunting systems. 

Before returning to England in 2014, Alan spent three months in La Spezia, Italy as a visiting scientist 

at the NATO Centre for Maritime Research and Experimentation (CMRE). During this time, he 

developed precision micro-navigation algorithms for SAS imaging of the seafloor over repeated 

passes. 

Abstract: Multi-Spectral and Multi-Modal Underwater Acoustic Imaging 

The useable spectrum of underwater acoustic frequencies is very broad, spanning roughly 6 or 7 

orders of magnitude from Hz up to MHz. Traditionally, acoustic imaging of the seafloor has been 

carried out at high carrier frequencies (in the range of 100 kHz to 1 MHz) using relatively narrow-

band signals (quality factors much greater than 1). This has enabled the production of high-

resolution acoustic images that often resemble optical photographs. However, there are 

opportunities to exploit much more of the spectrum and thereby access a richer source of acoustic 

information. An effective means of achieving this is to operate in multiple separate spectral bands. 

Bands in the higher frequencies retain the advantages of fine resolution, differences between bands 

can be used to measure frequency-dependent scattering characteristics, and lower frequency bands 

(below 100 kHz) increasingly enable penetration beneath the sediment and inside objects.  

Moreover, low-frequency acoustic waves can couple with elastic wave modes in solids and this gives 

the potential for sensing material composition and structure for enhanced characterisation.  This 

talk will explore the opportunities and challenges of multi-spectral and multi-modal (i.e., acoustic 

and elastic) imaging with regard to signal processing, image visualisation, and interpretation. 
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Abstract—Multispectral 3D LiDAR imaging plays an important
role in the remote sensing community as it can provide rich
spectral and depth information from targets. This paper proposes
a fast pixel-wise classification algorithm for multispectral single-
photon LiDAR imaging. The algorithm allows the detection of
histograms containing surfaces with specific spectral signatures
(i.e., specific materials) and discarding those histograms without
reflective surfaces. The proposed Bayesian model is carefully built
to allow the marginalization of latent variables leading to a
tractable formulation and fast estimation of the parameters of
interest, together with their uncertainties. Results on simulated
and real single-photon data illustrates the robustness and good
performance of this approach.

Index Terms—3D Multispectral imaging, Single-photon LiDAR,
Bayesian estimation, Poisson statistics, Multispectral classification.

I. INTRODUCTION
Light detection and ranging (LiDAR) used with a time-

correlated single-photon detector has received increased atten-
tion in the scientific community over the last few decades
in numerous applications such as defence, automotive [1],
and environmental sciences [2]. It has successfully proven its
efficiency for long-range depth imaging [3]–[5], depth imaging
in turbid media [6]–[8] and multispectral imaging [9], [10]. A
multispectral LiDAR system operates by illuminating the scene
using laser pulses of different wavelengths and recording the
arrival times of the reflected photons using a time-correlated
single-photon counting (TCSPC) module. A histogram of pho-
ton counts with respect to time-of-flight is constructed for
each pixel and wavelength. The resulting histograms contain
information regarding the object depth profile and its spectral
signature (i.e., reflectivity at each wavelength). When the num-
ber of spectral bands considered is large enough, it becomes
possible to identify and quantify the main materials in the scene,
in addition to estimating classical LiDAR-based range profiles.

In the last decade, many works were published promoting
the use of multiple wavelengths in LiDAR imaging as it allows
robust restoration of the range and spectral profile of the target
[10]–[12], spectral classification [13] and spectral unmixing [9],
[14]. In [13], joint depth estimation and spectral classification
using multispectral 3D LiDAR have been proposed. The algo-
rithm combined a Bayesian model with a Markov chain Monte-
Carlo (MCMC) sampling strategy to obtain estimates and their
uncertainties. However, the algorithm assumed the absence of
background counts due to ambient light, and has a significant

computational cost due to the considered MCMC sampling
method, which is incompatible with real-time requirements.
A faster algorithm was proposed in [9] by considering an
optimization algorithm to estimate a depth image and spatially
unmix the contribution of different materials. However, the
method did not quantify the estimates uncertainty, as often
required for decision making. Recently, two fast algorithms
were introduced in [15], [16] to perform target detection task
using 3D Lidar imaging. These two algorithms use a Bayesian
formulation and show state-of-the-art performance even under
the presence of background illumination. Nevertheless, these
two algorithms are not able to discern between different mate-
rials having distinctive spectral responses.

This paper proposes a new fast algorithm for per-pixel
multispectral classification and range estimation, while also
providing uncertainty measures about the estimates. Assuming
a known spectral library of different materials, the proposed
Bayesian strategy allows the detection of pixels with reflections
from a target, and to identify the target material based on
the known signatures. The proposed algorithm operates on
histograms of counts and assumes the presence of at most one
surface per-pixel. The model accounts for the Poisson statistics
of the data to define the likelihood, and considers suitable
prior distributions for the parameters of interest. The resulting
marginalized posterior distribution can be efficiently exploited
allowing parameters estimation together with uncertainty quan-
tification. The proposed algorithm can be used to compress the
high-volume multispectral data by withdrawing uninformative
pixels without surfaces/objects. It can also be used as a target
detection algorithm to spatially locate materials with specific
spectral signatures, e.g., the detection of man-made objects in
turbid environments such as metallic objects underwater. The
proposed algorithm is tested both on real and simulated data
showing promising results even in the sparse photon regime or
in presence of a high background level of counts.

The paper is structured as follows. Section II introduces
the multispectral LiDAR observation model. The classification
problem formulation using Bayesian framework and the esti-
mation strategy are presented in Section III and Section IV,
respectively. Results on simulated and real data are presented
in Section V. Conclusions and future work are finally reported
in Section VI.

978-1-6654-3314-3/21/$31.00 ©2021 IEEE 1
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Fig. 1. (Up) The considered scene used in section V, (middle) spectral
signatures of the spectral classes associated with Lego scene, (down) the
normalized IRFs associated with the wavelengths 473, 532, 589 and 640 nm
[19] used in Section V

II. OBSERVATION MODEL

We consider a 3-dimensional cube of histograms Y of
LiDAR photon counts of dimension N × L × T , where N
is the number of scanned spatial positions (i.e., pixels), L is
the number of spectral wavelengths and T is the number of
time bins. Let Y n = [yn,1,yn,2, ...,yn,L]T be an L × T
matrix where yn,l = [yn,l,1, yn,l,2, ..., yn,l,T ]T . According to
[17], [18], each photon count yn,l,t, where n ∈ {1, ..., N},
l ∈ {1, ..., L} and t ∈ {1, ..., T}, is assumed to follow a Poisson
distribution as follows

yn,l,t|rn,l, dn, bn,l ∼ P[rn,l gl(t− dn) + bn,l], (1)

where P(.) denotes a Poisson distribution, rn,l ≥ 0 is the spec-
tral signature observed at the lth wavelength, dn ∈ {1, 2, ..., T}
represents the position of an object surface at a given range
from the sensor, bn,l ≥ 0 is the constant background level
associated with dark counts and ambient illumination and gl(.)
is the system impulse response function (IRF), whose shape can
differ between wavelength channels (see Fig.1), assumed to be
known from a calibration step and normalized

∑T
t=1 gl(t) = 1.

An equivalent model can be considered as in [15] using the
signal-to-background ratio (SBR), which is defined as the ratio
of the useful detected photons rn,l and the total number of
background photons in the histogram bn,lT , i.e.: wn,l =

rn,l

bn,lT

with wn,l ≥ 0. Thus, (1) can be written in the following form

yn,l,t|ωn,l, dn, bn,l ∼ P{bn,l [wn,l T gl(t− dn) + 1]}. (2)

This new formulation is interesting as it allows an easy
marginalization of the posterior distribution with respect to

(w.r.t.) the background noise parameter as indicated in Section
III. Under the assumption that all the observed pixels, wave-
lengths and bins are mutually independent, the joint likelihood
can be written in the following form:

p(Y |Ω,d,B) =
L∏
l=1

T∏
t=1

p(yn,l,t|ωn,l, dn, bn,l) (3)

where d = (d1, · · · , dN ) and Ω, B are two matrices gathering
ωn,l,∀n, l, and bn,l,∀n, l, respectively. Our goal is to perform
pixel classification based on an available database of spectral
signatures. As a result, the classification task will require an
elaborated strategy to mitigate the unknown bn,l, ωn,l and dn
parameters.

III. HIERARCHICAL BAYESIAN MODEL FOR
CLASSIFICATION

The classification problem is an ill-posed problem that is
tackled by considering a Bayesian approach. The latter assigns
prior distributions for the unknown parameters to regularize the
inverse-problem.

A. Prior distributions

A Lidar histogram can either result from background counts
(in absence of a target photons due to rn = ωn = 0) or a
mixture of target and background counts (when rn ≥ 0 or
ωn ≥ 0). Assuming the presence of K spectral signatures, the
classification problem aims to associate a pixel with a target to
one of the K spectral classes. The reflectivity prior accounts
for this effect by considering a mixture of K + 1 distributions
as follows

P(rn,l|un, αrk,l, βrk,l,K) = δ(un)δ(rn,l)

+
K∑
k=1

δ(un − k)G(rn,l;α
r
k,l, β

r
k,l)

(4)
where un ∈ {0, 1, ...,K} is a latent variable that indicates the
absence of target if un = 0, otherwise, it indicates the label
of the class, δ(.) is the Dirac delta distribution centred in 0,
G(rn,l;α

r
k,l, β

r
k,l) represents a gamma density whose shape and

scale hyperparameters
(
αrk,l, β

r
k,l

)
are fixed based on the K

known spectral signatures. This prior is inspired from the spike-
and-slab prior used in [15]. It accounts for K + 1 cases, the
first represents the absence of a target in the the nth pixel
and is obtained for un = rn,l = 0, hence the use of a
Dirac distribution (the spike part). The slab part accounts for
the presence of one of the K signatures by using a gamma
distribution. Thanks to the use of many wavelengths, this prior
extends the object detection problem in [15] to a class detection
problem using the spectral signature of each class.

Considering the non-negativity of bn,l, ∀n, l and its con-
tinuous nature, the background level will be modelled with a
gamma distribution as in [20]:

P(bn,l|αbl , βbl ) = G(bl, α
b
l , β

b
l ) (5)

where αbl and βbl are background hyper-parameters. Considering
that only dozens of distinctive wavelengths will be used, we will

2



assume uncorrelated channels to keep the estimation strategy
tractable. Since we are interested in using the model described
in (2) instead of (1), assuming that the reflectivity and the
background noise are independent and by applying a random
variable change, the resulting joint prior distribution will yield:

p(ωn, bn|un,φ,K) =

L∏
l=1

p(ωn,l, bn,l|un, φl)

=
∏L

l=1

[
δ(un)δ(ωn,l)G(bn,l, αbl , βbl ) (6)

+

K∑
k=1

δ(un − k)Ck,l(ωn,l)G(bn,l, α†l,k, β
†
l,k(ωn,l)

]
with

Ck,l(ωn,l) =
(βbl )

αb
l (βrk,l)

αr
k,lTα

r
k,l

B(αrk,l, α
b
l )

ω
αr

k,l−1
n,l

β†l,k(ωn,l)
α†

l,k

α†l,k = αbl + αrk,l

β†l,k(ωn,l) = βbl + βrk,lTωn,l

where B(.) is the beta function and φ = (φ1, φ2, ..., φl) with
φl = (αrk,l, β

r
k,l, α

b
l , β

b
l ), k ∈ {0, ...,K}.

As we suppose that we have no prior knowledge about a
pixel’s class, the parameter un is assumed to be drawn from
a uniform distribution, i.e.: p(un = k) = 1

K+1 , where k ∈
{0, ...,K}. However, This non-informative class prior can be
changed in presence of additional information regarding the
classes. The depth parameter dn is assigned a non-informative
uniform prior as follows:

p(dn = t) =
1

T
,∀t ∈ {1, ..., T}. (7)

Nonetheless, this can be modified in case of additional infor-
mation regarding the target position.

B. Joint Posterior distribution

From the joint likelihood in equation (3) derived in Section
II and the prior distributions specified in Section III-A, we can
obtain the joint posterior distribution for ωn,bn, dn and un
given the 3D histograms Yn and the hyperparameters φ and K.
Using Bayes rule and assuming that dn and un are independent
from ωn and bn, the joint posterior distribution of the proposed
Bayesian model can be formulated in the following form:

p(Θn|Yn,φ,K) ∝ p(Yn|Θn)p(Θn|φ,K) (8)

where

Θn = (ωn, bn, dn, un)

p(Θn|φ,K) = p(ωn, bn, dn, un|φ,K)

= p(ωn, bn|φ, un,K)p(dn)p(un|K). (9)

IV. ESTIMATION STRATEGY

The posterior distribution in (8) reflects our knowledge of
the unknown parameters to be estimated given the photon data
and the available prior knowledge. The Bayesian estimator
to be considered, both for the depth and class parameter, is
the maximum a posteriori (MAP) estimator as in [9], [14].
From equation (8), we marginalize the background noise and
signal-to-background parameters to get the joint depth and class
marginal probability as follows:

p(un, dn|Yn) =

∫ ∫
p(ωn, bn, dn, un|Yn)dbn dωn. (10)

A. Class estimation

The following decision rule is adopted to determine the pixel
label

Hn = max
k=1:K

p(un = k |Yn) (11)

with

p(un|Yn) =
T∑

dn=1

∫ ∫
p(ωn, bn, dn, un|Yn)dbn dωn (12)

where Hn represents the class of the nth pixel . Note that for
K = 1 and L = 1, we end up with a target detection decision
rule as in [15]. We demonstrate that the marginal probability
p(un|yn) is :

p(un = k|Yn) =
T∑

dn=1

∫ ∞
0

L∏
l=1

[
p(un = k)p(dn)Dn,l,kγ

−1
l

Fn,l,k (ωn,l, dn)dωn,l]
(13)

with
γl =

Γ(αbl )

(βbl )
αb

l

T∏
t=1

yn,l,t!

Dn,l,k =
Γ(ȳn,l + αbl + αrk,l)(Tβ

r
k,l)

αr
k,l

Γ(αrk,l)

Fn,l,k (ωn,l, dn) =
exp{

∑T
t=1 yn,l,t ln[ωn,l Tgl(t− dn) + 1]}

ω
1−αr

k,l

n,l {βbl + [T (1 + ωn,l(1 + βrk,l))]}
α
†
l,k

+ȳn,l

(14)
where ȳn,l =

∑T
t=1 yn,l,t. In the event of no target, we can

see that the integral is available in its analytical form thanks
to the conjugacy between the model (2) and the priors (6).
The marginal distribution in (13), however, is intractable. One
way to simplify it is to consider that the depth captured is
different across all the spectral wavelengths. This simplification
improves the tractability of the marginal class probability and
will transform (13) into (15) as follows:

p(un = k|Yn) =
L∏
l=1

T∑
dn,l=1

[
p(un = k)p(dn,l)Dn,l,kγ

−1
l∫ ∞

0

Fn,l,k (ωn,l, dn,l)dωn,l

]
. (15)
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The resulting integral with respect to ωn,l in (15) can be nu-
merically approximated with a quadrature method. The matched
filter in (14) can be computed with O(T logT ) using the fast
Fourier transform (FFT) leading to an overall complexity of
the integral per-pixel in (15) given by O(KLJT logT ), where
K is the number of classes considered, L is the number of
wavelengths, J is the computational cost of the evaluated
integrand and T is the number of the temporal bins.

B. Depth estimation

The depth estimate can be obtain as follows

d̂n = max
d=1:T

p(dn |Yn) (16)

where

p(dn|Yn) =
K∑
k=1

L∏
l=1

[
p(un = k)p(dn)Dn,l,kγ

−1
l∫ ∞

0

Fn,l,k (ωn,l, dn)dωn,l

]
. (17)

Although ω can be marginalized numerically from equation
(17), this might lead to a high computational cost. In this paper,
we choose to estimate the depth given the easily computed
marginal map estimate ωmap

n,l using the simplified model intro-
duced in Section IV-A, leading to

d̂n = max
d=1:T

p(dn |Yn,ω
map
n ). (18)

The proposed approach allows the evaluation of the full
marginal depth posterior. In addition to depth point estimate,
this distribution will allow uncertainty quantification (i.e., quan-
tify our confidence regarding the estimates). In this paper, we
evaluate the depth uncertainty by considering the depth negative
log-cumulative marginal posterior around the MAP estimate,
i.e., NCD = −log

[∑d̂n+ε

d̂n−ε
p(dn |Yn,ω

map
n )

]
, where ε is a

user fixed constant. Note that a small NCD indicates a high
confidence about the estimate, while a large one would be an
indication of low confidence.

V. EXPERIMENTAL RESULTS

In this section, we will evaluate the performance of the clas-
sification algorithm using the real multispectral single-photon
Lego data used in [19] (see Fig. 1). This target has three classes
of interest (K = 3) whose spectral signatures (related to αr and
βr) are extracted from pixels acquired considering a negligible
background contribution and after maximum acquisition time
per-pixel (see signatures in Fig.1). αbl and βbl are relatively
non-informative such that (αbl , β

b
l ) = (1, T

rMl
) with rMl being

the average number of signal photons per pixel for the lth
spectral wavelength. Two experiments have been performed.
First, we consider a spatially sub-sampled data to analyse the
behavior of the algorithm w.r.t. SBR and photons levels. The
subsampled data has N = 40 × 40 pixels, L = 4 wavelengths
and T = 1500 time bins (bin width of 2ps), and is corrupted
so that the SBR varies from 0.01 to 100. The object, of size
42 mm tall and 30 mm wide, was scanned with a 40ms
acquisition time per pixel and per wavelength (total of 160ms
per pixel) at a standoff distance of 1.8m with the IRF gl(.)

depicted in Fig. 1 (the reader is advised to consult [19] for
more details). Considering the foregoing parameters and for
maximum acquisition time, the average computational time
per-pixel of the proposed algorithm is ≈ 55ms using Matlab
2020a on a Intel Core i7-8700@3.2GHz, 16 GB RAM. Fig. 3
top and bottom represent, respectively, the root mean square

error (RMSE) in meters defined by RMSE =
√

1
N ||d

ref − d̂||2,
where dref is obtained from sampling the whole scene with the
maximum acquisition time and under a negligible background
illumination, and the accuracy (ACC = TP+TN

TP+TN+FP+FN ) w.r.t
SBR and the average signal photons, where TP , TN , FP
and FN represent respectively: true positive, true negative,
false positive and false negative. These two figures provide
the user with the required number of useful photons (which is
proportional to the scanning time) needed to have a given depth
precision and accuracy for different SBR levels. The second
experiment shows the obtained results when considering the
full 200× 200 pixels data. Fig. 2 represents (from left to right)
the depth estimate, the class estimate and depth uncertainty
measure w.r.t acquisition time per-pixel and per-wavelength
and for Lego data in absence of background illumination (i.e.,
SBR = ω = 66) and high illumination background where the
SBR is as low as ω = 1.3. These figures exhibit qualitatively
the robustness of the proposed algorithm. Fig. 2(c) represents
the NCD for ε = 1.5mm where higher values indicate low-
confidence regions. It is observed that higher depth uncertainty
is observed for lower acquisition time data, and for low photon
regions (e.g., black mouth and eyes, curved surfaces, etc).

VI. CONCLUSIONS

This paper has presented a new fast approach that per-
forms depth estimation and class detection for multispectral
LiDAR data which shows robustness even under challenging
background illumination. In addition to the class and depth
estimates, the proposed algorithm also provides the uncertainty
measure associated with each parameter of interest. Besides
being able to classify a scene w.r.t to defined spectral signa-
tures, this algorithm can also complete a target detection task
where objects of interest are materials with a specific spectral
signature. This enables detecting objects which have a particular
spectral signature under turbid media, e.g., metallic object
detection underwater. Despite assuming one surface per-pixel,
this algorithm can be used as a pre-processing step for multiple-
surface-per-pixel to discard irrelevant pixels. Future work will
investigate the use of this algorithm within an adaptive sampling
strategy to improve Lidar data acquisition.
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Abstract—This study aims at estimating the Earth surface
deformations due to the nuclear tests carried out by Democratic
Peoples Republic of Korea from the 3rd of September 2017
by processing a time series of synthetic aperture radar images
acquired by the COSMO-SkyMed satellite constellation. For
active satellite sensors working in the X-band, phase information
can be unreliable if scenarios with dense vegetation are observed.
This uncertainty makes difficult to correctly estimate both the
interferometric fringes and the phase delay generated by the vari-
ation in the space-time domain of the atmospheric parameters. To
this end, in our research we apply the Sub-Pixel Offset Tracking
technique, so that the displacement information is extrapolated
during the coregistration process. Our results demonstrate the
capability of spaceborne remote sensing to help characterize large
underground nuclear tests in revealing an accurate estimate of
the spatial displacement due to the explosions. The work also
reveals the presence of a possible underground tunnel network.

Index Terms—Displacement-field, Nuclear tests, Persistent
Scatterers Interferometry, SAR Interferometry, Synthetic Aper-
ture Radar, Sub-pixel correlation, Sub-Pixel Offset Tracking.

I. INTRODUCTION

On the 3rd of September 2017, the Democratic People’s
Republic of Korea (DPRK), or North Korea, announced the
successful test of a thermonuclear device. Different seismolog-
ical agencies reported body wave magnitudes of well above
6.0, consequently estimating the explosive yields a quantity of
the order of hundreds of kilotons [1]. Earthquakes induced by
underground nuclear explosions, given the enormous amount
of energy emitted, can produce considerable ground displace-
ments that could be estimated using satellite synthetic aperture
radar (SAR) data.

The most-widley used technique for displacement esti-
mation is based on the persistent scatterers interferometry
SAR (PS-InSAR) [2]. Unfortunately, this method has some
limitations, such as the need of many interferometric images
to obtain a reliable atmospheric phase screen and it cannot be
applied to areas completely covered by vegetation.

A different approach exploits Differential InSAR (DInSAR)
inversion strategy assisted by Small BAseline Subset (SBAS)
[3]. Results demonstrate the effectiveness of this technique
to retrieve the full 4-D displacement field associated, but in
[4] it has been shown that SBAS method has also a number
of limitations such as: geometric and temporal decorrelation,
scale constraints, a limit on the spatial displacement gradient,
geometric distortions and assumptions of linearity in the
displacement process.

Sub-Pixel Offset Tracking (SPOT) is a promising alternative
method for Earth displacement estimation. This technique has
previously been applied to different scenarios overcoming
technical defects and limitations of conventional DInSAR
techniques [5]. In this paper, we apply the SPOT technique for
estimating the Earth displacement caused by the underground
nuclear explosions occurred from the 3rd of September 2017
in North Korea. A temporal series of interferometric SAR
images, acquired from the COSMO-SkyMed (CSK) satellite
constellation, are processed over a large area and highlighting
a significant displacement. The results demonstrates the effec-
tiveness of the method in estimating the location where the
explosions began.

The outline of this paper is the following. In Section II a
description of the nuclear test site is provided. In Section III
the applied methodology to estimate the surface displacement
is explained while in Section IV the experimental results are
illustrated and discussed.

II. THE PUNGGYE-RI NUCLEAR TEST SITE

North Korea established its only known underground nu-
clear test site, shown in Figure 1, 17 kilometers north of the
village of Punggye-ri at the foot of Mt. Mantap (2,209 m)
in North Hamgyong Province. Between October 2006 and
September 2017, six declared underground tunnel-emplaced
nuclear explosive tests have been conducted from this site. All
of these events generated seismic waves that were recorded at
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Fig. 1. Geolocation of the Punggye-ri nuclear test site.

regional and teleseismic distances and all took place within
a few km of each other at the Punggye-ri nuclear facility,
which is visible on the Google Earth platform at geographical
coordinate: 41.279°N, 129.087°E.

Specifically, the best source of information on North Korea’s
nuclear capabilities are the distant rumblings of nuclear tests
detected by seismic monitoring stations belonging to the Com-
prehensive Test Ban Treaty Organization (CTBTO)’s Interna-
tional Monitoring System (IMS), the United States Geological
Survey (USGS), and the Norwegian Seismic Array (NORSAR)
organization with a mandate to monitor for nuclear explosions.
Seismologists measure the magnitude of the body wave of
these rumblings and, by employing several methods that use
the seismological findings to facilitate the distinction between
explosion and tectonic events, are able to understand if a
seismic phenomenon is due to an explosion [6]. For scientific
communities concerned with seismic monitoring with respect
to nuclear surveillance, such as the CTBTO, the most pertinent
issues that must be addressed are location determination,
source discrimination, and yield estimate. This information is
vital in understanding the DPRK’s progress towards nuclear
armament, and it is the obligation of these non governmental
organisations to address the issues outlined above for global
nuclear security [1, 7]. The above mentioned organizations
were able to retrieve information about six explosive events,
located at the North Korean site reported in Table I.

On the 24th of May 2018 the DPRK invited a small delega-
tion of international journalists at the Punggye-ri Nuclear Test
Site to document the destruction of its underground tunnels
and buildings. When visiting journalists were briefed on the
dismantlement operations [8], officials from North Korea’s

Nuclear Weapons Institute spoke on the nuclear tests site
and it was displayed a large scale topographic map. Figure
2 shows the areas of the Punggye-ri nuclear facility that
were about to be demolished. Specifically, the map provides
information on the tunnel entrance locations, the trajectory
of tunnel excavations, along with what was claimed to be
the layout of the two tunnels at the East and North Portals
used to conduct North Korea’s six acknowledged underground
nuclear tests. It also showed the two other tunnels prepared
for, but never used, nuclear testing at the South and West
Portals. The map appears to be a “to scale” schematic and
the locations appear to be very precise and correlate well
with most remotely derived geolocations for all tests [1, 6, 7],
identified in sequence numbered one to six. However, the map
does not appear to be a detailed engineering diagram in terms
of layout of the tunnels as there is no hint to the specific
“zig zag” layout and “fish hook” termination as expected
configuration by a multitude of recent news reports [9]. In
general, the map corroborates closely with seismic data and
satellite imagery analysis of the test geolocations and tunnel
directions [10].

III. METHODOLOGY

Sub-Pixel Offset Tracking is a largely used technique to
measure large scale ground displacements in both range and
azimuth directions and it is complementary to DInSAR and
PS-InSAR methodologies in the case of radar phase informa-
tion instability [11]. The total displacement of the sub-pixel
normalized cross-correlation is described by the chirp-Doppler
complex quantity D(i,j) [11, 12], for the (i, j)th master
and slave interferometric pair. More precisely, considering a
temporal series of N interferometric pairs, the total offset can
be expressed as:

D(i,j) = D
(i,j)
disp +D

(i,j)
topo +D

(i,j)
orb +D

(i,j)
cont +

+D
(i,j)
atm +D

(i,j)
noise for (i, j) = 1, . . . , N,

(1)

where:

Fig. 2. Dismantlement operations for the Punggye-ri Nuclear Test Site. The
map layout of the nuclear facility with the declared epicenters of the six
underground tests.
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TABLE I
MAIN INFORMATION AND DATA COLLECTED ABOUT THE NORTH KOREA’S NUCLEAR TESTS SERIES.

Quake (magnitude) Yields (kilotons)1

Event Date GPS coordinate1 Depth (meters)1 USGS CTBTO NORSAR USGS CTBTO NORSAR
DPRK 1 09/10/2006 41.294° N, 129.094° E 438 4.3 4.0 4.0 1.00 0.40 0.40
DPRK 2 25/05/2009 41.303° N, 129.037° E 556 4.7 4.5 4.5 3.41 1.85 1.85
DPRK 3 12/02/2013 41.299° N, 129.004° E 576 5.1 4.9 5.0 11.66 6.31 8.58
DPRK 4 06/01/2016 41.300° N, 129.047° E 772 5.1 4.9 4.8 11.66 6.31 4.64
DPRK 5 09/09/2016 41.287° N, 129.078° E 714 5.3 5.1 5.1 21.54 11.66 11.66
DPRK 6 03/09/2017 41.343° N, 129.036° E 798 6.3 6.1 6.1 464.16 251.19 251.19
1 Estimated on seismic signal.

• D
(i,j)
disp is the quantity of interest to be estimated and

indicates the possible spatial displacement;
• D

(i,j)
topo represents the residual topography induced phase

due to a non perfect knowledge of the actual height
profile;

• D
(i,j)
orb accounts residual errors in satellite orbital data;

• D
(i,j)
cont accounts attitude and control errors of the flying

satellite trajectory;
• D

(i,j)
atm denotes the phase components due to the change

in the atmospheric and ionospheric dielectric constant
between the two master/slave acquisitions;

• and D
(i,j)
noise accounts for decorrelation phenomena such as:

spatial, temporal, thermal, etc . . . .

Therefore, solving (1) with respect to D
(i,j)
disp , would lead to a

compensation of all the other offset components as described
in [13, 14]. Writing D(i,j) =

∣∣D(i,j)
∣∣ exp (θ(i,j)), where the

magnitude is the distance between the master and slave is
estimated by two-dimensional cross-correlation and the phase,
considered respect to the horizontal axis, is an harmonic
parameter indicating the direction of displacement [15].

Figure 3 shows the applied processing workflow, which is
made by several consecutive steps. Specifically, starting from
the image databases where the master and slave SAR images
are stored, the first step performs the coregistration of a single
interferometric pair. The next steps perform the displacement
estimation and the geocoding process, respectively. The work-
flow is repeated for each (i, j) = 1, . . . , N interferometric pair
and then averaged.

MASTER DB SLAVE DB

IMAGE PAIR COREGISTRATION DISPLACEMENT ESTIMATION GEOCODING

COMPENSATION 

TERMS

COREGISTRATION 

PARAMETERS

Fig. 3. Applied processing chain workflow.

IV. EXPERIMENTAL RESULTS

The experimental results are derived by processing the
interferometric time series of SAR Spotlight data acquired
by CSK satellite constellation. Specifically, we consider 27
images, of which 13 are pre-events and 14 are post-events.
In this study we are not interested in the estimation of a
displacement time series because a nuclear explosion occurs
in a very small interval of time and we assume that after this
event no other geological force caused significant movement
of the Earth’s surface. The main objective is to analyse the
displacement generated by the enormous forces due to nuclear
blasting. Through the geocoded data it is possible to estimate
the position where the explosion occurred. In addition, we
try to analyse a possible network of underground tunnels
characterizing the whole test site.

Figure 4 shows two subsidence maps. More precisely,
Figure 4 (top) is the output obtained by processing only
the SAR images observed before the DPRK 1 nuclear test,
and it confirms that no significant subsidence phenomena are
present. Moreover, Figure 4 (bottom) shows the output ob-
tained processing the SAR images acquired after the DPRK-6
event. In this result a very interesting subsidence phenomenon,
that covers an area of about 3.5 kmq, can be observed. The
displacement generated by the explosions can be seen as it
is possible to observe that the north side of Mt. Mantap is
in subsidence, characterized by a physical movement of the
Earth’s surface downwards of about −20 cm. Conversely, the
south side of the mountain has a positive subsidence of about
+50 cm, which means a rise of the Earth’s surface.

Figure 5 illustrates in detail the subsidence effect caused
by nuclear explosions on Mt. Mantap; in fact, it is possible
to identify the chambers used in the experiment of the 3rd

of September 2017 and in the previous ones. Specifically,
Figure 5 (top) shows the possible positions of the six nuclear
tests, in accordance with Table I, as well as the respective
two access tunnels from the North Portal and the East Portal
respectively. Figure 5 (bottom) shows in detail the DPRK 6
displacement location. This analysis is particularly interesting
because it is possible to observe, considering the maximum
value of the estimated displacement, the position where the
detonation of the nuclear weapon took place. Furthermore,
analyzing in detail the chamber explosion of the DPRK 6
event it is possible to note that the displacement has a main
lobe with an asymmetric profile. This asymmetry could be
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Fig. 4. Global view of the main explosion area (top), and a detailed view of
the DPRK-6 site (bottom). Amplitude values are in centimetres.

due to different factors such as: a not perfect uniformity of
the explosion or the internal material compositions of Mt.
Mantap. Figure 6 illustrates the displacement-field indicating
both direction and intensity for DPRK 5 and DPRK 6 events.
This representation is useful to understand the origin of the
force field that generated the displacement, i.e., the position of
the nuclear device, and to give interesting information about
the tunnel networks.

V. CONCLUSIONS

This study has the objective of estimating the Earth defor-
mations due to the underground nuclear test carried out by
North Korea after the 3rd of September 2017 by processing
time series of multitemporal interferometric SAR images ob-
served by the CSK satellite constellation. The area of interest
is the Punggye-ri nuclear facility that has housed all six of
North Korea’s nuclear tests. In this work we apply the SPOT
technique to estimate the displacement map to overcome the

Fig. 5. Global view of the main explosion area (top), and a detailed view of
the DPRK 6 site (bottom). Amplitude values are in centimetres.

main limitations encountered by the widely-used techniques
that process data acquired by SAR sensors in the X band [2–4].
The surface deformation map shows significant and complex
ground displacement located manly on Mt. Mantap, caused
by explosions, collapse, compaction and landslides. Te results
reveal the nuclear explosion locations, the effect on the surface
and the underground network of tunnels which stems from the
generated displacement field.

REFERENCES

[1] Incorporated Research Institutions for Seismol-
ogy, “Special Event: 2017 north korean nu-
clear test,” Sept. 2017. [Online]. Available:
https://ds.iris.edu/ds/nodes/dmc/specialevents/2017/09

[2] A. Ferretti, C. Prati, and F. Rocca, “Permanent scat-
terers in SAR interferometry,” IEEE Transactions on

9



Fig. 6. Displacement-field over the DPRK 5 event location (top) and over
the DPRK 6 event location (bottom). Amplitude values are in centimetres.

Geoscience and Remote Sensing, vol. 39, no. 1, pp. 8–20,
2001.

[3] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A
new algorithm for surface deformation monitoring based
on small baseline differential SAR interferograms,” IEEE
Transactions on geoscience and remote sensing, vol. 40,
no. 11, pp. 2375–2383, 2002.

[4] A. Singleton, Z. Li, T. Hoey, and J.-P. Muller, “Evaluat-
ing Sub-Pixel Offset Techniques as an alternative to D-
InSAR for monitoring episodic landslide movements in
vegetated terrain,” Remote Sensing of Environment, vol.
147, pp. 133–144, 2014.

[5] R. Michel, J.-P. Avouac, and J. Taboury, “Measuring
ground displacements from sar amplitude images: Appli-
cation to the landers earthquake,” Geophysical Research
Letters, vol. 26, no. 7, pp. 875–878, 1999.

[6] S. Gibbons, F. Pabian, S. Näsholm, T. Kværna, and
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Abstract—This paper introduces the maximal eigengap esti-
mator for finding the direction of arrival of a wideband acoustic
signal using a single vector-sensor. We show that in this setting
narrowband cross-spectral density matrices can be combined in
an optimal weighting that approximately maximizes signal-to-
noise ratio across a wide frequency band. The signal subspace
resulting from this optimal combination of narrowband power
matrices defines the maximal eigengap estimator. We discuss the
advantages of the maximal eigengap estimator over competing
methods, and demonstrate its utility in a real-data application
using signals collected in 2019 from an acoustic vector-sensor
deployed in the Monterey Bay.

Index Terms—direction of arrival, acoustic vector-sensor, signal
subspace, eigengap

I. INTRODUCTION

Direction of Arrival (DOA) estimation of acoustic signals is
a problem which spans multiple application areas. Examples
include biology, where tracking marine mammals can pro-
vide detailed information on their habits, and defense, where
monitoring and locating vessels has utility in many naval
applications. One advantage of an acoustic vector-sensor over
a conventional hydrophone array is that acoustic vector-sensors
have a smaller footprint, while still providing signal direction.
The specialized nature of data collected by an acoustic vector-
sensor motivates signal processing techniques customized for
its analysis.

In this paper, we consider DOA estimation of a single
wideband source using a single acoustic vector-sensor. We
introduce the maximal eigengap estimator, which combines
cross-spectral density (CSD) matrices across a wide frequency
range to maximize signal-to-noise ratio (SNR) of the resulting
signal subspace. In the setting of a single acoustic vector
sensor and a single source, we provide a tractable formulation

All authors acknowledge support from the Office of Naval Research, Grants
No. N0001420WX01523, N0001421WX01634, and N0001421WX00410. We
are also grateful to the Monterey Bay Aquarium Research Institute (MBARI)
for their role in collecting the data used in this paper.

of the maximal eigengap estimator, thus providing a new DOA
estimation method customized for this setting.

Previous work on DOA estimation of wideband signals
aggregates narrowband information across a wide frequency
band in a variety of ways. In [1], CSD matrices for each
frequency are combined via linear combination, where the
ideal weighting of each matrix is given by the SNR in that
frequency. Because this SNR is unknown, the authors take an
equal weighting of each cross-spectral matrix. The authors of
[2] instead aggregate narrowband frequency information by
forming an estimating equation for the signal subspace which
is a linear combination of generalized eigenvector equations
for each frequency. It is suggested that the weighting should be
related to SNR in each frequency (this suggestion is confirmed
in an analysis of asymptotic variance [3]), but numerical
examples suggest that a uniform weighting works equally
well. Other popular methods combine signal or noise subspace
information uniformly [4], [5]. Our contribution, the maximal
eigengap estimator, continues this pattern of aggregating nar-
rowband information, and is similar in theme to [1], with the
important difference that we capitalize on the acoustic vector-
sensor setting to optimize SNR over the weights in a linear
combination of cross-spectral power matrices.

This paper is organized as follows. In the next section, we
formally introduce the maximal eigengap estimator and our
main theoretical contribution, Theorem 1, which provides a
tractable reformulation of the estimator. Section III applies
the maximal eigengap estimator to signals collected in 2019
by an acoustic vector-sensor deployed in the Monterey Bay,
where ground-truth information on vessel locations provide a
realistic test case. We conclude by summarizing our results.

Before proceeding we establish some notation. We denote
vectors and matrices by bold text, and scalars by plain text.
For a vector or matrix a, we denote its transpose by aT and its
conjugate transpose by aH . Similarly, we denote the complex
conjugate of a scalar and pointwise conjugate of vector/matrix

978-1-6654-3314-3/21/$31.00 ©2021 IEEE 11



with superscript ∗. Minimal and maximal eigenvalues of a
Hermitian matrix a (which are real by the spectral theorem
[6]) are denoted λmin(a) and λmax(a), with corresponding
eigenvectors vmin(a) and vmax(a). The expectation operator
is written E [·]. The Frobenius norm of a matrix a is denoted
|||a|||, and ‖ · ‖ denotes an arbitrary norm.

II. MAXIMAL EIGENGAP ESTIMATOR

A. Signal Model

Consider a single acoustic vector-sensor with a single signal
source. The sensor’s output at time t, z(t), has four channels,
consisting of an omnidirectional hydrophone and three particle
velocity measurements. We assume a plane wave signal, where
it can be shown (see [7]) that the scaled sensor output is

z(t) = w s(t) + n(t), (1)

where s(t) is the acoustic pressure at the sensor at time t,
w = (1, kx, ky, kz)

T is a vector such that k = (kx, ky, kz)
T

is a unit vector pointing towards the stationary source, and
n(t) ∈ R4 is a noise term. The vector k can be written
(cos θ cosφ, sin θ cosφ, sinφ)

T , where θ and φ give the az-
imuth and elevation angles, respectively, of k. Throughout, we
focus our attention on estimating the azimuth angle θ using
the x and y velocity channels, setting φ = 0. This reflects
that azimuth is the primary quantity of interest in many DOA
estimation problems.

Denote by x(t), e(t), and u, the restriction of z(t), n(t),
and w, respectively, to their second (x) and third (y) channels.
Because we assume φ = 0, u is a unit vector. Equation (1)
restricted to x and y velocity channels is then

x(t) = u s(t) + e(t). (2)

A frequency domain representation of (2) is

X(ω) = uS(ω) + E(ω). (3)

Denote E
[
S(ω)2

]
by PS(ω), and E

[
E(ω) E(ω)H

]
by

Σ(ω). Assume that
(A1) E [S(ω) E(ω)∗] = E [S(ω)∗E(ω)] = 0 for each ω.
(A2) The condition number of Σ(ω) is bounded by some

constant C, uniformly in ω.

λmax (Σ(ω))

λmin (Σ(ω))
≤ C

Assumption (A1) allows us to form the CSD matrix of X(ω),
denoted PX(ω), as

PX(ω) = E
[
X(ω) X(ω)H

]
= PS(ω) u uT + Σ(ω). (4)

When PS(ω) dominates Σ(ω), it can be shown that the
maximal eigenvector vmax (PX(ω)) is close to u. Moreover, if
the spatial covariance Σ(ω) is a scalar multiple of the identity
matrix this recovery is exact. A precise statement is given
by the following proposition, which follows from a direct
application of [8, Theorem 8.5].

Proposition 1. Assume PS(ω) > 0 and |||Σ(ω)||| <
PS(ω)/2. Let u⊥ be a unit vector perpendicular to u, U =[
u,u⊥

]
a matrix with columns u and u⊥, and p̃(ω) the off-

diagonal term in UT Σ(ω) U. Then

‖vmax (PX(ω))− u‖2 ≤
2 |p̃(ω)|

PS(ω)− 2 |||Σ(ω)|||
. (5)

By the bound given in (5), we have tighter control on the
difference of vmax (PX(ω)) and the signal’s DOA u when
either

(i) The maximum eigenvector of Σ(ω) is closely aligned
with u, in the sense that

∣∣vmax(Σ(ω))T u⊥
∣∣ (which

directly controls |p̃(ω)|) is small.
(ii) The signal dominates the noise, in the sense that PS(ω)

is large and Σ(ω) is small (in Frobenius norm). Recalling

that |||Σ(ω)||| =

√
λmax (Σ(ω))

2
+ λmin (Σ(ω))

2, we
can alternatively insist that these eigenvalues are small.

Using assumption (A2), we can upper bound |||Σ(ω)||| as

|||Σ(ω)||| ≤ λmin (Σ(ω))
√

1 + C2,

and the denominator in (5)

PS(ω)−2 |||Σ(ω)||| ≥ PS(ω)−2λmin (Σ(ω))
√

1 + C2. (6)

From (5) and (6), we see that large PS(ω) and small
λmin (Σ(ω)) make vmax (PX(ω)) a better estimate of u.
However, note that both PS(ω) and λmin(Σ(ω)) are prop-
erties of unobserved variables. From (4), we note that
λmax(PX(ω)) approximates PS(ω) and λmin(PX(ω)) approxi-
mates λmin(Σ(ω)). Hence our desire for large PS(ω) and small
λmin (Σ(ω)) can be stated as the following.

Goal: for better estimation of the signal DOA, we should
have λmax(PX(ω)) large and λmin(PX(ω)) small.

B. Combining Narrowband Information

For wideband signals, we seek to aggregate the narrowband
information described in the previous section over a range of
ω values, only some of which contain the signal of interest.
For frequency bins F = {ω1, ..., ω|F |}, our goal is to decide,
for each ω ∈ F , whether the signal of interest is contained
in the narrowband CSD matrix PX(ω), and if so to what
degree it agrees with the signal DOA in other frequency
bins. To accomplish this goal, we extend (4) by searching
for a weighted combination of the power matrices that gives
a tighter bound in (5). Namely, we propose solving, for
some to-be-specified norm ‖ · ‖, the following problem, where
a ∈ R|F | is a weight vector such that aω denotes the entry of
a corresponding to frequency bin ω ∈ F .

max
a∈R|F |

λmax

(∑
ω∈F

aωPX(ω)

)
− λmin

(∑
ω∈F

aωPX(ω)

)
(7)

s.t. ‖a‖ ≤ 1, a ≥ 0

In (7), the ‖ · ‖ ≤ 1 constraint defines the maximum size of
the weight vector. Because the λmax term measures the power

12



in the signal subspace, and λmin term the power in the noise
subspace, this objective maximizes the estimated SNR1.

One concern with the formulation (7) is that some fre-
quencies (in practice, often the lower ones) have more power
in both signal and noise subspaces, so these terms have
the potential to dominate the objective function. To remedy
this, we propose three standardization schemes for the CSD
matrices PX(ω). We denote a standardized PX(ω) by QX(ω).
Three intuitive options for standardization are:
(a) Take each matrix to have unit trace, so that

QX(ω) =
PX(ω)

trace (PX(ω))
,

and the total power (aggregated across both signal and
noise subspaces) in each frequency bin is 1.

(b) Take each matrix to have minimal eigenvalue 1, so that

QX(ω) =
PX(ω)

λmin (PX(ω))
,

and the maximal eigenvalue of the matrix gives its SNR.
(c) No standardization, so that

QX(ω) = PX(ω).

We compare the merits of each standardization method in
section III.

Lastly, we replace PX(ω) in (7) with an estimate P̂X(ω)
obtained from observations. We extend the notation for stan-
dardized matrices as one would expect, so that Q̂X(ω) is the
standardized P̂X(ω). Then (7) becomes

max
a∈R|F |

λmax

(∑
ω∈F

aωQ̂X(ω)

)
− λmin

(∑
ω∈F

aωQ̂X(ω)

)
(8)

s.t. ‖a‖ ≤ 1, a ≥ 0.

We define the maximal eigengap estimator as the real part
of a maximum eigenvector, Re

{
vmax

(∑
ω∈F âωQ̂X(ω)

)}
,

where â denotes the maximizer in (8). The following Theorem
is instrumental in computing the maximal eigengap estimator.

Theorem 1. The objective in (8) is the square root of a convex
quadratic function in a.

Proof. Denote the entries of Q̂X(ω) by

Q̂X(ω) =

(
qω rω
r∗ω sω

)
,

where we have used the conjugate symmetry of Q̂X(ω) in the
off-diagonal terms. The eigenvalues

λmax

(∑
ω∈F

aωQ̂X(ω)

)
and λmin

(∑
ω∈F

aωQ̂X(ω)

)

1In detail, maximizing difference in (7) is equivalent to maximizing
log(λmax/λmin) which is equivalent to maximizing the SNR λmax/λmin.

are given by the zeros of the characteristic polynomial for∑
ω∈F aωQ̂X(ω),

det

( ∑
ω∈F aωqω − λ

∑
ω∈F aωrω∑

ω∈F aωr
∗
ω

∑
ω∈F aωsω − λ

)
= 0. (9)

These roots can be computed explicitly using the quadratic for-
mula, and their difference is the discriminant of the quadratic
in (9), which is nonnegative because the eigenvalues of Her-
mitian matrices are real.√√√√√
∑

ω∈F

aω (qω + sω)

2

− 4

∑
ω∈F

aωqω

∑
ω∈F

aωsω

−
∣∣∣∣∣∣
∑
ω∈F

aωrω

∣∣∣∣∣∣
2

(10)

Because we maximize this expression in (8), and it is always
nonnegative, we can instead maximize the square of (10)∑

ω∈F

aω (qω + sω)

2

−4

∑
ω∈F

aωqω

∑
ω∈F

aωsω

−
∣∣∣∣∣∣
∑
ω∈F

aωrω

∣∣∣∣∣∣
2 .

(11)

Expanding (11), we have∑
ωi∈F

∑
ωj∈F

(
aωi

(qωi
+ sωi

)
(
qωj

+ sωj

)
aωj

(12)

− 4
(
aωiqωisωjaωj − aωirωir

∗
ωj
aωj

))
Define a matrix R̃ ∈ C|F |×|F | with

R̃ωi,ωj
= (qωi

+ sωi
)
(
qωj

+ sωj

)
− 4

(
qωi

sωj
− rωi

r∗ωj

)
,

(13)
so that the quadratic form aT R̃ a gives (12).

Next we apply a common technique to produce a real
symmetric quadratic form R which is equal to the quadratic
form given by R̃. First, note that expression (11) is real
and scalar, because aω , and qω , and sω are real (recall that
Q̂X(ω) is Hermitian). Hence (11) is equal to its conjugate, its
transpose, and its conjugate transpose. Because (12) and (11)
are equal, it follows that(

aT R̃a
)T

=
(
aT R̃a

)H
= aT R̃∗a = aT R̃a. (14)

Define

R =

1
2

(
R̃ + R̃H

)
+ 1

2

(
R̃ + R̃H

)T
2

, (15)

which is real, symmetric, and from (14) yields the same
quadratic form as R̃.

Finally, we remark that the quadratic form induced by R
is convex because aTRa is nonnegative for any choice of a.
This follows from the derivation of (10), in which we note
that the discriminant is nonnegative because the eigenvalues
of the conjugate symmetric matrix

∑
a∈F aωQ̂X(ω) must be

real.

Theorem 1 permits an equivalent definition of the weights
â in the maximal eigengap estimator of (8) as the maximizer
of the following expression, where R is defined in (15).

max
a∈R|F |

aTRa (16)

s.t. ‖a‖ ≤ 1 a ≥ 0.
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The primary benefit of this reformulation is the simple form
of problem (16), which facilitates computation. We consider
using both the 2-norm ‖ · ‖2 and the 1-norm ‖ · ‖1 to define
the weight constraint. Note that, regardless of the norm used,
(16) maximizes a convex function over a convex set, so a
maximizer exists and is contained within the extreme points
of the feasible set [9, Corollary 32.3.4].

III. APPLICATIONS & EXPERIMENTS

In this section we apply the maximal eigengap estimator to
a set of signals collected in 2019 by an acoustic vector-sensor
deployed in the Monterey Bay. We combine these signals with
Automatic Identification System (AIS) data providing the GPS
locations of vessels in the Bay throughout 2019. By comparing
actual vessel DOAs with estimates provided by the maximal
eigengap estimator, we assess the performance of the maximal
eigengap estimator in a realistic setting.

A. Data Details

The acoustic signals we consider were collected by a
Geospectrum M20-105 vector-sensor deployed at a depth of
891 meters on the Monterey Accelerated Research System
cabled observatory, which is operated by the Monterey Bay
Aquarium Research Institute. The time window of the data
spans from February 1st to December 31st, 2019, and except
for a handful of minor, maintenance-related disruptions these
data are a continuous representation of the acoustic soundscape
in Monterey Bay over the time frame considered.

The locations of vessels are given by GPS data provided by
the US Coast Guard, with a time resolution of five minutes.
We consider all observations where a vessel is due West,
within 15 km, and has bearing between 190◦ and 350◦ of
the sensor. We also require that there are no additional vessels
identified within 20 km of the sensor. We pair each of these
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Fig. 1. The acoustic vector-sensor within the Monterey Bay overlaid with an
interpolation of the mean absolute angular deviation for the maximal eigengap
estimator (with 2-norm and no scaling, see Table I) constructed using K-
nearest neighbors regression over all observed vessels.

Reference Abbreviation Norm Scaling
This paper 1-Trace 1-norm Trace
This paper 2-MinEig 2-norm Minimum Eigenvalue
This paper 2-None 2-norm None

[7] Covar NA NA

TABLE I
THE ESTIMATORS CONSIDERED. THE MAXIMAL EIGENGAP (16) USES

VARIOUS NORMS AND CSD MATRIX SCALINGS. THE COVARIANCE
ESTIMATOR OF [7] IS INCLUDED AS A COMPETING METHOD.

vessel locations with the corresponding five minutes of signal
recorded by the acoustic vector-sensor, resulting in 3674 ob-
servations labeled by signal DOA. By restricting our attention
to vessels West of the sensor, we focus on detecting an
eigenvector defining the signal subspace, and not considering
vessels within 10◦ of North or South avoids complications
arising from the ambiguity of its sign. We note that once a
signal subspace has been detected, additional processing can
be used to resolve this ambiguity using the acoustic vector-
sensor’s omnidirectional channel [7].

Figure 1 gives the location of the vector-sensor within the
Monterey Bay, with an interpolated error function for the esti-
mator superimposed. Bathymetrically, the sensor is located on
a shelf within the Monterey Canyon. To the sensor’s East, the
ocean is shallower and contains mostly fishing and recreational
vessels, whereas West of the sensor a pair of nearby shipping
channels yields traffic that is primarily commercial. The data
contain an unknown proportion of errors caused by noisy
GPS reports and interfering signals such as small recreational
vessels or aquatic mammals. The multi-season nature of the
data also produces dynamic propagation conditions which
impact the strength of both source and interfering signals at
the sensor [10].

B. Numerical Performance

To assess the maximal eigengap estimator’s performance,
we apply it to the acoustic signals with known DOAs described
in III-A. We take frequency bins F ranging from 75 Hz to 300
Hz with 2 Hz resolution, and use averaged periodograms to
estimate the CSD matrices P̂X(ω) [11]. In II, we introduced
two opportunities for variation in the implementation of the
maximal eigengap estimator (16), depending on the norm
used to constrain the weight vector and the scaling of the
CSD matrix included in the data preprocessing (a)-(c). We
consider three of these variations in the following experiments:
1-norm with trace scaling, 2-norm with minimal eigenvalue
scaling, and 2-norm with no scaling. As a comparison of how
the maximal eigengap estimator performs relative to existing
methods, we also implement and apply the covariance-based
DOA estimator from [7]. Table I gives the different estimators
considered.

We comment briefly on the implementation details of the
maximal eigengap estimator using the 1 and 2-norms. For the
1-norm constraint, the weight vector in the maximal eigengap
estimator can be computed in closed form. Indeed, when the
1-norm is used in (16), the extreme points of the constraint set
are

{
0, e1, ..., e|F |

}
, where 0 denotes the zero vector and ei

the ith standard basis vector. Then it is clear that the maximizer
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in (16) occurs at the standard basis vector corresponding to the
largest diagonal term in R.

In the 2-norm constrained case, (16) resembles a maximal
eigenvalue problem, but with an additional nonnegativity con-
straint. When the entries of R are nonnegative, the Perron-
Frobenius theorem guarantees that vmax(R) satisfies the non-
negativity constraint, but from its construction R may have
negative entries. Instead, we approximate a solution to (16) by
projecting vmax(R) onto the nonnegative orthant. In practice,
we find that the vmax(R) is primarily composed of positive
entries, and that occasional negative entries are close to zero,
which suggests that this approximation is reasonable.

The results of these experiments demonstrate that the max-
imal eigengap estimator is a more accurate method for DOA
estimation of an wideband signal using an acoustic vector-
sensor than those existing in the literature. Figure 2 gives
the mean absolute angular deviation (MAAD) of the various
methods as a function of the upper bound on the distance
between the sensor and vessels. Though variations of the
maximal eigengap estimator perform similarly, the 2-None
variation performs strictly worse than the 1-Trace and 2-
MinEig variations when greater than 5 km from the sensor.
Most importantly, all variations of the maximal eigengap
estimator outperform its competitor, the covariance method
introduced in [7]. This performance difference is especially
large for vessels close to the sensor, where the mean absolute
angular deviation is approximately 30 degrees less for the
maximal eigengap estimator. We conjecture that this difference
is due to the flexibility of the maximal eigengap estimator,
which selects from among a set of frequency bins those that
present a similar signal subspace. The optimal frequency bins
change depending on the vessel’s distance from the sensor,
and the maximal eigengap estimator has the ability to adapt
to this change using its optimal weighting of CSD matrices.

Further comparisons of the estimators’ performance demon-
strate the utility of the maximal eigengap estimator. Figure
3 presents histograms of the absolute angular error for the
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Fig. 2. Mean absolute angular deviation for each DOA estimator in Table I, as
a function of the distance between a vessel and the sensor. The three variants
of the maximal eigengap estimator perform much better than the covariance
method of [7] when the vessels are closer to the sensor, and this advantage
decreases as the distance increases.
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Fig. 3. Histograms of absolute angular error for the maximal eigengap
estimator (with 2-norm and no scaling) and the covariance method of [7],
applied to all vessels within 15 km of the sensor. The maximal eigengap
estimator has error near zero more often than its competitor.

2-None variant of the maximal eigengap estimator and the
competing covariance method. In this figure, the maximal
eigengap has 50% more observations in the smallest error bin
than the covariance method. Figure 1 presents the absolute
angular deviation of the maximal eigengap estimator as a
function of vessel location, constructed by interpolating error
over all vessels in the data set. Certain vessel locations present
more difficulty for DOA estimation than others. We suspect
that this difficulty can primarily be attributed to propagation
conditions arising from bathymetric features of those locations.

IV. CONCLUSION

In this paper we introduce the maximal eigengap esti-
mator for DOA estimation of a wideband signal collected
with a single acoustic vector-sensor. The maximal eigengap
estimator’s utility is in its formulation, which optimally and
tractably combines signal subspace information across a fre-
quency range. We demonstrate that the maximal eigengap
estimator outperforms existing techniques for DOA estimation
of maritime vessels on a set of labeled data collected by an
acoustic vector-sensor.
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Abstract—This paper addresses the problem of joint surface
detection and depth estimation from single-photon Lidar (SPL)
data. Traditional 3D ranging methods for SPL usually perform
surface detection and range estimation sequentially to alleviate
the computational burden of joint detection and estimation.
Adopting a Bayesian formalism, the joint detection/estimation
problem is formulated as a single inference problem. To avoid
the intractable integrals usually involved with variable marginal-
ization, we consider discrete variables and the resulting problem
is recast as a model selection/averaging problem. We illustrate our
method for a case where the expected signal-to-background (e.g.,
the target reflectivity and ambient illumination level) is unknown
but the proposed framework can be adapted to more complex
problems where the target depth can be obtained by combining
several estimators. We demonstrate the additional benefits of
the proposed method in also providing a conservative approach
to uncertainty quantification of the calculated depth estimates,
which can be used for real time analysis. The benefits of the
proposed methods are illustrated using synthetic and real SPL
data for targets at up to 8.6 km.

Index Terms—Single-photon Lidar, Bayesian estimation, De-
tection, Ensemble estimation.

I. INTRODUCTION

Single-Photon Lidar (SPL) is a reliable Lidar technology
for readily providing 3D scene reconstruction. SPL systems are
based on time-correlated single-photon counting (TCSPC) [1]–
[3], whereby the laser source emits a short pulse towards the
scene, part of which is reflected by the target. Once an individ-
ual photon of the reflected pulse is detected, which we refer to
as a “desirable” detection event, the time interval between the
pulse emission and the photon detection is recorded. This time
interval is the photon’s time-of-flight (ToF) and it is logged in
the corresponding time-bin of a histogram. ToF histograms can
be adversely affected by “undesirable” detection events, which
arise due to ambient illumination and dark counts. To provide
more accurate and reliable depth estimates of the target, many
pulses are repeatedly emitted towards the scene to build denser
histograms and improve the signal quality.

SPL has proven to have great benefits for use in a range of
different fields, including autonomous vehicles [4], agriculture
[5] and defence [6]. The high sensitivity of single photon
detectors allows for the use of low-power, eye-safe laser
sources [6]. Furthermore, the picosecond timing resolution
enables greater surface-to-surface resolution at ranges up to
200 km [7]. Thanks to advances in single-photon avalanche
diode (SPAD) array technology, acquisition of data can now
be achieved at video rates or higher [8], [9]. Consequently,

greater interest is being focused on faster data processing
to reconstruct 3D scenes as fast and as reliably as possible.
Whilst great strides have been achieved along those lines,
e.g., [10], important challenges such as surface detection and
reliable uncertainty quantification still need to be addressed.

In this paper, we propose a novel, pixel-wise, joint detection
and depth estimation method, which detects objects/surfaces
in the field of view, estimates their distance and rapidly
provides uncertainty measures that can then be used in
more sophisticated object recognition algorithms or subse-
quent decision-making processes. We use a similar observation
model as described previously [11]–[14]. These methods treat
the unknown model parameters (e.g., the target reflectivity)
as continuous variables that are classically determined us-
ing sequential or iterative processes [15]–[18]. This can be
computationally intensive, especially if the target depth and
reflectivity are jointly estimated. We overcome this problem
by treating the reflectivity as a discrete parameter, allowing us
to perform joint detection and range estimation at a fixed (and
low) computational cost. We also extend the observation model
from previous works by allowing non-uniform background
distributions without the method being significantly more
computationally intensive. This enables the analysis of data
corrupted by pile-up in SPAD detectors [19].

As multiple sources of error arise when reconstructing 3D
surfaces, it is ever more important to quantify the uncertainty
in depth estimation. Recent works have shown it is possible to
use uncertainty quantification methods for joint depth estima-
tion and detection, e.g., [20]. However, that method is far too
slow for reconstruction at real time speeds, which motivates
our work.

The remainder of this paper is organized as follows. Section
II recalls the statistical observation model used for SPL and
describes the proposed method for joint surface detection
and depth estimation. Results of simulations conducted with
synthetic single-pixel histogram data and real SPL data are
presented and discussed in Section III. Conclusions are finally
reported in Section IV.

II. BACKGROUND THEORY

A. Observation model

In this paper, we consider a set of K photon time of arrival
(ToA) values y = {yk}Kk=1, such that yk ∈ (0, T ), where it
is implicitly assumed that T is the repetition period of the
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laser source [21]. Indices representing pixel dependency are
omitted to simplify notation. The probability density function
for a photon ToA, yk, for a given pixel is given by

f(yk|d,w) = w h0

(
yk −

2d

c

)
+ (1− w) V(0,T ), (1)

where d is the range of the target surface within the admissible
range gate and c is the speed of light, such that 2d/c is the
characteristic ToF associated with the illuminated target. The
function h0(·) in Eq. (1) is the normalised Impulse Response
Function (IRF) of the Lidar system which is not required to
be Gaussian nor symmetric. It is generally measured during
system calibration [12], [21]. The second term V(0,T ), assumed
known, represents the distribution of undesirable background
photon detection events mentioned in Section I. This need not
necessarily be a uniform distribution, especially in situations of
high ambient illumination conditions where pile-up effects due
for instance to scattering media are more prominent. The shape
of V(0,T ) arises generally due to the dominating properties
of the ambient illumination over the undesirable detection
events caused by dark counts, which are usually constant
and relatively low compared with the ambient illumination
undesirable detection events. The variable w in Eq. (1) is the
probability of a detection event to be a desirable detection
event. This probability is related to the signal to background
ratio (SBR) by SBR = w/(1− w).

When K photons are detected, and the dead-times of the
SPAD detector can be neglected, the photon ToA’s are mutu-
ally independent (given d and w) and the joint likelihood can
be expressed as [12], [21]

f(y|d,w) =
K∏

k=1

f(yk|d,w). (2)

Our goal is to estimate d from Eq. (1), given that w is also
unknown. Moreover, we are also interested in estimating w, as
it provides information about the presence (w > 0) or absence
(w = 0) of a surface, as well as its reflectivity.

B. Proposed estimation strategy

We assume that d can take a finite number ND of values,
i.e., d ∈ {d1, ..., dND

}. This set is constructed from a subset of
the NT number of original non-overlapping time bins spanning
(0, T ) and ND is a number of non-overlapping time bins
within this subset, spanning (τ, T − τ), such that ND ≤ NT

and τ ≥ 0, where the width of the time bins is arbitrary
(usually given by the timing resolution of the SPAD used).
The parameter τ is chosen to ensure that the support of h0(·)
is always included in (0, T ) (for any admissible value of d)
and thus the value of τ depends on the width of the IRF peak.

Let’s first assume that w is known. The probability distribu-
tion f(d|y, w) can be obtained from the joint likelihood Eq.
(2), using Bayes theorem

f(d|y, w) =
f(y|d,w)f(d)

f(y|w)
, (3)

where f(d) is a user-defined depth prior distribution, f(y|w) is
the marginal term and f(y|w) =

∑ND

j=1 f(y|d = dj , w)f(d =

dj) is a tractable normalizing constant (thanks to d being
discrete). This posterior can then be used easily to compute
Bayesian estimators (e.g., maximum a posteriori (MAP) or
minimum mean squared error (MMSE), denoted µ(w)) for
the depth, as well as the posterior variance, denoted σ2(w).
Unfortunately, depth inference using Eq. (3) is challenging
since w is unknown in practice and setting its value poorly
can greatly impact the depth estimation.

To alleviate this issue, a classical approach consists (assum-
ing that w is continuous) of assigning w a prior distribution
and of computing the following marginal posterior distribution

f(d|y) =

∫
f(d|y, w)f(w|y) dw, (4)

where f(w|y) is the marginal posterior distribution of w.
Unfortunately, manipulating f(d|y) in Eq. (4) is challenging
due to the integral w.r.t. w which needs to be approxi-
mated numerically for any value of d. To overcome this
difficulty, we consider the parameter w as discrete with
w ∈ {w1, w2, ..., wM}, where we allow w1 = 0 to be in the
admissible set of w and M is a user determined value. Using
this discretization of w, Eq. (4) becomes

f(d|y) =
M∑

m=1

f(d|y, wm)f(wm|y), (5)

which becomes tractable, provided that f(wm|y) can be
computed easily. The marginal posterior distribution f(d|y)
can be seen as a mixture of M distributions, whose weights are
given by f(wm|y). Thus, its mean and variance can be easily
derived from the mean and variance of each of its components.
More precisely, by simplifying the notation µm = µ(wm) and
σ2
m = σ2(wm) for the mean and variance of f(d|y, wn), the

mean and variance of f(d|y) in (5) are given by

µ̄ =

M∑
m=1

f(w = wm|y)µm, (6)

σ̄2 =

(
M∑

m=1

f(w = wm|y)(σ2
m + µ2

m)

)
− µ̄2. (7)

Since w can only take a finite number of values, the
marginal posterior f(w|y) can be computed exactly using

f(w|y) =
f(y|w)f(w)∑M

m=1 f(y|w = wm)f(w = wm)
, (8)

and f(y|w) defined below Eq. (3). While in Eq. (6), we con-
sider the marginal mean of d a posteriori (having marginalised
over w), it is of course also possible to condition the estimation
of d based on the marginal MAP (MMAP) estimate of w. In
that case, we can first compute

ŵ = argmax
w

f(w|y), (9)

and derive the mean and variance of f(d|y, ŵ), which, as will
be illustrated in Section III, often has a mean close to that of
f(d|y) but a smaller variance (since is does not account for the
uncertainty associated with w). It is important to notice that
the computation of the summary statistics in Eqs. (6) and (7)
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requires the computation of MND likelihoods (f(y|dn, wm)).
The associated cost can thus be bounded by controlling the
grids of d and w. Note also that Eq. (8), as a by-product of
the depth estimation procedure, allows us to perform surface
detection. For instance, we can decide that a surface is present
based on f(w > α|y) where α is user-defined. More complex
decision criteria can also be used as the proposed method is not
based on single decision criterion. Finally, this method differs
from the surface detection method detailed in [11] in which the
depth estimation is performed after the detection step, whereas
our proposed method performs both simultaneously.

C. Depth estimation using ensemble estimators

Eq. (5) is a mixture distribution and the resulting depth
estimation method can be seen as a model averaging method,
whose weights are given by f(wm|y). These M models are
simply characterized by a different value of wm. However,
more general models can also be used. Consider a set of
M models denoted {Mm}m, for which we can compute
f(d|y,Mm) and its mean and variance. Robust depth esti-
mation via model averaging can then be achieved using

f(d|y) =
M∑

m=1

πmf(d|y,Mm), (10)

where πm ≥ 0, ∀m and
∑M

m=1 πm = 1. These weights can
be either arbitrarily defined (e.g., using 1/M when f(Mm|y)
cannot computed, or using πm = f(Mm|y) otherwise). Due
to space constraints, we only illustrate our method for models
parametrized by w, but the proposed approach could also be
used, for instance if several IRFs or background distributions
were considered simultaneously. The former would arise for
instance in long-range imaging applications when the peak
broadens due to reflection on surfaces which are oblique to
the beam direction. The latter can arise from varying levels of
back-scattered light in scattering media. Models can also differ
by the priors assigned to d (and the other model parameters
such as w).

III. RESULTS

We first evaluate the performance of the proposed algo-
rithm using synthetic single-pixel data and then two real
SPL datasets, provided by Leonardo UK [6]. In all results
presented, the background distribution V(0,T ) is assumed to
be known, regardless of whether it is a uniform distribution
or not (and estimated from the data as a pre-processing step).

A. Single-Pixel analysis

First, we generate two synthetic histograms of length T =
1500 bins, with K = 100 and K = 1000, respectively. The
real IRF data obtained from [22] is used, with histogram
resolution at 2ps per bin and FWHM = 30 bins = 60ps, and
the maximum of the peak is set to bin 746. We set the ground
truth signal photon probability to w = 0.2. The final pixel
data generated are shown in Fig. 1 (bottom). For this initial
investigation, we set M = 20 and the values of admissible
values of w are uniformly spread in [0, 1]. Fig. 1 (top) shows
that f(w|y) is more concentrated as K increases since more
detected photons help the discrimination between signal and

Fig. 1: Graphic results of photon dense (blue) and sparse
(red) single pixel histogram data. Top: Plot of probability a
posteriori f(w|y) vs w. Middle: Plot of mean µm values for
photon dense (Second) and sparse (Third) data, with error
range plots (shown in black). Bottom: Single Pixel Histogram
data plot.

Dense hist. (K = 1000) Sparse hist. (K = 100)
Mean
of d

Var.
of d

Est.
w

Mean
of d

Var.
of d

Est.
w

f(d|y, ŵ)
using (9)

745.44 2.68 0.21 747.13 28.55 0.16

f(d|y)
and f(w|y)

745.43 2.74 0.20 747.02 62.50 0.19

TABLE I: Comparison of the different estimates of d (con-
ditioned on w or not) and w (marginal MAP or marginal
MMSE), for K = 1000 and K = 100. The actual value
of (d,w) is (746, 0.2). Note that f(d|y) and f(w|y) are
computed using (5) and (8), respectively.

background photons. Similarly, the second and third row of
Fig. 1, which depict µ(w = wm) and σ2(w = wm), illustrate
how the estimated depth mean and variance using f(d|y, w)
depend on K and on the unknown value of w (plots restricted
to w > 0.1 below which the means degrade drastically).

Table I summarizes the different estimates of d and w for
the two histograms with K = 100 and K = 1000. First,
we can note that the marginal MMSE estimator of w (i.e.,
the mean of f(w|y) used in the bottom row of Table I)
is usually more reliable than the MMAP estimator in (9)
which is more sensitive to the resolution of the w-grid (and
M ), especially for small values of K. Second, the MMSE
depth estimates, conditioned on the MMAP estimator of w
(top row) or computed from the marginal posterior f(d|y)
(bottom row) are similar. However, the estimated variance is
larger in the latter case, since it incorporates the uncertainty
about this unknown parameter w. This estimator is thus more
conservative in terms of uncertainty quantification.

B. Real SPL data analysis

Here, we use two real SPL datasets acquired by Leonardo
to illustrate the potential benefits of the proposed method. The
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Fig. 2: Sum of photon counts (blue) across all Lidar pixels
for college tower data (top) and pylon data (bottom). The red
curves represent the estimated background contributions.

first SPL cube consists of 100× 50 pixels and focuses on the
tower of an Edinburgh college tower, taken at ≈ 3km range,
already considered in [6]. The second dataset consists of 80×
40 pixels representing a pylon, taken at ≈ 8.6km range, and is
an example of a challenging, line-based object. These datasets
primarily differ by their average SBR, much higher in the first
dataset (SBR ≈ 0.22) than in the second (SBR ≈ 0.01 ). It
should be noted the SBR described is not the peak SBR, where
the signal to background ratio is calculated from the time bin
where the signal/peak reaches its maximum value, but rather
the ratio of desirable to undesirable detection events from all
histogram temporal bins. The difference in the SBR of both
datasets can be seen in Fig. 2, which depicts two histograms
obtained by accumulating the histograms of all the pixels in
the set. These accumulated histograms can be used to estimate
an average background distribution which is not constant in
these two cases. Here, we used second-order polynomials to
fit V(0,T ) and compared the results obtained assuming constant
background instead. The background for the SBR is equivalent
to the integral of the V(0,T ) distribution curve over all the
temporal bins.

For both datasets, our detection method is compared to the
detection method proposed by Tachella et al. [11], assuming
a constant background distribution. It is worth recalling that
estimates of w can be used to estimate to the target intensity
(number of signal photons I = wK) and the number of
background photons B = (1 − w)K and we used w̄, the
mean of f(w|y) in these expressions, leading to Ī and B̄.
The proposed method has been applied with larger M values
than for the single pixel analysis for a more precise estimation
of w. A target is assumed to be present in each pixel if and
only if f(w > w0) > 0.5, where w0 is user-defined and scene
dependent. Due to space constraints, the final depth variance
results are not presented but their scale is of the order the
timing resolution of the SPAD used.

1) College Tower Data: For this dataset, target detection
is a relative simple task and the admissible grid of w is
set using M = 100 equality spaced {wm}m and we used
w0 = 0.02. The estimated probability of target presence maps
are displayed in Fig. 3, which shows that for this scene,
the proposed method leads to results similar to that using
Tachella’s method [11], irrespective of the background model

adopted. This can be explained by the fact that the peaks in
the histograms can be easily identified even when assuming a
constant background.

(a) Tachella
[11]

(b) Uniform
background

(c) Non-uniform
Background

Fig. 3: College tower data comparison of probability of
detection results for the method by Tachella et al. (a), and
for the proposed method using uniform (b) and non uniform
(c) background distributions, where w0 = 0.02.

The final mean depth estimates µ̄, reflectivity estimates Ī
and background estimates B̄ are presented in Fig. 4.

Fig. 4: Final mean depth (left), reflectivity (middle) and
background (right) estimates for the tower data using the
proposed method, for w0 = 0.02.

2) Pylon Data: For this dataset for which we know the
SBR is low, the admissible grid of w is set using M = 200
logarithmically spaced {wm}m, with w2 = 10−5, wM = 10−1

and w0 = 0.008. The estimated target presence maps are
displayed in Fig. 5, which shows that for this scene, the
proposed method leads to results noisier than those obtained by
Tachella et al. [11] (taking the conjugate gamma density shape
parameter αb = 100) when we assume a uniform background
distribution, and leads to improved results for detecting the
pylon structure when we assume a non-uniform background
distribution. In this instance, the peaks in the histograms can-
not be easily identified when assuming a constant background,
and so a non-uniform distribution assumption is required to
obtain better results from the cross-correlation calculations.

The final mean depth, reflectivity and background estimates
obtained using our proposed method are shown in Fig. 6, under
the condition w0 = 0.008 and Ī > 0.25.

IV. CONCLUSION

In this paper, we proposed a novel method for joint surface
detection and depth estimation from SPL data using discrete
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(a) Tachella
[11]

(b) Uniform
background

(c) Non-uniform
Background

Fig. 5: Pylon data comparison of probability of detection
results for Tachella et al. method (a), where αb = 100,
and proposed method using uniform (b) and non uniform (c)
background distributions, where w0 = 0.008.

Fig. 6: Final mean depth (left), reflectivity (middle) and
background (right) estimates for the pylon data using the
proposed method, for w0 = 0.008 and Ī > 0.25.

variables to avoid intractable marginalizations and producing
satisfactory results in the final estimates using model selec-
tion/averaging. While we illustrated the method for a case
where only the expected signal-to-background is unknown, in
the future we aim to adapt the framework to more complex
problems where the target depth can be obtained combining
several arbitrary estimators. Furthermore we plan to propose a
GPU implementation to enable reliable depth estimation and
uncertainty quantification at real-time speeds.
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Abstract—As a significant radar waveform, linear frequency
modulation (LFM) is widely used in both military and civilian
applications. Recently, there has been increasing interest in using
the same radio spectrum to enable the radar and communication
signals to coexist. This paper explores methods capable of
estimating LFM parameters, particularly in the presence of
co-channel orthogonal frequency division multiplexing (OFDM)
signals. In particular, this paper applies the discrete chirp Fourier
transform (DCFT) to this specific scenario and also compares this
approach to the idea of reusing an OFDM receiver to estimate the
LFM parameters. Through simulations, we demonstrate the use
of the Hough transform to confirm that these can be identified
to a high degree of accuracy. In addition, we discuss how
this “reuse” approach opens up new applications for storing
waveforms of interest for later data analysis.

I. INTRODUCTION

Nowadays, as the number of mobile terminal users increases
and diversified sensors are applied in various scenarios, a great
amount of information is usually disposed of in traditional
signal processing to reduce complexity and improve efficiency
in radio frequency (RF) receivers. However, such information
could contain latent features of interest and be worth storing
or recovering for further processing; for example, for detecting
abnormal waveforms or other signal processing tasks. In
the meantime, in these various scenarios, spectrum resources
grow scarce and different waveforms or different sensors are
more likely to interfere with each other. Thus, robust signal
detection in the presence of co-channel interference becomes
an important and imminent problem to be solved.

The two most common radio frequency receivers in de-
fence are communication and radar. Many researchers are
now focussed on communication and radar systems working
simultaneously to improve spectral efficiency. For example,
[1] discusses two scenarios under the topic of communication
and radar spectrum sharing (CRSS): radar-communication
coexistence (RCC) and dual-functional radar-communication
(DFRC). With respect to DFRC, [2] and [3] present orthogo-
nal frequency division multiplexing (OFDM) as a promising
candidate that is used in multiple scenarios, notably for au-
tonomous vehicles. Also, [4] introduces the use of the cyclic
prefix (CP) in OFDM system to combat channel effects by
circular convolution; this inherent ability to overcome channel
effects makes OFDM a common modulation scheme widely
used in communication systems.

Reference [5] introduces the linear frequency modulation
(LFM) waveform as one kind of continuous waveform (CW)

that is frequently used in defence and civilian applications. In
addition, by utilising a combined communication and radar
waveform, [6] proposes chirp modulation to achieve radar
and communication functions simultaneously and [7] discusses
modulating a LFM signal by adjusting the data with orthogonal
sequences in an integrated radar and communication scenario.

Thus, CRSS is the application scenario selected for study
in this paper, where OFDM and LFM waveforms represent
the communication waveform and the radar waveform, respec-
tively. In the CRSS scenario with LFM and OFDM waveforms,
one waveform could be seen as the interference to the other.
Much of the research to date focuses on the application
and the performance of CRSS. However, in this paper the
question to be studied is how to detect LFM waveforms in
the presence of co-channel OFDM signals. The receiver may
then choose to store such waveforms for later processing.
With respect to CRSS scenarios, other techniques, such as
compressive sensing (CS), have already been applied in [8]
to improve the communication symbol-error-rate performance
when uncoordinated radar waveforms are also present. At
a receiver, the received waveforms may contain information
which is useful for signal processing and may be worth storing.
Based on this point, CS [9] is also a promising technique for
analysing or storing large amounts of data and can be applied
on detection, classification, estimation, and filtering problems.
Recently, it has been shown that CS methods are also able
to compress data and store results for further processing [10].
Specifically, [10] utilised an information-theoretic projection
design approach to control the input-output mutual information
terms for two independent sources, which is extremely suitable
for CRSS scenarios. Thus CS is a significant technique which
will be investigated and applied to CRSS in future research.

To detect the LFM parameters, there are several methods
proposed in the literature. Reference [11] proposes joint esti-
mation of the phase, frequency, and frequency rate based on
the application of least squares to the unwrapped phase of the
signal. In [12], an estimation algorithm based on a simple
iterative approach is proposed whose main characteristics
include accuracy, reduction in error propagation effects, and
operation over a wide range of phase parameter values. In [13]
and [14], methods are proposed to estimate chirp parameters or
achieve chirp detection based on fast Fourier transform (FFT)
techniques. In addition, a novel algorithm for the parameter
estimation of multicomponent chirp signals in complicated
noise environments is proposed in [15]. Research in [16]
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studies the application of the discrete chirp Fourier transform
(DCFT) for LFM waveform parameter estimation and [17]
discusses the maximum chirplet transform. The latter is a
simplification of the chirplet transform, where an iterative
detection followed by window subtraction is employed to
avoid re-computation of the spectrum.

This paper will focus on one specific application for LFM
estimation, where a combined co-channel OFDM and LFM
signal model is considered. Specifically, most OFDM receivers
contain an efficient FFT implementation. The main contribu-
tion of our paper is to show that we are able to estimate
the LFM parameters by reusing an existing OFDM receiver
directly in order to reduce hardware complexity. We also com-
pare this approach with the more standard DCFT technique
from [16]. This work is the starting point for an exploration
into the use of general CS techniques for the analysis of
two independent signal source, combined communications and
radar signals.

The layout of this paper is as follows: Section II introduces
the system diagram and the system model of OFDM and
LFM transmitting simultaneously. Section III explains how the
DCFT can be used to estimate the LFM parameters in the
system model. Section IV proposes an alternative approach
to detect LFM parameters by reusing an OFDM receiver
in combination with the Hough transform [18]. Section V
discusses the two methods in Section III and Section IV and
also introduces future research topics.

II. SYSTEM MODEL

In this section, we provide an overview of the system model
utilised throughout the paper. The model is constructed from
three main components — a transmitter subsystem, a channel,
and a receiver subsystem — and is illustrated in Fig. 1. Here,
the black blocks are standard signal processing elements, and
the orange blocks are the objective of future research.

Assuming there are Ms subcarriers in the OFDM waveform,
Nc symbols for each symbol block, and the length of CP is
Ncp symbols, the complex-valued time domain OFDM signal
x(t) considered in this paper is defined as in [4]

x(t) =

Ms−1∑
k=0

Xke
j2πkt/T , 0 < t < T + Tg, (1)

where Xk is the data symbol modulated via quadrature phase
shift keying (QPSK) modulation, and the frequency interval for
each adjacent subcarrier is ∆W = 1/T , while T is symbol
time. Equation (1) is usually implemented using the inverse
discrete Fourier transform (IDFT).

Furthermore, for the radar waveform, assuming fl is the
linear frequency and fc is the carrier frequency, we define the
instantaneous frequency of an LFM waveform at time t as
fLFM(t), which is expressed as:

fLFM(t) = flt+ fc. (2)

Thus, the corresponding complex analogue form of LFM is

f(t) = ej(β0t
2+α0t). (3)

The derivative of the phase term in (3) is the instantaneous
frequency of LFM as in (2), therefore

β0 = πfl, α0 = 2πfc. (4)

Thus, (2) can be rewritten as

fLFM(t) =
β0
π
t+

α0

2π
. (5)

At the receiver part, the received signal is the (Nc+Ncp)×1
vector y as follows:

y = yofdm + ylfm + w, (6)

where yofdm is the (Nc +Ncp)× 1 OFDM data, ylfm is the
(Nc+Ncp)×1 LFM data, and w is the (Nc+Ncp)×1 additive
white Gaussian noise (AWGN).

The data processing block after sampling and demodulation
in Fig. 1 can be a LFM receiver or an OFDM receiver. For the
orange blocks, CS is considered as a data analysing process
to store data, which is different to the normal receivers. These
processing blocks will be discussed further in Section V of
the paper.

III. DISCRETE CHIRP FOURIER TRANSFORM

Research in [16] studies using the N -point DCFT to esti-
mate chirp parameters and this paper also presents theoretical
analyses on the selection of N . In this section, we will briefly
introduce the DCFT method, apply it to OFDM and LFM
combined signals, and present the simulation results.

The DCFT is similar to the discrete Fourier transform
(DFT), which is efficiently applied in OFDM signal reception
via the FFT. The N -point DFT is defined as

X[k] =
1√
N

N−1∑
n=0

x[n]Wnk
N , k = 0, 1, . . . , N − 1, (7)

where WN = exp(−2πj/N). Similarly, the expression for the
N -point DCFT method is presented as

X[l, k] =
1√
N

N−1∑
n=0

x[n]W ln2+kn
N , l, k = 0, 1, . . . , N−1. (8)

When applying the DCFT to equation (3) to estimate LFM
parameters, [16] proposed the following equation when the
sampling rate is t = n/N1/3;

f [n, l, k] = e
j

(
β0

n2

N
2
3

+α0
n

N
1
3

)
= W

−(ln2+kn)
N . (9)
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Based on (3) and (9), the relationship between l, k and β0,
α0 are as follows:

l =
β0
2π
N

1
3 k =

α0

2π
N

2
3 . (10)

Thus, we are able to determine the estimated l as l̃ and
the estimated k as k̃ by (8), then the estimated β0 as β̃0
and the estimated α0 as α̃0 are also able to be deduced from
equation (10). Furthermore, [16] also discusses limitations on
the selection of N , which should be an odd value to avoid
multiple peaks appearing in the DCFT spectrum. Even values
of N are typically preferred for efficient implementations of
the DFT. Thus, being constrained to odd values of N during
computation of the DCFT might inhibit low-complexity solu-
tions. The estimation range of an N -point DCFT under this
sampling rate, when l̃ ≤ N and k̃ ≤ N can be characterised
by

f̃l ≤ 2N
2
3 f̃c ≤ N

1
3 . (11)

When modifying the sampling rate to t = n×1/NM , where
M is a value in the interval of (0, 1], equation (3) can be
rewritten as

f [n, l, k] = e
j
(
β0

n2

N2M −α0
n

NM

)
= W

−(ln2+kn)
N .

(12)

Thus, the relationship between l̃, k̃ and β̃0, α̃0 under M
sampling rate are as follows:

l̃ =
β̃0

2πN2M−1
, k̃ =

α̃0

2πNM−1
. (13)

In the meanwhile, the corresponding estimation range of f̃l
and f̃c are as follows:

f̃l ≤ 2N2M f̃c ≤ NM . (14)

Based on (14), Fig. 2(a) and Fig. 2(b) present the estimation
range of f̃l and f̃c depending on different values of N and
M , respectively. From Fig. 2, we observe that the estimation
ranges of f̃l and f̃c increase with N and M simultaneously. In
both plots, the maximum estimation range occurs when both N
and M are maximised. In addition, computational complexity
is increasing more expensively with the increasing of the value
of N .

TABLE I
OFDM PARAMETERS

Name Value

Length of CP 16

FFT length 64

Symbol Period 0.08 s

Bandwidth 1kHz

Modulation QPSK
Total Subcarriers 52 (Freq Index −26 to +26)

DC Subcarrier Null (0 subcarrier)
Signal to Noise Ratio (SNR) 0 dB

TABLE II
LFM PARAMETERS

Name Value

Start Frequency 0Hz

End Frequency 500Hz

Repetition Period 10 s

Considering the application scenario and referring to the
OFDM standard parameters of [19], we set the OFDM pa-
rameters and the LFM parameters for this paper as shown in
Table I and in Table II, respectively. From the parameters in
Table II, the frequency settings for LFM in the joint radar
and communication system are as follows: fl = 50 Hz and
fc = 0 Hz. Furthermore, in the received signal (6), the SNR
for the OFDM signal with respect to the AWGN is 0 dB, while
the transmission power of the OFDM signal is equal to the
transmission power of the LFM signal.

After obtaining the receiver signal (6), we transform the
data using the DCFT with a sampling rate of t = n× 1/NM ,
where N = 25 and M = 1. Then we acquire f [n, l, k] for
different l and k as shown in Fig. 3. This figure indicates
that the peak of the magnitude of the DCFT is 27.9; the
corresponding coordinates (0, 1) are the most suitable for the
frequency estimation. By placing l̃ = 1 and k̃ = 0 into (4)
and (13), we estimate the LFM parameters as: f̃l = 50 Hz and
f̃c = 0 Hz, respectively.

IV. REUSING THE OFDM RECEIVER FOR LFM
PARAMETER ESTIMATION

In [13] and [14], FFT-based methods to estimate the chirp
parameters and to achieve chirp detection are proposed, re-
spectively, and [20] discusses the communication performance
of an OFDM receiver while receiving OFDM and LFM
combined signals.

One main feature of the OFDM receiver is that it can
easily implement a frequency transform through the use of the
FFT [4]. In this section, we propose an alternative estimation
approach by reusing the OFDM receiver to estimate the LFM
parameters in the OFDM-LFM combined signal, which is
defined in (6). Compared with the DCFT method applied in
the LFM receiver of Fig. 1, this method directly applies the
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OFDM receiver as the first data processing step in Fig. 1 to
estimate the LFM parameters.

Fig. 4 introduces the main data processing steps applied to
the combined signal in (6) as follows:

1) Discard CP: We dispose of the CP in each symbol
period at the receiver part. In our simulations, when removing
the CP, 20% of the symbol samples are removed for each sym-
bol period, thus we use zero-padding to extend the remaining
samples over 0.064 s into one full symbol period 0.08 s.

2) FFT: Apply FFT to the data after removing the CP,
which is inherently utilised in the OFDM receiver.

3) Hough Transform: In this step, our work builds on
ideas published in [21], which studied creating images of
communications signals for analysis. Furthermore, [22] applies
the Hough transform to multi-component LFM signals to
estimate the LFM parameters. Therefore, we apply the Hough
transform [18], which is defined as follows:

ρ = x cos θ + y sin θ, (15)

where x, y is the coordinates under Cartesian coordinate
system, ρ represents the distance between the origin and the
given line, and θ denotes the angle between the X-axis and
the given line.

4) Parameter Estimation: Fit the ρ and θ from the Hough
transform into equation (2) to estimate the LFM parameters.

Step 1) and Step 2) are two regular signal processing
functions in an OFDM receiver. Step 3) and Step 4) are two
additional procedures to detect the LFM parameters and can
be easily applied after the traditional OFDM receiver.

Based on the OFDM and LFM parameters in Table I and
Table II and the data process shown in Fig. 4, we obtain the
spectrum of the processed OFDM-LFM signal as shown in Fig.
5. Here, the peak of the spectrum of the combined signal is
caused by the LFM waveform. Therefore, in order to estimate

-30

-20

-10

500

0

10

20

30

40

10
8

Frequency / Hz

0 6

Time / s

4
2

-500 0

-20

-10

0

10

20

30

Fig. 5. Combined OFDM and LFM spectrum.

Time\s

F
re

q
u

e
n

c
y
\H

z

(a)

-80 -60 -40 -20 0 20 40 60 80

-100

-50

0

50

100

[X,Y]: [72.5 29.5]

Index: 1

[R,G,B]: [1 1 1]

(b)

Fig. 6. Hough transform processing. (a) Black and white image obtained
after thresholding of Fig. 5 (b) Result of Hough transform applied to black
and white image.

the LFM parameters by the Hough transform, we need to
perform the following steps. Firstly, we convert Fig. 5 into
a 2D black and white image by selecting 30 dB as a threshold
as shown in Fig. 6(a). Then we apply the Hough transform to
calculate the gradient of the white line as shown in Fig. 6(b)
and subsequently estimate the LFM parameters.

In Fig. 6(b), the coordinate of the peak of the Hough
transform is (72.5, 29.5). To express the Hough transform
result in a more intuitive manner, we convert Fig. 6(b) into
a 3D plot as shown in Fig. 7.

From Fig. 7 with the high resolution zoom shown in Fig.
6(b), we are able to identify parameter values of θ = 72.5◦

and ρ = 29.5. When considering the characteristics of the
LFM waveform, which possesses a frequency that increases
with time, we fit the data into (15). Thus, the expression of
white line in Fig. 6(a) is as follows:

y = 0.3153x+ 30.9316. (16)

In the meantime, regarding the scale of the axes in Fig. 5, we
set y = 0.08fLFM(t) and x = 12.5t in (16). Furthermore, the
line has a y-intercept of 30.9 in (16); this is approximately
equal to the frequency bin at which “DC” (0 Hz) is situated,
such that

fLFM(t) = 49.2656t+ 0. (17)

Then, regarding (2), we obtain the parameter estimation as
follows: f̃l = 49.2656 Hz and f̃c = 0 Hz. When compared
with the ground truth parameter value, fl = 50 Hz, the
parameter estimation error is 1.47%.
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Fig. 7. Peak of Hough Transform of Fig. 6(a)

V. DISCUSSION AND FUTURE WORK

This paper discusses one alternative way to estimate LFM
parameters by reusing an OFDM receiver instead of a tra-
ditional LFM receiver. Compared with a traditional LFM
estimation method, such as the DCFT, the alternative OFDM
receiver approach combined with the Hough transform is a
new technique for waveform parameter estimation. Moreover,
this alternative method is not restricted by the values of N
and M selected in the DCFT, where N must be an odd
number and M should be in the interval (0, 1]. Furthermore,
the estimation range of the alternative method mainly depends
on the resolution selected in the Hough transform, however
the accuracy of the DCFT depends on both the values of N
and M . In addition, the alternative method is able to utilise the
OFDM receiver to detect the LFM parameters, which provides
the possibility of formulating an RCSS implementation.

In future research, we will investigate the implementation of
the orange blocks as shown in Fig. 1 for joint communication
and radar scenarios. Since CS techniques are able to reduce
the data dimensionality, we will explore how to apply general
CS techniques to this CRSS application and how to implement
them efficiently for use on low power devices. Exploiting CS,
radar and communication data is able to be stored in compact
form and can be reconstructed without much distortion. In
particular, the CS technique in [10] achieves data recovery
from compressed data using a Bayesian inference model and
the authors were able to use projection design in a CS sce-
nario to control the input-output mutual information terms for
two independent sources, which could possibly be radar and
communication data, respectively. Employing the method from
[10] will further extend our current research into estimating the
LFM parameters by reusing OFDM receivers for the purpose
of radar signal detection.
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Abstract—Sensor parameter estimation is a key process that
must be considered when performing data fusion in a multi-
sensor object tracking scenario. For example, significant relative
time delays in sensor data arriving at a fusion centre can
result in a reduction of track accuracy, false tracks, or early
termination of a true object track. The same issues may arise
in the presence of some relative angular bias between sensors.
This article presents a technique for simultaneous target tracking
and estimation of relative time delays and angular biases in data
for a multi-sensor system with no access to a global frame of
reference. The proposed technique makes use of a hierarchical
Bayesian model and couples a grid-based search method with
an array of augmented state Kalman filters to accomplish this.
Results are provided comparing the root-mean-squared error in
a simulated single object tracking scenario. The performance of
a single sensor, two sensors with correct registration, two sensors
with incorrect registration, and two sensors with registration
correction are compared. The results demonstrate a significant
improvement in tracking performance when registration errors
are corrected with the proposed method, as well as an increase
in accuracy over object tracking with only a single sensor.

Index Terms—hierarchical Bayesian model, spatio-temporal
alignment, single object tracking, GNSS-denied, bias estimation,
Kalman filter, grid-based search

I. INTRODUCTION

A. Problem Overview

Sensor data fusion is a valuable technique in sensor net-

works. Use of multiple sensors to carry out a task – such

as behaviour analysis – has advantages over the same task

performed by only a single sensor [1]. Calibration of these

sensors is key to their reliable performance. Consider the

rapid deployment of radars on ships where there may be no

time for calibration ahead of time - impromptu registration

becomes a necessary capability. Sensors with unknown relative

registration biases are likely to return data which can lead to,

in the case of object tracking, false tracks or complete loss of

tracks. In a crisis situation, this could be disastrous.

Sensors may not share a common spatial reference frame

(spatial bias) and may not be synchronised in time (temporal

bias). Therefore, to allow successful data fusion, it is important

to remove these biases such that the sensors share a frame

of reference (FoR). Additionally, the network may not have

any reliable access to an external reference such as the Global

Positioning System (GPS). GPS can provide much information

about sensor position and pose, however, in a real scenario

this will likely be with some error. Furthermore, regions

exist which are entirely GPS-denied. These include indoors,

underwater, hostile regions (where signals may experience

interference), and in space exploration.

Developed in 1981, the Network Time Protocol (NTP) is

a method for the clock synchronisation of computer systems

[2]. It requires access to the internet. The sensors considered

in this work have no internet access and therefore NTP is

not considered a solution to the problem this work addresses.

Additionally, NTP deals with round trip delays and overall

clock synchronisation, which is not considered here.

B. State-of-the-Art & Contributions

Registration methods for networks of sensors have been pro-

posed previously in the literature. Some fall into the category

of spatial alignment [3], [4], while others focus primarily on

temporal alignment [5]. A new KF-based algorithm for spatial

bias estimation among stationary time synchronised sensors

tracking N targets is proposed in [6]. This is founded on the

reconstruction of Kalman gains at the fusion centre. Fortunati

et al. [7] consider the spatial alignment problem between local

and remote sensors and derive a linear LS estimator to align

the data. A modified exact maximum likelihood (MEML)

registration algorithm, which was shown to outperform the

standard exact maximum likelihood (EML) algorithm in a

small radar network, has been presented [8]. This was achieved

through the determination of an exact likelihood function. A

neural EKF (NEKF) has been developed for the alignment

of two-sensor systems [9], while in [10] a deep learning

based 3D point cloud registration system is proposed. In 2013,

[11] presented a Bayesian algorithm based on importance

sampling to estimate sensor bias for asynchronous sensors.

Recently, [12] formulate a nonlinear LS approach for the three

dimensional asynchronous multi-sensor registration problem.

The works mentioned above do not consider joint tracking

and spatio-temporal alignment. This paper builds on the work

in [13]. An algorithm is proposed for the spatial and temporal

alignment of co-located radars with relative registration errors

between them. The method allows simultaneous joint bias

estimation and object tracking and does not rely on access

to a global FoR. Instead, the radars are calibrated relative to

each other. A grid-based search method is implemented. A two

dimensional grid represents the bias hypothesis state space,

where one dimension represents temporal bias hypotheses and

the other represents spatial bias hypotheses. In this work
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temporal bias is a fixed, integer value of radar sampling

interval, whilst spatial bias is a relative angular offset between

the radars. The method is implemented within a hierarchical

Bayesian model (HBM) [14] – which is a powerful tool for

state prediction – and an array of augmented state Kalman

filters (ASKFs) utilised for the object tracking. A likelihood

function suited for KFs is derived and evaluated during the

data filtering stage. Values assigned to bias pairs are then used

to update the corresponding weights of points on the grid.

This work considers centralised networks – in other words,

all measurements collected by all sensors are transmitted to

a data fusion centre. A plot fusion architecture is employed.

The novel contributions of this work include a joint sensor

calibration and object tracking method implemented within

an HBM, and the derivation of a likelihood function for the

parameter estimation. An analysis of a range of simulations

where sensor configuration is varied is provided.

C. Paper Organisation

Section II presents the joint spatio-temporal estimation

problem and an overview of the HBM processes; Section

III provides model definitions, scenarios, and implementation;

results are displayed in Section IV; and Section V provides a

conclusion and brief discussion of future work.

II. PARAMETER ESTIMATION AND DATA FUSION

The main problem addressed in this work is that of es-

timating a relative temporal delay, τ , in sensor data and a

relative angular offset, φ, between multiple sensors. These

are estimated jointly and in a recursive manner alongside

the object tracking procedure. Consider the scenario of two

co-located sensors tracking the same object. Both sensors

collect measurements with some time-varying measurement

noise. The FoR of one sensor is rotated by φ relative to

that of the other sensor and there is relative delay τ in data

transmission from this sensor. These biases must be corrected

so that accurate sensor fusion can be accomplished. The

framework of choice is the HBM. This hierarchical approach

has been successfully applied to the solution of problems in a

wide range of fields. These include spatio-temporal forecasting

in urban traffic modelling [15], unsupervised learning and

estimation of crowd emotional states in crowd monitoring [16],

and the modelling of the brain cortex for pattern recognition

[17], amongst others. In the field of target tracking, HBMs

have been used for joint multiple-target tracking (MTT) and

registration parameter estimation [18] and for simultaneous

localisation and mapping (SLAM) [19]. The HBM utilised

in this work has two levels: the high-level process (known

as the parent process) estimates the unknown (or ‘hidden’)

parameters, i.e. the sensor calibration parameters; and the low-

level process (known as the offspring process) estimates the

object states, i.e. the tracking function. The two processes

are linked by a likelihood function calculated in the offspring

process and employed for parameter estimation in the parent

process. This function is problem dependent.

A. Offspring Process

The tracking problem considered is linear when the calibra-

tion is known and so the offspring process utilises a bank of

ASKFs for the tracking procedure. It is important to describe

it here as this is where the bias hypotheses are incorporated.

An ASKF is a Kalman filter with augmented state vector and

extended transition and observation matrices. Augmentation

of the state vector at time k involves the concatenation of

previous state estimates with the current state estimate in the

following manner:

X̂k =
[

x̂k · · · x̂k−τ̂max

]T
(1)

Here, τ̂max denotes the largest temporal bias hypothesis made

in units of the sampling interval, δt, and:

x̂k =
[

p̂x,k v̂x,k p̂y,k v̂y,k
]T

(2)

Here, p̂x/y,k is the filter object x and y position estimates,

and v̂x/y,k is the filter object x and y velocity estimates.

The transition matrix of the system model, Fk, is extended

to become:

Fk =















F0 0 0 · · · 0 0
I 0 0 · · · 0 0
0 I 0 · · · 0 0

...

0 0 0 · · · I 0















(3)

where I is a 4× 4 unit matrix, and:

F0 =









1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 1









(4)

The observation matrix, Hi, is also extended and arranged

to reflect the bias hypothesis of any grid point i,
[

φ̂is τ̂ is
]

for

s ∈ S = {1, . . . , ns}, the set of sensor IDs, where ns is the

total number of sensors. φ̂is represents the spatial bias (angular

offset) hypothesis at grid point i for sensor s and τ̂ is represents

the temporal bias hypothesis at grid point i for sensor s. A

rotation matrix, Θi, is then applied to incorporate the angular

offset estimate:

Hi = ΘiHi (5)

where:

Θi =

















θi1 0 0 · · · 0
0 θi2 0 · · · 0

0 0 θi3
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 θins

















(6)

and:

θis =

[

cos(φ̂is) − sin(φ̂is)

sin(φ̂is) cos(φ̂is)

]

(7)

Hi takes the following general form:

Hi =
[

Hi
1 Hi

2 · · · Hi
ns

]T
(8)
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where:

Hi
s =

[

O2×4τ̂ i
s

H0 O2×(4τ̂max+4)

]

(9)

and

H0 =

[

1 0 0 0
0 0 1 0

]

(10)

In the above, Om×n is an m×n zero matrix. The offspring pro-

cess is responsible for estimating an object state as it evolves

through time. Here, this obeys the nearly constant velocity

(NCV) motion model. Measurements from both sensors are

fused and supplied to the filter, along with a spatio-temporal

bias hypothesis. With these inputs, the filter performs the state

estimate update and evaluates the likelihood function. This is

then passed to the parent process for the weights update.

B. Parent Process

The parent process performs the estimation of the registra-

tion parameters, φ and τ . With a grid-based approach the hy-

potheses of the registration parameters at a time-step k for sen-

sor s are represented by a set of points and their corresponding

weights Ψk,s = {ψis, w
i
k,s}

N
i=1 = {

[

φ̂is τ̂ is
]ns

s=1
, wik,s}

N
i=1.

Each i references a different bias pair (grid point) and N is

the total number of pairs. Every pair has some corresponding

weight, wik,s, which reflects the belief that registration param-

eters ψis are closest to the true values, φ and τ . Because the

grid is not time-varying, a grid-based search method ( [20],

pg. 9) can be used to update the weights at each time-step.

Weights are predicted and updated recursively, following [13]

equations (2a) and (2b). Equation (2a) can be understood as a

convolution of prior weights with a kernel function. The kernel

function is selected to be the binomial distribution r ∼ B(n, p)
and, following investigation, the parameters n = N and

p = 0.5 were found to be suitable in this work. These were

selected as a compromise between an uninformative distribu-

tion and one which searches the state space efficiently. The

parent process is initialised with the assumption that, before

any data processing, all sensor bias pairs are equally likely.

Therefore, the supplied prior distribution is flat. Equation (2b)
requires a likelihood function to update weights and here the

Kalman filter likelihood function, ℓk(ψ
i
k|Zk), is derived from

the integral form of the KF likelihood conditioned on ψik (Zk
is the set of all sensor measurements up to time-step k, and

zk and xk are the set of sensor measurements and the object

state at time k, respectively):

ℓk(ψ
i
k|Zk) =

∫

p(zk|xk, ψ
i
k)× p(xk, ψ

i
k|Zk−1)dxk (11)

where:

p(xk, ψ
i
k|Zk−1) =

∫

p(xk|xk−1, ψ
i
k)p(xk−1, ψ

i
k|Zk−1)dxk−1

(12)

The Gaussian propagation identity [21] is used to evaluate

both of these integrals and the resulting function simplifies to:

ℓk(ψ
i
k|Zk) = N (zk|HiFkx̂k−1,Λk) (13)

where Λk is the covariance of ℓk(ψ
i
k|Zk) with form:

Λk = Rk +Hi(Qk + FkPk−1F
T
k )H

T
i (14)

where Rk is the measurement noise covariance and defined in

the measurement model in Section III-B.2) in Equation (20),

and Pk−1 is the KF estimate covariance at time-step k-1. Qk is

the filter process noise covariance, defined in Equation (17).

The pseudocode for the parent and offspring prediction and

update steps of this work are based loosely on that found in

[13], where a HBM is used for joint registration and fusion of

heterogeneous sensors.

III. MODELING, DATA, AND SCENARIOS

A. Implementation

The parent process of this hierarchical model is represented

by an evenly distributed, two-dimensional grid of distinct

points. A single grid point represents a joint spatio-temporal

bias hypothesis with a calculated weight. The weights are

continuously updated based on the value of the likelihood

function, ℓk(ψ
i
k|Zk), that is the output of the offspring process.

B. Model Definitions

1) Object Motion Model: Multiple sensors track a single

object which evolves through time according to the NCV

model. This is defined as:

xk = F0xk−1 +wk (15)

where xk is a four dimensional Cartesian state vector, with

the following elements:

xk =
[

px,k vx,k py,k vy,k
]T

(16)

and F0 is the state transition matrix – previously defined in

Equation (4). wk represents zero-mean white Gaussian process

noise with covariance matrix given by:

Qk =









1
3δt

3 1
2δt

2 0 0
1
2δt

2 δt 0 0
0 0 1

3δt
3 1

2δt
2

0 0 1
2δt

2 δt









q̃ (17)

Here, δt is the sampling interval and q̃ is the process noise

intensity level ( [20], pg. 181 and [22], pg. 269). It dictates

how closely the object adheres to the CV model: a value q̃ =
Q22/δt = 1 ( [22], pg. 270) produces CV motion.

2) Measurement Model: Sensors collect x and y data and

the measurement model is defined as:

zk = Hobs
k xk + vk (18)

where:

zk =
[

zk,1 zk,2 · · · zk,ns

]T

Hobs
k =

[

H1 H2 · · · Hns

]T
(19)

zk is the measurement vector at time k made up of measure-

ments collected by each sensor, zk,s. Hs is the observation

matrix associated with sensor s and identical to the matrix

H0 (see Equation (10)). In this work, only x-y components
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of the object trajectory are observed. vk is the measurement

noise and drawn from a zero-mean white Gaussian distribution

with parameters: N (vk|0,Rk). Rk is given by:

Rk = Ins×|zk|σ
2
R (20)

where In×m is an n×m identity matrix. This definition of Rk

assumes that each sensor returns the same type of observation

vector (see (19)), although note that it is possible for the

sensors to collect different types of measurements. σR is the

standard deviation of the multivariate Gaussian distribution

that describes the measurement noise, vk.

C. Scenarios

The proposed algorithm is tested in an artificial scenario

with the goal of demonstrating that the method is able to

calibrate sensors effectively to the baseline. This is a pre-

liminary test and therefore a basic setup is considered: two

co-located radars and a fusion centre receiving updates from

them every δt = 0.5s. Data is simulated of a single NCV

object travelling in two dimensional space – i.e. only x and

y coordinates and their associated rates of change, ẋ and ẏ,

are measured by the radars. The simulation is run for a total

of t = 2000s. Clutter and false alarms are not considered

and, for all cases, probability of detection, pd, is assigned the

value 1. In this work, ns = 2 and it is assumed that sensor

s = 2 possesses the spatio-temporal biases, whilst sensor

s = 1 is treated as the reference sensor. Standard deviation

of measurement noise variance, σR, is selected to be 10m
following those assigned by comparable works [23], [24], [25],

whilst the process noise intensity, q̃, is set to 1.1 The initial

object state is
[

10 10 10 10
]T

and the initial object state

tracker estimate is
[

10 5 10 5
]T

. Both radars are placed

and fixed at co-ordinates (0, 0). Four distinct cases for the

single object tracking are analysed. These are as follows:

1) single sensor;

2) two centralised sensors, correctly registered;

3) two centralised sensors, with relative spatio-temporal

bias, and the proposed method for bias correction;

4) two centralised sensors, with bias, and no correction.

In cases 3) and 4) the temporal bias is assigned to 1× δt and

angular bias to 10◦. Sampling rate for all cases is δt = 0.5s.

IV. RESULTS

The results that follow have been averaged over 100 Monte

Carlo (MC) runs and the temporal and angular biases jointly

estimated using the maximum a posteriori (MAP) estimate of

the likelihood function. The RMSE is the chosen metric for

evaluation of tracking performance. RMSE is calculated for

Euclidean distance over a range of σR values and q̃ levels over

the final quarter of the full simulation time, t (to allow for filter

stabilisation). Figure (1) provides log plots of the RMSE of

Euclidean distance as σR and q̃ vary, respectively. Each data

point represents the average over all 100 MC trials. A new

1Note that this q̃ value is the one used to generate tracking performance
results against measurement noise standard deviation, σR.

object trajectory and set of sensor measurements is generated

in each trial. Both plots provide a legend to link the data

with the different test cases (for reference, see Section III-C).

From these graphs, we can see that the worst performance, by

far, is demonstrated by the configuration of two sensors with

relative registration errors that are not corrected. This clearly

shows how important it is to address the registration problem.

Using the proposed method for correction, performance of the

sensors is very close to that of the benchmark scenario, and

outperforms the single sensor for all tested values of σR and

q̃. For example, at the lowest q̃ value of 10 the corrected

case differs from the benchmark case by ≈ 0.4m; whilst the

single sensor case differs by ≈ 1.6m (≈ 4× the difference

of the corrected case); and the no correction case is out by

≈ 5, 500m. Whereas, when q̃ is at its greatest tested value of

80, the correction case differs by ≈ 1.5m from the benchmark;

the single sensor by ≈ 2.6m; and the uncorrected case by

≈ 42, 000m. A similar trend can be seen in the measurement

noise graph. However, all scenarios display an increase in

RMSE with increasing σR and q̃.

Although the key result has been demonstrated with this

method and sensors are calibrated to the baseline, it is impor-

tant to note that the issue of scalability must be addressed in

the future. Due to the use of grid-based search, the number

of grid points N (i.e. number of ASKFs required in the

offspring process) relates to the number of registration errors,

|ψik|, present as N =
∏|ψi

k
|

j=1 χj . χj represents the number

of hypotheses made per error j. This shows that with every

additional error, an additional dimension appears on the grid.

A particle filter method may improve scalability.

V. CONCLUSION & FUTURE WORK

This article demonstrates the successful application of a

method for simultaneous joint spatio-temporal alignment of

sensors and object tracking. The registration parameters are

continuously estimated as the object tracker runs, based on the

performance of the tracker itself. The metric for the tracker

performance is a KF likelihood function. It is used to update

grid weights in the parent process of the HBM. Simulation

results demonstrate how vital it is to have correctly calibrated

sensors, and also show that tracking with multiple sensors is

more accurate than tracking with only a single sensor. The

work described in this article acts as a foundation for further

investigation of the sensor alignment problem. The method

can be extended to non-linear systems where, rather than

collecting and processing data in the Cartesian frame, data

is collected and processed in the polar frame. This is more

realistic for radar systems. A new likelihood function would

be required for the non-linear tracker. Varying probability of

detection and introducing false alarms will also make the

model more realistic. Increasing the number of sensors and

targets is another useful avenue of investigation. Additionally,

resampling and propagation can be introduced to the grid-

based search method. A suitable resampling technique may

allow for faster selection of a bias state - although it may add

computational complexity. The usefulness of this method for
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(a)

(b)

Fig. 1: 1(a) shows performance comparison for cases 1)-4) for

increasing σR and 1(b) for increasing q̃.

non-co-located sensors can be explored, as well as for time-

varying spatio-temporal biases and fractional temporal biases.
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Abstract—There has been a lot of cases when humans get
buried under a pile of rubble created by the collapsing of
man-made structures and sometimes due to natural causes. In
such cases, it’s imperative that they are extracted as soon as
possible. Ultra-wideband impulse radar is being used for such
purposes, for detecting micro as well as macro motions created
by the target. This paper presents a simulated realistic rubble-
target model that will incorporate real-life electrical and spatial
properties of the rubble and human thorax. The global reflection
coefficient is derived for the entire multi-layered rubble and
target environment using Fresnel’s coefficients and validated
using Green’s function with a mean absolute error of 0.6013
% and correlation of 97.37 %. Based on the thorax movement,
radar is able to detect the location of the target using the variance
approach. Considering the model simulation parameters, rubble
properties, and attenuation suffered by the signal when travelling
through the rubble, the maximum detection range of the target
was set to 3 m. When the target was 3 m away, the maximum
mean absolute error in the target range was obtained at 28 cm
which is within the dimensions of an average human thorax.

Index Terms—Fresnel’s coefficient, Green’s function, hu-
man thorax, multi-layered rubble, rubble-target model, ultra-
wideband impulse radar, variance.

I. INTRODUCTION

Over the past few years, radar has been actively used as
the technology to detect buried survivors. So, in order to
understand how a radar locates a person breathing within the
rubble, we need to develop a system of a theoretical approach
which can describe the rubble, target, and the complete radar-
target environment. Upon inspecting the working of such a
system, we can have a generalized understanding of how radar
can behave under different varying conditions.

Current as well as past studies pertaining to radar appli-
cations, have most of the time focussed on human activity
detection and classification [1], fall detection of elderly [2],
gesture recognition [3], etc. Apart from these areas, ultra-
wideband (UWB) radar is widely used in through-wall target
detection applications. In [4], attenuation, electric permittivity,
and conductivity were estimated for brick and concrete walls
at 900 MHz band by taking measurements of through-wall
transmission and comparing it with the already established

multi-ray model. As the knowledge of wall effects on signal
propagation was steadily increasing, many research groups
started focusing on target detection through-wall. Now, in
order to effectively locate the target through-wall, the effect
of the wall needs to be nullified. The authors in [5] used
various filtering methods to mitigate wall effect for detecting
a target in sitting position and obtain its heartbeat information
using commercially available radar which was successfully
in sync with a pulse sensor attached to its finger. Based on
the nature of the target environment during the collapse of
any structures, just wall-based analysis won’t be enough. As
a result, some of the literature has been proposed on target
detection under a pile of uniform rubble made of bricks and
concrete. In [6], they designed an UWB radar at 500 MHz
center frequency which was able to detect respiration of target
at 2 m distance. In almost all the cases, the rubble thickness
is not enough and is composed of only brick and concrete.
When a structure collapses, the rubble generated is a complete
random mess of a variety of materials and not just concrete.
With a variety of materials present, internal multiple reflections
occur, which impacts the performance of target detection. So,
with its absence, there’s a type of uniformity that doesn’t
represent the nature of rubble. Hence, a more detailed analysis
is required on this front.

In this paper, in Section II we modeled the rubble as rectan-
gular slabs with randomized complex permittivity, conductiv-
ity, and thickness. We placed a human target model in between
the slabs. We modeled the human target by defining various
layers of the body as rectangle slabs and varied the width of the
overall slab, giving the impression that the person is breathing.
Then we analyzed the global reflection coefficient through
the rubble-target model using Fresnel’s reflection coefficient
and Green’s function in Section III. Then in Section IV we
obtained the global received signal accuracy between the two
methods and used variance statistics to capture the location of
the human target and obtain target detection capability under
varying ranges and layers of rubble.
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II. MULTI-LAYER RUBBLE-TARGET MODEL

We have used a sinusoidal modulated Gaussian RF pulse
as shown in Figure 1a, having a frequency bandwidth from
1 GHz to 2 GHz with the center frequency at 1.5 GHz. The
power spectral density (PSD) of the input signal w.r.t. the FCC
mask is shown in Figure 1b. It shows that our input signal is
compliant with the FCC norms.

(a) (b)

Fig. 1: (a) Input Gaussian pulse (b) PSD of input signal.

We have used an L-band radar input signal as most of the
commercial radars available in the market work in both L and
S-band. Signal attenuation in this band is low compared to
higher frequency bands and hence is suitable for rubble with
high conductive materials.

As we know in reality the composition of a rubble is mostly
random in nature. In a non-uniform random rubble architec-
ture, modeling a wave propagation becomes tricky. When the
wave passes through the slab, if the slab is homogeneous, we
can calculate the angle of transmitted signal considering the
electrical parameters are known (which are not known to us
in a real scenario). For each slab that the wave had already
gone through, there would be a number of internal reflections,
which would be hard to figure out as the slabs would be
randomly oriented. Thus, in this paper, the nature of rubble
and the target present inside it, as a result of the collapse of
man-made structures, has been considered as a layered model
to simplify the analysis of wave propagation through it. A
generalized model of rubble created during the collapse of
man-made structures is shown in Fig. 2.

Different materials comprising the rubble were organized
in a homogeneous layered format. The entire rubble-target
model was divided into three parts: top rubble layers, human
tissue layers, and bottom rubble layers. These layers were
then placed on top of a medium-dry ground. Concrete, brick,
and wood were chosen as they form the backbone for any
man-made construction. They are most likely the items to be
found in the rubble left behind after the collapse of such man-
made structures. For our analysis, the electrical and spatial
properties of the layers were randomized to accommodate the
properties of these materials, such that they mimic real-life
rubble conditions to an extent. The electrical properties of
these materials were obtained from [7].

Fig. 2: Multi-layer planar rubble-target model.

For the human thorax model, the human tissue layers were
derived from a cross-section of the Duke’s anatomy [8] passing
through the heart. Due to the UWB nature of the radar signals,
the human tissues have a dispersive nature, which is accounted
for by considering the Cole-Cole model whose parameters are
computed from Gabriel et al. [9].

III. ANALYSIS OF GLOBAL REFLECTION COEFFICIENT
THROUGH RUBBLE-TARGET MODEL

The UWB signal was used to penetrate the rubble-target
model all the way to the ground and back to the source. During
its travel through different layers, it experiences reflection,
transmission, and absorption. At each interface, there is an ex-
change of energy from one layer to the next. Upon accounting
for all these exchanges, we were able to obtain the ultimate
reflection captured from the entire model. This reflected signal
takes into account the permittivity, conductivity, and thickness
of all the layers. Here we have considered and analyzed two
methods to obtain global reflection from the entire rubble-
target model.

A. Fresnel’s Reflection Coefficient

In order to obtain the global reflection coefficient from a
multi-layer planar model, we need the help of both reflection
and transmission coefficient at each interface. For our analysis,
we had considered slabs of thickness ti with a refractive index
of n0, n1, n2, and so on. The reflected signals from the top
interface after undergoing multiple reflections as r1, r2, r3,
and so on, which when accumulated gives the global reflection
from the model.

These individual reflections contain multiple reflections
from each slab. Upon further simplification, we obtain the
global reflection coefficient by incorporating the reflection and
transmission coefficient for each layer iteratively as stated in
[10].

Γ̂i =
ρi + Γ̂i+1e

−2jkiti/cosθi

1 + ρiΓ̂i+1e−2jkiti/cosθi
(1)

Where, ρ1 = r01. Considering there are K + 1 interfaces,
i = K,K − 1, · · · , 1 and initialized by Γ̂K+1 = ρK+1. ρ is
the reflection coefficient obtained from an interface between
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two slabs. Here, r01 is the reflection from the topmost slab
where the subscript indicates the layer numbers. e−jkt/cosθi

is the phase shift inside the slab, k is the wavenumber, θi is
the angle of incidence of the incoming signal.

As the signal passes through layers of rubble, it experiences
attenuation. This attenuation is dependent on the electrical
properties of the media. The attenuation constant is expressed
as follows.

αi = w ∗

√√√√√(
µ0ϵ0ϵ

′
ri

2

)√1 +

(
σi

wϵ0ϵ
′
ri

)2

− 1

 (2)

where w is angular frequency at 1.5 GHz, µ0 is vacuum
permeability, ϵ0 is vacuum permittivity, ϵ

′

ri is real part of
complex permittivity, and σi is conductivity for i layers.

The global reflection coefficient after incorporating attenu-
ation is expressed below.

Γi = Γ̂i ∗ e−2αiti (3)

The attenuation was considered for each layer and because the
signal had to travel a distance of ti, two times for each layer,
the factor of 2 was added in the above equation.

B. Planar Multi-Layer Green’s Function

If we had an x-axis polarized electromagnetic wave prop-
agating in z-direction through a multilayered structure, then
the solution of that waves Maxwell’s equations will be given
by Green’s function. Then using the analysis from [11], we
can obtain the spatial domain Green’s function at the origin
with the help of Green’s function in its spectral-domain as
mentioned below.

G↑
xx(0, w) =

1

4π

∫ +∞

0

[RTE
n −RTM

n ]e−2Γnhnkρdkρ (4)

Where RTE
n and RTM

n are the transverse electric and
magnetic global reflection coefficients respectively [12]. Γn(=√
k2ρ − k2n) is the wave number in vertical direction, kn

is the free space propagation constant defined by relations
k2n = −ζnηn, ζn = iwµn, and ηn = σn + iwϵn. Here,
ϵn, σn, and µn are complex permittivity, conductivity, and
permeability respectively. hn is the thickness of each layer.

IV. RESULTS AND DISCUSSION

In order to mimic real-life rubble scenarios, we randomized
the real part of the electrical permittivity which the rubble may
be composed of. In our analysis, the distance from the top of
the rubble to the antenna was fixed at 0.1 m, as the radar is
usually covered in a rugged box which is placed on top of the
rubble. The distance from the top of the rubble to the top skin
layer of the human was fixed such that the overall one-way
range from the antenna to the human was user-defined within
the bracket of 1-5 m. Maintaining the user-defined range, the
thickness of the rubble layers were also randomized for both
the top and bottom layers. All the simulations shown below
had been performed in MATLAB using custom scripts.

A. Global Received Signal Accuracy

We compared the global reflection signal obtained from
Fresnel’s coefficients with the Green’s function, keeping the
entire rubble-target parameters unchanged. The parameters of
the model which resulted in Fig. 3 are mentioned as follows.
For the top three layers of the rubble, we had permittivity
of (2.9, 5.08, 4.52), conductivity of (7.6, 56.8, 32.9) mS/m,
and thickness of (0.31, 0.36, 0.23) m respectively. And for
the bottom three layers of rubble, we had permittivity of
(1.82, 4.82, 5.63), conductivity of (9.2, 48.8, 52.6) mS/m,
and thickness of (0.32, 0.27, 0.24) m respectively. These pa-
rameters were chosen at random but within the range of
properties of rubble materials.

Fig. 3 shows the overlapped global reflected signal from the
rubble-target model obtained from the Fresnel’s coefficients
and Green’s function. It also shows the comparison of the
two methods in terms of their magnitudes and phase angle.
The magnitude comparison is almost identical and the phase
comparison is almost identical too, except for a brief notch
around 1.6 GHz frequency. As the notch was kind of an
impulse in nature, there was no significant impact on the
overall wave nature when compared to the wave obtained from
the Green’s function.

Fig. 3: Comparison of received signals using Fresnel’s coeffi-
cient and Green’s function.

The mean absolute error (MAE) between the two methods
for this case was 0.6013 % and the correlation coefficient was
97.37 %.

B. Target Detection Accuracy

We now look forward to efficiently detect the location of
the breathing target within the rubble. In the presence of a
breathing human, the received signal will move to-and-fro
about the target location in the time domain. This constant
movement will create a variance about the target location.
The details of target detection using variance statistics are
described in detail in [13].

Based on the nature of the collapse of any man-made
structures, there may be human beings trapped at any par-
ticular location within the rubble. Considering the simulation
parameters mentioned in Table I, we calculated the maximum
range of the radar.
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TABLE I: Simulation parameters used for detecting maximum
radar range.

System Parameters Value
Average Transmitted Power -41.7 dBm
Antenna Gain 7 dBi
Center Frequency 1.5 GHz
Human Thorax RCS Area 1.84 sq.m.
Minimum Detector SNR 5 dB
Minimum Detectable Signal -95 dBm
Maximum Radar Range 3.752 m

For considering the RCS of the human thorax, we approx-
imated the thorax region into an elliptical cylinder [14]. We
opted for a gain of 7 dBi, based on an UWB Vivaldi antenna
fabricated in our lab. To calculate the minimum detectable
signal (MDS), we used 5 dB as the minimum detector SNR
with the receiver bandwidth of 107 Hz. The value of -95 dBm
as MDS is at par with commercial radar system receivers. With
the help of the radar range equation, we obtained the maximum
range of 3.752 m using the above system parameters. By
looking into these parameters, we can see that the signal after
exiting the transmitter antenna, can afford an attenuation of
around 60 dB when interacting with the rubble-target model.
If the signal on its travel through the environment attenuates
more than 60 dB, then the received signal level will be less
than MDS and the entire signal will be buried under the
noise floor. So, in order to find the total loss faced by the
signal in passing through the environment, we will take help
of attenuation constant α, which is already mentioned in (2).
The loss faced by the signal when travelling the top layers is
defined as follows.

A(l) = e2α(l)tT (l) (5)
Loss(l) = 10 ∗ log10A(l) dB (6)

Total Loss =
Tm∑
l=1

Loss(l) dB (7)

Where l = 1, 2, · · · , Tm is the number of layers situated
above the target, tT (l) is the thickness of the top layers, and
A(l) is the attenuation of those individual layers. Based on
the random selection of electrical and spatial properties of
the rubble, Fig. 4 describes the total loss of the signal when
travelling from the radar to the target and back to the radar.
We simulated the environment with a one-way target range
from 1-5 m along with a total number of layers (N) from 5 to
10.

From Fig. 4, we can observe that a cap of 60 dB attenuation
limits the radar to detect the target efficiently within a range
of 3.4-3.6 m depending on the number of layers of rubble. For
our analysis, let’s round off the maximum range to 3 m. So, we
will analyze further how the MAE of breathing target detection
changes with change in target range. In order to understand
the nature of MAE, we looked into attenuation loss per unit
length which is expressed as follows.

Unit Loss(l) =

∑Tm
l=1 Loss(l)tT (l)∑Tm

l=1 tT (l)
dB/m (8)

Fig. 4: Total loss w.r.t. target range for different number of
layers.

We had defined Loss(l) earlier as the attenuation faced
by the signal in the top layers l. Here, unit loss gives us
a perspective of on an average how much loss is occurring
per meter downrange. Fig. 5 shows the change in MAE in
range of breathing target w.r.t. change in the target range for
a different number of layers of rubble. Here, the variance
method was used to detect the breathing of the target and
in turn its location. The target range was chosen from 1-3 m
with the number of rubble layers from 5-10. When simulating
for each scenario, the algorithm was run 100 times and then
the average detection performance was considered for that
particular case. From Fig. 5 we observed that as the target
range was increasing, MAE also kept increasing. Possible
explanation for this phenomenon is due to the increase in
wave attenuation and dispersion as the range increases, the unit
loss for each slab also increases and difference in detection
capability between the two methods will start to increase
further and further and hence the MAE will go on increasing.
From Fig. 5 we can see that as the number of layers increases,
both the MAE in range and unit loss decreases. For a particular
range, if the number of layers increases, then the width of each
layer is supposed to decrease. As a result, the wave losses will
decrease and the detection performance as well as MAE in
range will improve.

Fig. 5: Analysis of MAE and Unit Loss w.r.t. target range for
different number of layers.

Looking into both the scenarios, we observed that for this
particular set of data, the maximum MAE recorded was 28 cm
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(this value was noted down manually from the plot and can
be approximately visualized from Fig. 5). As the minimum
average human thorax dimension is greater than 30 cm, the
radar will be able to detect the breathing target uniquely if
there is a nearby target.

V. CONCLUSION

In this paper, we focussed on the performance of radar in
detecting the location of a breathing human buried under a pile
of rubble. We simulated an environment of rubble-target model
with real-life electrical and spatial parameters of rubble and
human tissue layers. Our main goal was to add randomness
to rubble characteristics so that we could analyze how a
radar would be able to perform under different scenarios.
We compared Green’s function to that of the signal obtained
from the Fresnel’s coefficients to ensure its reliability. Upon
randomizing the parameters of the rubble-target model, we
obtained the MAE in determining the location of the breathing
human target and analyzed the nature of MAE with a change in
the target range. As the analysis was averaged over 100 times
using random electrical and spatial properties of the rubble,
we hope that real-life values of the rubble will be covered. For
the target range of 3 m, the maximum MAE in range came
out to be 28 cm, whose value is within an acceptable range.
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Abstract—Whilst convolutional neural networks (CNN) offer
state-of-the-art performance for classification and detection tasks
in computer vision, their successful adoption in defence applica-
tions is limited by the cost of labelled data and the inability to
use crowd sourcing due to classification issues.

Popular approaches to solve this problem use the expansive
labelled data for training. It would be more cost-efficient to learn
representations from the unlabelled data whilst leveraging la-
belled data from existing datasets, as empirically the performance
of supervised learning is far greater than unsupervised-learning.

In this paper we investigate the benefits of mixing Domain
Adaptation and semi-supervised learning to train CNNs and
showcase using adversarial training to tackle this issue.

Index Terms—Domain Adaptation, Semi-supervised learning

I. INTRODUCTION

Convolutional Neural Networks offer state-of-the-art perfor-
mance for classification and detection tasks in computer vision
[1]. One aspect limiting their adoption and success in defence
application is the cost of labelled data. The performance of
a CNN usually degrades when moving from an academic
dataset to real-life data. Moreover, whilst academia uses crowd
sourcing to cheaply generate labels for large datasets, such a
mechanism is not suitable when the images are classified.

Popular approaches to this problem usually imply training
the CNN on a large dataset, and then fine-tune it on the
existing labels from the problem at hand. Given the cost of
labelling such data, the focus should be to use it for validation
of the models rather than training. Therefore, it would be
more cost-efficient to learn representations from the unlabelled
data whilst leveraging labelled data from existing datasets,
as empirically the performance of supervised learning is far
greater than unsupervised-learning.

While Domain Adaptation may exhibit itself as the pre-
ferred paradigm to bridge the gap that separates labelled
and unlabelled data, a vast amount of literature is oriented
towards researching costly generative models. The complexity
of such models render a large percentage of them unusable as
real time video solutions, as defence production deployment
is often constrained in size and available computing power.
Furthermore, generative models have trouble dealing with
complex background information such as the ones present

∗
Equal contribution

in natural images. Semi-supervised learning, on the other
hand, can employ complex optimisation frameworks for both
generative and discriminative models and usually takes the
form of adversarial training.

Fig. 1. Graphical illustrations of results

II. RELATED WORK

Empirical risk minimisation works under the assumption
that the joint probability distribution over inputs and targets
between training and testing set is stable. In practice, al-
gorithms trained using one dataset are deployed in real-life
scenario with different sensors and scenes than ones used
for training. For instance, it has been noted that ImageNet
is biased towards texture [2], and that most academic vision
datasets over-represent certain geographic areas due to how
the data was collected.

Transfer learning in general aims at leveraging features
learnt on one dataset to speed-up the training on a different
dataset. Domain Adaptation in particular assumes that whilst
the distribution changes between training and testing datasets,
the task remains the same. Statistical learning theory offers
some learning bounds for certain cases [3]. In general, Domain
Adaptation is an empirical science where the validity of a
method relies on empirical success rather than theoretical
soundness.
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In general, Domain Adaptation methods fall into three
categories - discrepancy, adversarial, and reconstruction-based
methods. Reconstruction-based methods encompass (varia-
tional) auto-encoders [4], [5] - we consider a compression
problem where a backbone encodes a target, and a decoder
reconstructs the target from the encoding, with the idea that
the encoding should work for both domains. Adversarial-
based methods [6] are usually made of two networks - a
generator that generates images from a given distribution, and
a discriminator that predicts whether the generated image is
from one distribution or another. Finally, discrepancy-based
methods e.g [7] tackle the domain shift by minimising intra
and inter class discrepancy.

Much of the research done to advance Unsupervised Do-
main Adaptation employs Adversarial Discriminative models.
[8] uses multiple adversarial Domain classifier submodules to
assess the capability of an encoder to learn domain invariant
latent features at multiple levels. A domain classifier uses
a Scale Reduction Module (SRM) in conjunction with a
Gradient Reversal layer (GRL) [9] to output a Bernoulli
variable that models the probability of a feature map belonging
to either source or target domain. Empirically, the SRM takes
the form of a 1x1 convolution aimed at reducing the data
dimensionality channel-wise, while the GRL is used to pass
a negative gradient signal from the domain discriminator
to the encoder in order to achieve mini-max (adversarial)
optimisation. Moreover, a visual attention map [10] can be
used as a pixel-wise weighting to leverage saliency variability
within the feature map.

The goal of semi-supervised learning is to train a classifier
using both labelled and unlabelled data. To do so, it minimises
a loss function made of supervised and unsupervised losses
[11].

III. METHODOLOGY

A. Training baseline models

Resnet50 [12] is used as the backbone for all the models.
Following the training strategy from [13], we use increased
training epochs, dropout on the fully connected layer, de-
creased weight decay, and cosine learning rate annealing with
late restart as advised in [14]. Whilst we use increased training
epochs, we also apply validation-based early stopping [15]
as a regularisation method. Our data augmentation strategy is
also different. For simplicity, we rely only on normalisation,
resizing, cropping, and flipping. We use cross-entropy for the
classification loss.

An important practical consideration is the sample efficiency
of training i.e, what is benefit of increasing the number of
samples with respect to a given performance metric? To tackle
this question we train baseline models using different sample
sizes - 20, 40, 60, and 100% of the original training dataset
sizes, and validation on the full testing set.

We use two datasets A and B. We train the CNN on
dataset A at different sample sizes and test the network on
the full testing set from dataset A, and the full testing set
from dataset B. That way we can measure the cost of moving

from one environment to another. We also train a network
on dataset B in order to have an upper-bound performance
(corresponding to ideal performance). We therefore end up
with 5-baseline networks. Those baseline networks are com-
pared to our method using the same 4 sampling sizes - the
subsamples are the same for all the methods. We do not
repeat the experiment per sampling as in practice there is
little variance (8.36e − 06) in accuracy when using the 20%
sampling size and repeating the experiments 10 times.

B. Training semi-supervised models

Fig. 2. Illustration of Resnet50 architecture

Domain discriminator submodules [8] are used at three
encoding levels of the Resnet50 encoder: Res3d, Res4f and
Res5c (see Figure 2). Our SRM submodules are applied on
feature maps with 512, 1024 and 2048 channels and have an
output channel dimension of 256. Consequently, the different
feature maps are sampled at different spatial dimensions,
inversely proportional to the respective channel size.

Having domain discriminators at various levels allows for a
more robust learning scheme as it prevents the encoder from
only optimising deep latent features for domain invariance.
Applying domain discriminators at various spatial sizes allows
for alignment of latent features on a coarse to fine basis.
The earlier domain discriminators thus act as a means of
regularisation.

A Mean Squared Error (MSE) loss is computed for domain
predictions at the three levels for the training sets of both
datasets A and B, and validation accuracy is calculated on the
test set of dataset B. Therefore the final loss when training
the semi-supervised model is a weighted sum of cross-entropy
classification loss (supervised) and the MSE for domain adap-
tation (unsupervised). Similarly to baseline models, we use
different sample sizes of the original training dataset to assess
the impact on semi-supervised feature learning.

IV. EXPERIMENTS

A. Datasets

Two simple and well-studied datasets are used to evaluate
our method - CIFAR-10 [16] and STL-10 [17]. STL-10 is
inspired by CIFAR and was designed to assess unsupervised
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feature learning. It contains 5000 labelled images - that
we use to train a baseline model, and 100,000 unlabelled
images that we use for unsupervised learning. We evaluate
the performance on the 7,200 test images. CIFAR-10 contains
50,000 training images, and 10,000 testing images. We assess
the Domain Adaptation from CIFAR-10 to STL-10. In practice
it is CIFAR-9 and STL-9 as the datasets different in one class.

All the models are trained on a GPU cluster for 350 epochs
each. We use stochastic gradient descent with warm restart
and momentum as optimiser, a 0.1 learning rate with linear
scaling with respect to batch size, and no scaling for other
hyper-parameters.

B. Baseline results

TABLE I
BASELINE RESULTS ON CIFAR AND STL

Training set CIFAR-10 STL-10
CIFAR10 - 20% 94.07% 90.25%
CIFAR10 - 40% 95.21% 90.23%
CIFAR10 - 60% 95.89% 90.50%
CIFAR10 - 100% 96.66% 91.47%
STL10 (5 folds) 97.12%

Baseline results are shown in I, as expected the best
validation results for CIFAR and STL correspond to trained
models on full data. When focusing on STL, there is a 5.6
points difference between the best performing model trained
on CIFAR, and the upper-bound performance. We observe a
correlation in performance between subsets when comparing
validation on CIFAR and STL (ρ = 0.82).

C. Adversarial training results

TABLE II
RESULTS ON STL USING ADVERSARIAL TRAINING

Training set STL-10
Unlabelled STL + CIFAR10 - 20% 91.36%
Unlabelled STL + CIFAR10 - 40% 91.64%
Unlabelled STL + CIFAR10 - 60% 92.33%
Unlabelled STL + CIFAR10 - 100% 93.21%

All experiments illustrate an increase in accuracy when
leveraging both of the datasets. This is to be expected as the
model is able to incorporate domain discriminative learning
signals from the source distribution as well as the target
distribution during training and thus obtain more generalising
capability.

D. Attention maps

By compressing the feature channel-wise through summa-
tion there is an expectation that salient features will become
evident and could be extracted through thresholding [18].
Thus, by applying a softmax over this saliency map we can
use it as a weighting inside the domain discriminator. However,
there was no increase in accuracy when using this technique,
most probably because of the simplicity of the datasets used.
With one object per image at a 32 x 32 resolution, there may

not be enough spatial variability for attention map weighting
to bring any improvements. As attention maps scale with the
size of the input image, we expect their effect to be more
apparent for high resolution images.

Below are two examples to show this scaling. In Figure 3 we
have a thermal image of size 512 x 640 from the FLIR-ADAS
dataset [19], alongside its respective attention map. Figure 4
illustrates a random high resolution 3000 x 1688 RGB image
of a car from the internet and its attention map. We can thus
see that for lower resolution images, attention map weighting
can act as an object or hotspot detector, while being able to
capture more fine grained features only in the high resolution
image. This renders attention map weighting more suitable for
object detection tasks, as opposed to classification tasks which
naturally do not need high resolution imagery.

Fig. 3. Illustration of thermal image from FLIR dataset and its attention map

Fig. 4. Illustration of high resolution visual image and its attention map

V. FUTURE WORK

Following the experiments on Domain Adaptation via semi-
supervised learning, we wish to see how more complex unsu-
pervised learning methods can be combined with supervised
learning techniques, in what we define as a Joint Training
Framework (JTF). A JTF aims to use a general unsupervised
learning method as a regularising factor during training of an
algorithm under full supervision. The intuition behind a JTF is
that the lack of labelling forces a model to create robust latent
representations which can be used as priors for the supervised
optimiser. Thus, we aim to combine the superior performance
of supervised learning with the generalising capability of self-
supervision within a complex multiple domain dataset.

STL and CIFAR are toy datasets, and the performance gap is
quite small. We intend to apply this methodology for thermal
and visual imagery, with thermal imagery being the target
domain. We expect a higher performance gap using TI and
TV and therefore more room to display the benefits of our
method.
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Abstract—The second order sequential best rotation (SBR2)
algorithm is a popular algorithm to decompose a paraher-
mitian matrix into approximate polynomial eigenvalues and
eigenvectors. The work horse behind SBR2 is a Givens rotation
interspersed by delay operations. In this paper, we investigate and
analyse the application of a fast Givens rotation in order to reduce
the computation complexity of SBR2. The proposed algorithm
inherits the SBR2’s proven convergence to a diagonalised and
spectrally majorised solution for the polynomial eigenvalues. We
provide some analysis and examples for the execution speed
of this fast Givens-based SBR2 compared to a standard SBR2
implementation.

I. INTRODUCTION

For broadband signals x[n] ∈ C
M acquired by an M -

element sensor arrays in discrete time n ∈ Z, the space-time

covariance matrix R[τ ] = E
{

x[n]xH[n− τ ]
}

captures the

complete second order statistics of the data. The explicit lag

parameter τ ∈ Z is capable of characterising the correlation

between sensor signals by relative time delays, and hence

bears information on aspects such as the angle of arrival of a

particular source signal. This is different from the narrowband

case, where e.g. AoA is resolved simply by phase shifts, and it

suffices to consider the instantaneous covariance R[0]. To gen-

eralise narrowband optimal solutions, which often are based on

the eigenvalue decomposition of R[0], to the broadband case,

techniques have been developed to diagonalise R[τ ] for every

value of τ . Because its z-transform R(z) =
∑

τ R[τ ]z−τ ,

or abbreviated R(z) • ◦ R[τ ], is a polynomial matrix, such

techniques are referred to as polynomial matrix EVDs [1]–[3].

A polynomial matrix EVD exists in the case of an analytic

R(z) that emerges from unmultiplexed data [2], [4], and two

main families of algorithms with proven convergence have

arisen over the last decade — sequential matrix diagonalisation

(SMD, [5], [6]) and the second order sequential best rotation

algorithm (SBR2, [1], [7]). Since applications such as subband

coding [8], [9], beamforming [10], source separation [11], [12]

or speech enhancement [13], [14] depend on low computation

cost, various efforts have been directed at numerical [15]–[19]

and implementational enhancements [19], [20].

Amongst the numerical enhancements of polynomial matrix

EVD algorithms, the Givens rotation has attracted particular
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attention. The cyclic-by-row approach in [15] limited the

number of rotation steps to only implement an approximate

EVD within the SMD family of algorithms. Divide-and-

conquer schemes [18], [19] have been aiming at reducing the

spatial dimension by breaking R[τ ] into sub-blocks, and hence

reducing the cost of matrix multiplications.

In this paper, we employ the idea of fast Givens rotations.

Typically a similarity transform by a Givens rotation requires

the modification of two rows and two columns of the matrix

to be transformed. It is well known that square root- and

division-free approaches [21]–[23] lead to simplifications and

effectively split the unitary Givens rotation into a simple

diagonal matrix and a simplified matrix that will only require

to have the multiplications and additions of a Givens operation.

In [24], this simplification is extended to successive real-

valued Givens rotations and is beneficially applied to EVD and

QR calculations. Here, we employ a complex-valued extension

of this approach in the context of the SBR2 algorithm to reduce

the SBR2’s complexity.

Therefore, in the following, Sec. II will first briefly outline

the SBR2 algorithm, followed by the introduction of fast

Givens rotations — both as single operations and in sequence

— in Sec. III. This approach then drives a fast SBR2 version

introduced in Sec. IV, which is evaluated in a numerical

example and simulations in Sec. V. Finally, conclusions are

drawn in Sec. VI.

II. POLYNOMIAL EVD ALGORITHMS

A. Polynomial EVD

The cross-spectral density (CSD) matrix R(z) satisfies

the parahermitian property RP(z) = RH(1/z∗) = R(z),
and admits a parahermitian matrix EVD (PhEVD) R(z) =
Q(z)Λ(z)QP(z), if R(z) is analytic and the measurement

vector x[n] does emerge from multiplexed data [2], [4]. In

this case, the factor Q(z) is paraunitary, i.e. Q(z)QP(z) = I,

and contains analytic eigenvectors in its columns. The corre-

sponding analytic eigenvalues form the diagonal parahermitian

matrix Λ(z).
A polynomial eigenvalue decomposition [1] is a modified

version of the PhEVD,

R(z) ≈ U(z)Γ(z)UP(z) , (1)

where the potentially transcendental factors Q(z) and Λ(z)
of the PhEVD are replaced by a polynomial paraunitary U(z)
and a Laurent polynomial, diagonal, and parahermitian Γ(z).
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Specifically, the analytic Λ(z) is replaced by a spectrally

majorised Γ(z) = diag{γ1(z), . . . , γM (z)}, such that on the

unit circle

γm+1(e
jΩ) ≥ γm(ejΩ) ∀Ω ∈ R, m = 1, . . . , (M − 1) . (2)

This spectral majorisation yields eigenvalues that are different

from the PhEVD if the analytic eigenvalues intersect. In this

case, the polynomial EVD in (1) will require a high polyno-

mial order for a satisfactory approximation, but is important in

applications such as subband coding, where the majorisation

property in (2) guarantees the maximisation of the coding

gain [7], [25].

The PEVD can be calculated by a number of algorithms

with guaranteed convergence. A family of second order se-

quential best rotation (SBR2) algorithms [1], [7], [26] aims

to iteratively eliminate the largest off-diagonal component at

every iteration step, whereby spectral majorisation has been

shown to be enforced [27]. More recently, sequential matrix

diagonalisation (SMD) algorithms [5], [6] iteratively diago-

nalise a time-shifted version of the space-time covariance,

which converges faster per iteration but at an overall higher

computational cost than SBR2.

B. Second Order Sequential Best Rotation Algorithm

SBR2 is a generalisation of the Jacobi method, whereby

successive Givens rotations are interspersed by delay opera-

tions in order to move maximum off-diagonal elements to the

lag zero component, where they subsequently are eliminated.

Starting from S0(z) = R(z), at the ith iteration SBR2 finds

the maximum off-diagonal element

{τi,mi, ni} = arg max
τ,m,n

m 6=n

|si−1,m,n[τ ]| , (3)

where si−1,m,n[τ ] is the element in the mth row and nth

column of Si−1[τ ], whereby Si−1[τ ] ◦ • Si−1(z). A delay

(or advance, for τi < 0) operation

∆i(z) = diag{1, . . . , 1
︸ ︷︷ ︸

ni−1

, z−τi , 1, . . . , 1
︸ ︷︷ ︸

M−ni

} (4)

then ensures that si−1,mi,ni
[τi] as well as si−1,ni,mi

[−τi] =
s∗i−1,mi,ni

[τi] are moved to lag zero by the similarity transform

Si− 1

2

(z) = ∆i(z)Si−1(z)∆
P
i(z).

The energy of the terms si−1,mi,ni
[τi] and si−1,ni,mi

[−τi]
is then transferred onto the diagonal via a Givens rotation Vi,

Vi =













I1
ci ejγisi

I2
−e−jγisi ci

I3













, (5)

with elements ci = cos(θi) and si = sin(θi) only at

the intersection of the mith and nith rows and columns,

and Ii, i = 1, 2, 3, identity matrices of appropriate dimen-

sions. The values of θi and γi depend on Si− 1

2

[0], with

Si− 1

2

[τ ] ◦ • Si− 1

2

(z) [1], [5]. When completing the ith
SBR2 iteration step, therefore

Si(z) = ViSi− 1

2

(z)VH
i . (6)

If after I iterations, the off-diagonal components are sup-

pressed below some given threshold or a maximum number of

iterations has been reached, w.r.t. (1) we obtain Γ(z) = SI(z)
and

U(z) = VI∆I(z) · · ·V2∆2(z) ·V1∆1(z) . (7)

Note that in every iteration step, while energy at lag zero is

transferred into the diagonal, Givens rotations are also applied

at lags τ 6= 0, where some energy may leak back into the

off-diagonal components. Nonetheless, SRB2 has been proven

to converge [1], [5], [27]. Since the Givens operation is the

central algebraic operation in SBR2, in the following we will

investigate a fast version derived for the real-valued case

in [24].

III. FAST GIVENS ROTATION

A. Givens Rotation

Within SBR2, the Givens rotation is applied in (6), which

alternatively in the time domain requires

Si[τ ] = VH
i Si− 1

2

[τ ]Vi . (8)

If the support of Si− 1

2

[τ ] is restricted to |τi| ≤ Ti, such that

Si− 1

2

[τ ] = 0 ∀|τ | > Ti, then we require to perform 2Ti + 1
such similarity transforms. Due to the parahermitian nature

of Si− 1

2

(z), T of these transforms will be redundant. With

the exception of the lag zero matrix Si− 1

2

[0], the remaining

coefficients Si− 1

2

[τ ] will generally not be Hermitian matrices

for τ 6= 0. However, it is only the Hermitian zero-lag matrix

Si− 1

2

[0] where a pair of off-diagonal components must be

eliminated.

If initially we focus on a single operation out off the above

T + 1 similarity transforms for (8) and drop all subscripts,

we typically face the problem S′ = VHSV. The similarity

transform based on a Givens rotation will modify the mth

and the nth rows and columns of S to obtain S′, and

therefore require approximately 4M complex-valued multiply

accumulate (MAC) operations, which translates to 16M real-

valued MACs.

B. Fast Approach

For a faster implementation of the Givens rotation, termed a

fast Givens rotation (FGR), [24] contains two interesting ideas.

The first is a reduction of computations for a single Givens

rotation; a second step, which will be elaborated in Sec. III-C,

exploits subsequent savings if several Givens rotations are

iterated. The basic idea is to factorise the orthogonal Givens

operation into two non-orthogonal ones, where as many ele-

ments as possible are set to unity, hence not requiring explicit

multiplications.

We first consider a Givens rotation that is applied to a

square matrix B0 such that B1 = VH
1 B0V1, with V1 a
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Givens rotation matrix as in (5). Then, according to [24] it

is possible to find diagonal matrices D0 and D1, such that

B0 = D0A0D0, and B1 = D1F1A0F
H
1 D1. One particular

and numerically stable choice according to [24] is such that

D1 and D0 only differ in the mth and nth elements, leading

to

F1 =













I1
1 f1,1

I2
f1,2 1

I3













. (9)

The angles ϑ and γ that determine V1 (i.e. (5)) would be

calculated from A0 = D−1
0 B0D

−1
0 in the standard Givens

fashion, whereby [24] advocates the selection

p =
|d2ma2mm − d2na

2
nn|

√

(d2ma2mm − d2na
2
nn)

2 − 4d2md2n|amn|2
, (10)

with 0 ≤ p ≤ 1, amn the element in the mth row and nth

column of A0, and di the ith diagonal element of D0, such

that e.g.

cosϑ =

√

1 + p

2
. (11)

Overall, we may select D0 = I. Then for F 1 to take the

form in (9), we require that D1 matches D0, but that the

mth and nth elements are modified to dm cosϑ and dn cosϑ,

respectively. For the complex-valued case, it can be shown that

γ = ∠amn [1]. Further, we have

f1,1 = ejγ
dn
dm

sinϑ

cosϑ
, f1,2 = −e−jγ dm

dn

sinϑ

cosϑ
(12)

for the simplified matrix F1.

The application of F1 requires only half the number of

MACs compared to V1, but the above approach involves

some overheads since V1 = D1F1D
−1
0 , even if D0 = I.

Nonetheless, computational saving arise [24], and the tech-

nique becomes even more powerful in case several Givens

rotations need to be executed successively, such as part of an

EVD or QR decomposition [28].

C. Successive Application of Fast Givens Rotations

If a number of Givens rotations Vk, k = 1, . . . ,K, need to

be executed successively, then note from above that [24]

VK . . .V2V1 = DKFK . . .F2F1D
−1
0 . (13)

Particularly with D0 = I, the evaluation is simple, and the

only overhead is to track the modifications of Dk, k =
1, . . . ,K which requires a multiplication of the mth and nth

element, as indicated above.

IV. FAST GIVENS ROTATION-BASED SBR2

A. Modified Fast SBR2 Algorithm

Even though the SBR2 algorithm does not comprise of a

simple consecutive application of Givens rotations, we can ap-

ply the idea of (13). This is due to the fact that the interspersed

Algorithm 1: Fast Givens Rotation-Based SBR2

1: inputs: R(z), δmax, Imax

2: initialise: S′
0(z) = R(z); D0 = I; U′

0 = I; i = 0;

3: repeat

4: i← i+ 1;

5: find maximum off-diagonal element δ of

Di−1S
′
i−1(z)D

H
i−1 via (3);

6: determine ∆i(z);
7: calculate S′

i− 1

2

(z) = ∆i(z)S
′
i−1(z)∆

P
i(z);

8: determine fi,1 and fi,2 based on S′
i− 1

2

[0];

9: calculate S′
i(z) = FiS

′
i− 1

2

(z)FH
i ;

10: calculate U ′
i(z) = Fi∆i(z)U

′
i−1(z);

11: update Di based on Di−1 and S′
i− 1

2

[0];

12: until (|δ| < δmax) ∨ (i ≥ Imax).

13: outputs: U(z) = DiU
′
i(z) and Γ(z) = DiS

′
i(z)D

H
i

delay operations D(z) in (7) are diagonal matrices, and hence

substituting Vℓ = DℓFℓD
−1
ℓ−1, ℓ = 1, · · · , I , into (7) leads to

U(z) = DIFID
−1
I−1∆I(z) · · · · ·D1F1D

−1
0 ∆1(z) (14)

= DIFI∆I(z) · · ·F2∆2(z)F1∆1(z)D
−1
0 . (15)

Therefore, the overall operation now consists of a sequence of

delay operations ∆ℓ(z) and simplified matrix operations Fℓ,

whereby a multiplication with Fℓ only requires approximately

half the MACS compared to a matrix multiplication with Vℓ.

Some book keeping is required to update D0, D1 all the way

up to DI , but these changes only ever affect two components

of these diagonal quantities at a time.

This results in the modification of the SBR2 algorithm to its

fast Givens rotation-based version, with its algorithmic steps

outlined in Algorithm 1. The modifications are reflected in

the variables S′
i(z) and U ′

i(z), which differ from Si(z) and

U i(z) in the standard SBR2 algorithm. The steps 8–11 and

13, to determine, apply and propagate the diagonal correction

matrix, apply the reduced-cost matrix Fℓ, and to finally correct

the output also differ from the standard SBR2 method.

B. Convergence

For the convergence of Algorithm 1, the essential

detail is that the maximum search in step 5 within

Di−1S
′
i−1(z)D

H
i−1 = Si−1(z) is performed over the same

quantity as in the SBR2 algorithm in (3). Therefore the

convergence proof of the SBR2 algorithm in [1], [7] holds

equally for the fast Givens rotation-based SBR2 version. This

also implies that Algorithm 1 is guaranteed to converge to a

spectrally majorised solution as defined in (2) [27].

Note that it is not necessary to multiply out

Di−1S
′
i−1(z)D

H
i−1 in Step 5 of Algorithm 1 explicitly;

a maximum modulus search can first be performed over the

temporal dimension of S′
i−1[τ ], and the matrix-valued result

Amax,τ can be weighted by Di−1Amax,τD
H
i−1, which due to

the Hermitian nature of Amax,τ and the exclusion of diagonal

terms only takes 1
2M(M − 1) MACs. The remainder of the
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Fig. 1. Plots showing R[τ ] ∈ R
3×3 used as a numerical example; each

subplot represents one polynomial entry of R[τ ].

maximum search can then be performed over either the lower

left or upper right triangular part of Di−1Amax,τD
H
i−1.

V. SIMULATION AND RESULTS

A. Numerical Example and Convergence

As a numerical example, we utilise the matrix R(z) : C→
C

3×3 of order 2, such that R(z) = R[−1]z + R[−0] +
R[1]z−1. For the matrix-valued coefficients, we have

R[0] =





14.7 0.3 2.2
0.3 19.1 −8.0
2.2 −8.0 39.0



 (16)

R[1] =





0.3 4.6 −7.3
−0.4 −6.0 −1.1
2.5 5.9 −.3.7



 . (17)

Further note that R[−1] = RH[1]. This matrix is also

characterised in Fig. 1.

Operating on the above R(z), the fast Givens rotation-based

SBR2 algorithm converges in I = 238 iterations, and for

a maximum off-diagonal component threshold δmax = 10−5

yields the eigenvalues shown in Fig. 2. The extracted eigenval-

ues Γ[τ ] ◦ • Γ(z) are Laurent polynomial that decay in both

positive and negative lag directions, and Fig. 2 only provides

values for the central lags |τ | ≤ 10. The spectral majorisation

of the eigenvalues as defined in (2), and to which according

to [27] and Sec. IV-B the fast Givens rotation-based SBR2

algorithm is guaranteed to converge, is demonstrated in Fig. 3.

These power spectral density terms are non-negative real and

ordered in power, satisfying (2).

In comparison, for the above R(z), the standard SBR2

algorithm [1], [7] converges in I = 235 iterations. The

obtained eigenvalues ΓSBR2(z) are near-identical to those

of the proposed algorithm in Figs. 2 and 3, with an error
∑

τ ‖ΓSBR2[τ ] − Γ[τ ]‖2F of −96.9dB, whereby ‖ · ‖F is

the Frobenius norm. The small difference in the number of

iterations and in the obtained eigenvalues—which according

to [2], [4] are unique—is likely due to to the numerical

differences between the two algorithm versions, even though

the fast Givens approach is claimed to be robust to over-and
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Fig. 2. Approximately diagonalised matrix Γ[τ ], obtained from R[τ ] in Fig. 1
by the fast Givens rotation-based SBR2 algorithm.
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Fig. 3. Eigenvalues Γ(z) as obtained by the fast Givens rotation-based SBR2
algorithm evaluated on the unit circle, z = e

jΩ.

underflow [24]. The extracted eigenvalues differ by a some-

what larger amount due to their ambiguity w.r.t. multiplications

by arbitrary allpass functions [2], [16], and are therefore not

shown here.

B. Computational Complexity

In a standard Matlab implementation, matrix-valued oper-

ations are favoured and often there is no relation between

the sparseness of a matrix and the execution time for its

multiplication. Therefore, the run time difference (averaged

over 500 runs) for the example in Sec. V-A is only 98.1 ms for

the standard SBR2 and 92.6 ms for the proposed fast Givens

rotation-based SBR2 version. To investigate the potential of

the fast Givens approach for speeding up an implementation

in a non-Matlab environment, the fast and standard Givens

rotation operations have been explicitly implemented in C and

operated from within Matlab through pre-compiled MEX files.

Using Matlab’s profiler, the MEX-routines are specifically

called to perform I = 150 iterations on a matrix R(z)
calculated from a ground truth with a diagonal Γ(z) of order

100 and an arbitrary paraunitary matrix U(z) determined from

randomised elementary paraunitary operations [29] of order

50. The execution time averaged over 5000 runs for different
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TABLE I
EXECUTION TIME COMPARISON BETWEEN STANDARD AND FAST GIVENS

ROTATION-BASED SBR2 IMPLEMENTATIONS, SHOWING MEAN

PLUS/MINUS ONE STANDARD DEVIATION.

computation time / [ms]

method M = 3 M = 5 M = 10 M = 20

standard 1.03±0.02 2.67±0.04 5.18±0.29 14.56±0.22
FGR 0.99±0.03 2.35±0.04 4.66±0.26 13.03±0.26

spatial dimensions M is summarised in Tab. I. The execution

includes memory allocation, maximum searches and various

book keeping, and therefore is not as dramatic a reduction

as direct comparison in MAC operations might suggest. Nev-

ertheless, as M increases, a substantial gap between the run

times of the standard and proposed SBR2 implementations

emerges, with the computation time shrinking in excess of

10% for the largest matrix size of M = 20 that is employed

here.

VI. CONCLUSION

This paper has exploited a fast Givens rotation trick to

reduce the number of multiply-accumulate operations, par-

ticularly when operating on a sequence of Givens rotations.

This trick has been adopted for a polynomial matrix eigen-

value decomposition technique known as the second order

sequential best rotation algorithm, where the interspersing

by delay elements can be absorbed. The modified algorithm

will minimise the same cost function as the standard SBR2

algorithm, which in every iteration step will eliminate the

maximum off-diagonal component. We have shown that due

to the maintenance of the cost function and maximum search,

the proposed algorithms inherits the convergence proof and

properties of the standard SBR2 algorithm to a diagonalised

and spectrally majorised solution for the polynomial eigen-

values. Particularly as the spatial dimension—i.e. the number

of sensors recording the data—increases, the computational

savings can become significant.
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Abstract—Ground Penetrating Radar (GPR) is often used for
detecting non-intrusively buried targets, in road engineering,
manufacturing, and in military fields. Based on transmitting
high frequency electromagnetic waves, GPR generates 3D
data of the underground structure enabling accurate and fast
target detection. However, after inverse Fourier Transform,
the 3D GPR images are often out-of-focus and contain high
measurement noise. This calls for advanced signal and image
processing methods to improve signal-to-noise ratio, isolate
the most discriminative features, and perform target detection
and localisation. Using a vehicle-mounted GPR array data
provided in the 2020 UDRC GPR data challenge, we show that
morphological image analysis and semi-supervised learning via
graph Laplacian regularisation can detect different types of
targets buried at various depths with very low false alarm rate.

I. INTRODUCTION

Ground Penetrating Radar (GPR) uses high frequency
radio waves for detection of the structure of underground
objects, based on the difference in electrical properties be-
tween the target object and surrounding medium. GPR has
been widely used for detection of metallic and non-metallic
objects [1] in road engineering, manufacturing, archaeology,
and has also become popular for detection of buried targets in
military fields, such as land mines and Improvised Explosive
Devices (IEDs) [2], [3]. Indeed, the GPR array [2], [3] has
shown significant advantages over competing technologies
as a non-destructive, remote sensing technique that provides
high resolution 3-D data, which helps to make the detection
and recognition of targets accurate and fast.

GPR is a non-invasive geophysical technique used for
detecting objects underground or analysing the structure in
visually opaque materials, based on measuring propagation
of emitted high-frequency electromagnetic waves. Though
the research and application of GPRs have long history [4],
[5], some of the major challenges of using GPR data to
detect underground objects are still present. This is due
to low-resolution features and out-of-focus GPR images,
high measurement noise, and interference, leading to very
low signal to noise ratio (SNR). This calls for advanced
signal processing techniques to improve SNR and construct
discriminative features.

Since a typical output of a GPR system is a spatio-
temporal GPR image, various signal and image processing

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1 and the MOD
University Defence Research Collaboration in Signal Processing.

methods can be used for extracting useful information. Tradi-
tional popular approaches are based detection of hyperbolas
in GPR images, e.g., using Hough transform [6], template
matching [7], or Viola-Jones learning algorithm with Haar-
like features [8]. However, these approach suffer from false
alarms or are complex and require a high number of pa-
rameters [2]. In this paper, we propose a low-complexity
system, by transforming the time slices of the original
dataset acquired by a GPR system into a binary image
by performing morphological image analysis to construct
distinct features of potential targets, and then classify the
constructed features into target/non-target classes using semi-
supervised learning based on label propagation over graphs.
Morphological image processing [9] is a collection of non-
linear operations used to analyse geometrical structures.
Morphological operations rely only on the relative ordering
of pixel values, and not on their numerical values, and
therefore are especially suited to processing binary images.

Classification via Graph Laplacian Regularisation (GLR)
has been widely used to classify image and time-series
signals, especially when the number of labelled signals that
can be used for training is small [10], [11]. In this paper, we
use normalised GLR (identified in [12] as the best performing
semi-supervised classification method for seismic signals
among several tested methods based on regularisation-on-
graphs), to identify the time slices which contain information
about the real targets in order to reduce the false alarm rate
and locate the real targets.

In particular, this paper presents a novel post-processing
detection method for a stepped frequency continuous wave
(SFCW) GPR system. After signal pre-processing, normal-
isation, and inverse Fourier Transform, the detection of
potential targets is performed by carrying out morphological
analysis on each time slice. Afterwards, target recognition
is performed via GLR-based semi-supervised learning on all
potential targets.

The advantage of the proposed method over recent al-
ternatives, such as [2] and [3], is its semi-supervised na-
ture that requires a very small labelled dataset for training
(namely, 3.5% in our simulations), while deep-learning based
approaches [2], [3] report results with about two thirds or
more of available data used for training. Furthermore, the
proposed approach automatically learns system parameters
from the data and thus, in contrast to prior work [7], [6], does
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not have many parameters to tune the model. Our simulation
results show that the proposed method has a very low false
alarm rate. Its low reliance on labelled data, low complexity,
and the fact that it can be implemented in real time, make
the algorithm a practical solution for future GPR array target
detection systems.

This paper is organized as follows: In Section II we de-
scribe pre-processing of the GPR data and the method of gen-
erating features. In Section III we provide brief background
on the morphological image processing and graph signal
processing, present the proposed detection and recognition
algorithm, including data normalisation and morphology
detection method for the constructed features. Section IV
presents the simulation results, and Section V contains our
conclusions.

II. DATASET USED AND SIGNAL PRE-PROCESSING

In this work, we use the data captured by a vehicle-
mounted SFCW GPR array, which contains 41 transmit-
receive channels. The GPR channels were evenly spaced 7.5
cm apart, covering 3m width in total. The GPR system was
mounted on a vehicle, driven along test lanes collecting data
at 5 cm intervals. Therefore, a 3D dataset was collected as
the GPR array was driven along the lanes. The data was
made available as part of a UDRC challenge on automatic
target detection for 3D GPR data1.

The test lanes included a variety of targets buried at
different depths. Multiple test fields were used, and in this
paper we focus on a test field that was 100 meters long
and shares the same width with the radar antenna array,
facilitating for the vehicle to travel through the whole test
field and collect a comprehensive dataset. The test field
contains 54 targets, randomly located across the whole field.

Fig. 1. A part of the plan view of the test lane.

The plan view of the test lane, which displayed the
layout for targets and markers distribution in the test lane,
is shown in Fig. 1. The test lane is a rectangular field with
10 landmarks marking its boundary. Blue circles represent
the positions of the landmarks of the test lane. The vehicle
with the mounted radar was moving within the marked
field from one side to another. The cross marks represent

1https://udrc.eng.ed.ac.uk/sites/udrc.eng.ed.ac.uk/files/attachments/Automatic
%20Target%20Detection%20for%203D%20Ground-
Penetrating%20Radar%20Data%20Challenge.pdf.

the target locations, which are considered as ground-truth
target positions. The labels such as ‘FF’ and ‘EE’ near
the corresponding cross marks indicate the target types; all
targets of the same type were buried at a common depth.

As described above, the GPR array collected the data along
the test lane at the 5 cm interval, thus, the data in the original
format contains 2000 time slices. To facilitate analysis, we
first reshaped the dataset, into a 34 × 41 × 2000 matrix, so
that each column represents one radar Transmitter/receiver
channel (41 in total). Since the data was collected in the
frequency domain due to the characteristic of the SFCW
system, to perform analysis in the spatial domain, an inverse
fast Fourier transform (IFFT) was carried out along the
columns of the dataset, i.e., along the data returned by every
array channel, to retain the channel-specific information.
Then we process data time slice by time slice, i.e., frame
by frame, where each frame is of size 34× 41 pixels.

Fig. 2. The magnitude data of the 254th time slice (i.e., frame) of the
dataset.

A typical time slice, after IFFT is shown in Fig. 2.
Each column corresponds to one channel and the vertical
axis shows the depth derived from the propagation time,
increasing from the top down. The figure shows a section
view of the test lane where the vertical direction can be
regarded as the depth under the surface. Significantly high
values can be observed in the red rectangular box indicating
the presence of a target. However, in practice, the targets are
often not visible due to measurement noise and clutter. It can
also be seen that the targets are pixelated due to the out-of-
focus problem common to GPR images [4]. Thus, feature
construction methods that are robust to noise and blur are
required to construct discriminative features necessary for
accurate target detection.

III. METHODOLOGY

This section describes the proposed methodology. In par-
ticular, given a 2-D GPR image (e.g., Fig. 2), we use mor-
phological image analysis to construct features and Graph
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Laplacian Regularisation (GLR)-based label propagation, as
advanced semi-supervised classifier. This has been shown to
perform well when the number of labelled samples is low
and dataset is noisy [11], [12].

All matrices will be denoted by capital bold letters, such
as X, whose entry in the i-th row and j-th column will
be xi,j . Vectors will be denoted by lower-case bold letters,
e.g., x, with the i-th element being xi. Sets are denoted by
calligraphic font, e.g., S, and |S| denotes cardinally of S.

A. Morphological Detection

As shown in the example in Fig. 2, the targets are charac-
terised by high pixel intensity and the shape. Morphological
image analysis is often used to identify the shape or mor-
phology of an object in the image. Thus, in order to extract
the shape of the objects, we introduce a morphological probe
[15]. This method requires defining a small shape or template
called structuring element, which is slid along the image and
compared with the corresponding neighbourhood of pixels
[15], [9].

Morphological operations rely only on the relative or-
dering of the pixel values, and not on their numerical
values [15]. Thus, we need to generate a binary image from
the original GPR image time slice to extract the features
and increase the SNR, which is done using the following
equation:

P = G− w ·G, (1)

where, G is the original 2D time slice data matrix (i.e., the
GPR image whose example is shown in Fig. 2), G is its
mean, w is a scaling parameter set to 6 in our simulations,
and P is the resulting normalised matrix. Let pi,j be the
element (i.e., pixel) of the normalized matrix P in the i-th
row and jth column. Then, we feed pi,j into Heaviside step
function, that is:

bi,j = H (pi,j), (2)

where bi,j is the element of the binary matrix, i.e., the
morphological detection result, B in the i-th row and j-th
column.

Based on the target shapes in the training datasets, we
experimented with different structuring element shapes and
finally adopted a “line” structure element, i.e., 3 pixels in a
line as a template. The detection is performed by sliding
this 3-pixel line template along the image. The detection
result will return a positive detection only if the structuring
element “fits” the target, which means if all the 3 pixels in
the structuring element calculated by Eq. (2) are larger than
0. This process would generate a binary image B, as shown
in Fig. 3 for the example GPR image from Fig. 2. In B,
the pixels with value 1 are identified as potential targets. In
the meantime, since the relative location of the time slice and
the radar channel is known, the coordinate of potential targets
can be calculated. However, as it will be shown in the next
section, our simulation results show that this detection result
is not reliable enough, as the false alarm rate is very high,
that is, due to high measurement noise many false targets

Fig. 3. Morphological detection result for a time slice.

are returned. Therefore, a classifier based on GLR is used to
increase the accuracy as described next.

B. GLR-based classification

The potential targets isolated using morphological image
analysis as described in the previous subsection, are fed into
a GLR-based classifier.

Semi-supervised learning via label propagation on graphs
is widely used for time-series signal classification when the
number of labelled signals available for training is very small
and hence insufficient to develop good statistical models of
the data [10], [11]. The main idea is to represent the classi-
fication labels as a graph signal [16] where highly correlated
samples are connected with high-weight edges, and then
restoring the unknown graph signal samples (corresponding
to the test data) using label propagation [10], e.g., via GLR.

Specifically, first, the features extracted from the original
time slice data using morphological analysis are embedded
into an undirected, connected graph, G = (V,A), where V
is the set of vertices and A is the graph adjacency matrix
[16]. Each vertex in G, ν ∈ V corresponds to one column
in the GPR image and is characterised by the corresponding
feature vector, e.g., intensity of the corresponding column in
the GPR binary image after morphological image processing.

The graph needs to capture well the correlation between
the constructed features. Let fk(i) represent the k-th feature
assigned to Node νi, that is, the intensity of k-th pixel in
Column i in the processed GPR image. Then, we set the
(i, j) entry in A, ai,j , i.e., the weight of the edge between
vertices i and j, as:

ai,j = exp

{
−

K∑
k=1

(fk(i)− fk(j))2

2σ2
k

}
, (3)

where σk represents the graph kernel bandwidth associated
to the k-th feature, and K is the feature vector dimension,
which is the length of the GPR image B column (in pixels).

47



We assign to each vertex, νi a discrete graph signal si that
carries the class label of the corresponding event. That is, for
Vertex νi

si =


+1, if νi belongs to Target Class and i ≤ n
−1, if νi does not belong to Target Class and i ≤ n
0, for n+ 1 < i ≤ N,

(4)
where n and N , respectively, represent the number of

training samples (i.e., labelled columns) and the total number
of image columns in the dataset.

If graph G captures well the correlation between the
constructed features, then the vertices with the same label
will be connected by high-weight edges, that is, the graph
signal s will be smooth with respect to G and we can
apply “label propagation” [10], for example, via GLR or
normalised GLR, to extrapolate the missing labels (that are
initialised to zero in (4)). GLR extrapolates the missing labels
by finding the smoothest graph signal under constraints given
in the first two lines of Eq. (4) [16].

The combinatorial graph Laplacian matrix is given by L =
D − A, where D is the diagonal matrix, given by di,i =
Σjai,j , and its normalised form is L = D(−1/2)LD(−1/2).
To perform GLR we define the objective function as:

s̃ = arg min
s∈RN

(sTLs)

s.t. s̃1:n = s1:n,
(5)

which has the close-form solution given by [17]:

s̃n+1:N = L†n+1:N,n+1:N

(
−sT1:nL1:n,n+1:N

)T
, (6)

where † denotes matrix pseudo-inverse.

IV. RESULT AND EVALUATION

In this section we present and analyse our simulation
results. In all our simulations, we use the dataset described in
Section II. After detection via morphological image analysis,
1162 potential targets are identified. 40 column vectors with
potential targets are used for training the semi-supervised
classifier, and the remaining column vectors are used to form
the test set.

We evaluate the performance of the proposed system using
the probability of detection and probability of false alarm
as performance measures. These criteria are widely used
in the similar detection problems [18]. We also used the
Receiver Operating Characteristic (ROC) curves to evaluate
the classifier performance.

Fig. 4. Detection result before classification.

As part of our study, first we test the performance after
morphological analysis only (without semi-supervised learn-
ing). The plan view of the test lane showing morphological
detection result is shown in Fig. 4. The red asterisks represent
the predicted positions and the cross marks represent the
actual target locations, i.e., the ground-truth. One can see
many correct “hits” (where the red asterisk and the cross
marks overlap), but also many false positives (the red asterisk
is far from the target real position), and missed targets.

Aiming to reduce the false positive rate, we use semi-
supervised graph classifier to distinguish the true targets. We
use the adjacency matrix as given in Eq. (3) and learn the
optimal σk’s from the training data as in [11]. That is, using
the training labels, we find the optimal σk’s that maximise
the difference between the weights of the edges that connect
nodes that belong to the same class and the weights of the
edges connecting nodes that belong to the opposite class.

Fig. 5. Detection result after classification.

The plan view of the test lane showing morphological
detection result after classification is shown in Fig. 5.
Compared to Fig. 4, one can see that most of the false
positives are removed while the correct “hits” are kept. High
false negative rates are mainly due to very low SNRs in
the original dataset, resulting in the absence of prominent
features; therefore those targets were unable to be detected
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Fig. 6. ROC curve for the proposed GLR classifier.

by the morphological analysis. Since the semi-supervised
classifier takes morphological analysis results as input, it
cannot reduce the false negatives. Note that, these targets
are mainly shallow targets, most likely due to low resolution
(the out-of-focus problem), high level of interference, and
echo of radio waves when they hit the surface [4].

TABLE I
RATING CRITERIA FOR THE TEST .

After classification Before classification
Target detection reports 144 1162
False reports 20 965
Probability of detection 86.1% 17%
Probability of false alarm 13.9% 83%

Table I shows the quantitative performance of the overall
proposed system. The results are reported based on the fact
that if the predicted position falls within a 0.3m radius circle
whose center is the real target position, then the predicted
result would be counted as true, otherwise it would be
counted as false. In Table I, the target detection reports
represent how many true positive results have been returned
by the classifier. The false report represents the number of
positive predictions that are in fact false (false positives).
Probability of detection and probability of false alarm show
the proportion of true reports and false reports, respectively.

Fig. 6 shows the ROC curve of the GLR classifier for the
true target class, which gives the true positive rate against
the false positive rate. The larger the area under the ROC
curve the better the performance of the classifier.

Semi-supervised classification has significantly reduced
the false alarm rate and in turn largely improved the per-
formance. This performance additionally shows the mor-
phological detection and GLR classification method have a
satisfactory detection rate and a relatively low false positive
rate.

V. CONCLUSION

We presented a novel target detection method for data
collected by ground penetrating radar. We showed that
by performing morphological feature detection and graph-
based semi-supervised classification, we can recognise sev-
eral types of targets buried in the soil, at various depths with

a very low false positive rate. Future work will focus on
further improving the results, especially for targets at lower
depths via de-blurring and further optimising the classifier
performance.
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Abstract—This paper studies the performance of object 
detection algorithms applied to electro-optic (EO), infrared 
(IR), and synthetic aperture radar (SAR) data. First, we 
describe the simulation of EO and IR images containing vehicles 
and people and the merging of measured environmental SAR 
scenes with target image chips. This produces a large data set 
for training three deep learning algorithms: RetinaNet, 
EfficientDet, and YOLOv5. The algorithms were trained with a 
powerful elastic compute cloud (EC2) instance. Performance on 
simulated data at inference time, in terms of speed and 
accuracy, was tested on the EC2 instance and a low size weight 
and power (SWAP) single board computer. YOLOv5 was the 
most accurate algorithm and the fastest on the EC2 instance but 
the slowest on the low-SWAP device. RetinaNet and EfficientDet 
and produced operationally useful throughput on the low-
SWAP device for surveillance applications, with RetinaNet 
having the higher accuracy. This is believed to be the first time 
the same algorithms have simultaneously been tested on EO, IR, 
and SAR data, and compared in a unified framework.  

Keywords—electro-optic (EO) data, infrared (IR) data, low-
SWAP hardware, object detection, synthetic aperture radar (SAR) 

I. INTRODUCTION 

The armed forces operate surveillance platforms with 
visible-band electro-optic (EO) and infrared (IR) cameras, and 
synthetic aperture radar (SAR). Recent progress in machine 
learning (ML) means more processing tasks can be automated 
than previously possible. Object detection is of particular 
interest. However, much research relies on large powerful 
processing hardware, making use of cloud processing and data 
centres. This type of system can be used in strategic settings, 
where data is sent to a central point, but there is a need for low 
size, weight, and power (SWAP) solutions where on-board 
processing is required, especially for air platforms. On-board 
processing has the benefit of reducing dependency on tactical 
comms channels, which may have low bandwidth or be denied 
in combat situations. For example, rather than transmitting a 
high data-rate continuous video stream, just the metadata 
associated with detected objects could be transmitted. We 
compare the performance of three object detection algorithms 
applied to EO, IR, and SAR data on low-SWAP hardware. 
The remainder of this paper is organised as follows. Section II 
describes algorithm and hardware selection. Sections III and 
IV describe the data collection process for video (EO/IR) and 
SAR. Section V compares performance of the algorithms. 
Finally, conclusions are given in section VI. 

II. ALGORITHM AND HARDWARE SELECTION 

The aim of object detection is to process an image to 
produce bounding box coordinates for each object, a class 
label, and a confidence score. Post processing can be applied, 
such as thresholding confidence scores to trade true detection 

rates against false alarms, or tracking bounding boxes between 
successive video frames to provide smoother estimates. 

A literature review was conducted to find object detection 
algorithms appropriate for application on low-SWAP 
hardware [1]. Three algorithms were identified as being 
particularly suitable: You Only Look Once (YOLO), 
RetinaNet, and EfficientDet. These algorithms are designed to 
attain high accuracy while having low computational cost.  

YOLO was specifically designed for fast processing [2]. It 
was followed by various versions up to YOLOv5 [3][4][5][6]. 
The YOLO convolutional neural net has 53-layers with 
residual connections. The system predicts the class and 
“objectness” for each bounding box, which are modelled as 
offsets from learnt anchor points, instead of absolute image 
coordinates. The structure can trade speed and accuracy by 
scaling image size. Hierarchical labelling allows combination 
of detection and image datasets during training. The various 
versions of YOLO have widely been used as baselines for 
comparison of other algorithms. This paper examines the 
small (s) and extra-large (x) versions of YOLOv5. YOLO is a 
large model. This is of importance when deploying to low-
specification embedded boards because of limited memory, 
less comms overhead to export new models through wireless 
update, and less energy consumption [1]. 

RetinaNet was designed to be fast, while overcoming 
accuracy issues in earlier models by using a focal loss function 
to focus on hard-to-classify examples [7]. The structure of the 
neural net is a feature pyramid network (FPN), containing 
convolution and max pooling layers. This outputs feature 
information at different scales. The FPN backbone is the well-
known ResNet model, with 50 or 101 layers, and the input 
image can be scaled to a resolution of 400-800 pixels square, 
providing methods for trading accuracy and speed. According 
to some benchmarks, RetinaNet is more accurate but slower 
than YOLOv3. However, YOLOv4 is faster and has a higher 
accuracy than RetinaNet [5]. 

The EfficientDet series of models was designed to allow 
trade-offs between accuracy and speed [8]. It is based on the 
principal that convolutional neural nets should scale width, 
depth, and resolution simultaneously to achieve the best 
performance for a given compute power. Separate optimum 
scale factors were found for each of these parameters. The 
structure of the net includes a bi-directional FPN, allowing 
feature information at different scales to flow up and down. 
Eight models are available from D0 (fastest but least accurate) 
to D7 (most accurate but slowest). In the present paper, the D3 
variant was used for EO/IR data and D2 for SAR. According 
to some benchmarks, EfficientDet has a higher accuracy than 
RetinaNet for the same processing speed. The maximum 
accuracy achievable by EfficientDet is higher than YOLOv4. 

This work was funded by Dstl under the Serapis Lot 4 (assured 
information infrastructure) programme and the QinetiQ Fellow scheme. 

978-1-6654-3314-3/21/$31.00 ©2021 IEEE 50



  
However, for the same accuracy, EfficientDet is slower than 
YOLOv4, giving a trade between accuracy and speed [5].  

In this paper, the post-processing step of non-maximum 
suppression was applied for RetinaNet and EfficientDet, with 
a maximum intersection-over-union value of 0.3 to prevent 
multiple predicted boxes being produced for a single object. 
This step is inherently part of the YOLOv5 implementation. 
The performance of the above algorithms was analysed 
independently to verify whether the above conclusions, made 
by the authors of each algorithm, hold. 

A review of low-SWAP edge computing devices was 
conducted [1]. The aim was to select a particular single board 
computer (SBC) to demonstrate operation of the algorithms. 
An SBC is a complete computer built on a single circuit board, 
with microprocessor(s), memory, input/output, and other 
features required of a functional computer. SBCs have a high 
level of integration and low component counts. This gives 
them a lower-SWAP than comparable multi-board computers. 
The Nvidia Jetson Xavier NX was selected as it has a good 
trade-off compared to other options: small size (70 mm x 45 
mm); low mass (24 g); medium power consumption (10-15 
W); high processing ability (6000 GFLOPS with 384 CUDA 
cores); low cost; and good support. The NX board comes in 
two form factors. The production module is smaller than a 
credit card and is what would be mounted on a sensing 
platform. The developer kit extends the production module 
with extra components for easy connection to peripherals. The 
developer kit was used for tests in this paper, as the aim of this 
work was to rapidly test a proof of concept, rather than 
develop a productionized system for deployment. It is 
expected bespoke hardware solutions could further improve 
the power efficiency of the system. Computation of power 
efficiency for each algorithm was out of scope for this work. 

III. VIDEO DATA AND SIMULATION METHODS 

It can be expensive to gather the data volume required by 
deep learning algorithms. A military trial requires extensive 
organisation of vehicles, sensors, and personnel. It may not be 
possible to gather much data about adversaries. Annotation of 
data can be laborious. Simulations are increasingly important 
in ML as they allow large data volumes to be created and 
annotated automatically at low cost. Good results can be 
achieved by training models on purely synthetic data [9][10]. 

Virtual Battlespace 3 (VBS) is a commercial synthetic 
environment simulator to simulate realistic EO and IR images 
and was used to simulate all such data described in this paper. 
To ensure simulations are representative of real-life scenarios 
it is necessary to select an environment that includes real data 
features. VBS includes the Rahmadi terrain, a fictional island 
with desert-like conditions with shrubs, trees, and a cluster of 
buildings. This is a suitable environment as it allows study of 
object detection in open and built-up areas (where partial 
obscuration by buildings is likely), and the littoral 
environment. Fifteen areas on the island, covering these 
different types of background, were defined as regions in 
which objects of interest could randomly be placed. Ten 
objects were simulated, including armoured personnel carriers 
(APCs), infantry fighting vehicles (IFVs), tanks, 4x4s, and 
people. The specific objects are BMP3 (tracked IFV), BMPT, 
(tracked armoured fighting vehicle), Bumerang (wheeled 
amphibious APC), Kurganets-25 (tracked: APC and IFV 
variants), T14 (main battle tank), T15 (tracked IFV), T90S 

(battle tank), Gaz Tiger (4x4 vehicle), and Infantry Leader 
(person). The mix of objects includes a combination of 
visually distinct vehicles, such as the BMP3 and Gaz Tiger, 
and highly similar vehicles, such as the APC and IFV variants 
of the Kurganets-25. This variety allows a range from easy to 
difficult object detection and classification tasks to be studied. 

Three types of scenario were studied: empty scenes with 
no objects of interest, single objects, and multiple objects. In 
all cases, simple and complex backgrounds (including 
buildings, trees, and roads) were included. Simulation details 
were selected to produce images representative of EO/IR 
cameras on the Watchkeeper un-crewed aerial vehicle (UAV), 
based on openly published information [11], but the 
algorithms have utility on a much wider range of platforms, 
including small UAVs. For each scenario, location, and 
object, the sensor platform flew a 360° circle around the object 
with images captured every 10°. The start angle was chosen 
randomly to ensure exact multiples of ten were not always 
present. Sensor platforms are not expected operationally to 
have the ability to fly a complete circuit of objects. The flight 
path was chosen to maximise viewing angle diversity so 
reported results are not dependent on specific angles – objects 
are easiest to recognise from oblique angles, where the front, 
side, and top of the object can be viewed simultaneously. The 
10° interval was chosen as a compromise between data 
storage/processing and realism. Video feeds over short time 
periods contain frames captured at similar angles, which 
provides little benefit over a single image. Objects begin 
visually to be more different for wider-angle changes. The 
sensor platform was set to have an altitude of 3048 m (10,000 
ft) and a ground distance of 5 km from the object of interest. 
The camera was set to point at a random location near the 
object(s). Objects were not put at the image centre to prevent 
algorithms falsely learning objects always appear there. The 
camera field of view (FOV) was set to 0.003 or 0.006. In VBS, 
this is the angle in radians from image centre to edge. The 
0.006 setting is equivalent to a full-width FOV 0.69°, which 
is near the maximum zoom of the DCoMPASS camera [11]. 
The 0.003 setting, at a distance of 5 km, produces images 
similar to what could be obtained with 0.006 at 2.5 km. In 
multi-object scenarios, the orientation of each object was set 
randomly so all objects do not point in the same direction. The 
minimum spacing between objects was set to 10 m, just larger 
than the longest vehicle. The maximum spacing was scaled 
with the field of view to ensure that the majority of the 
vehicles appear within the image for all viewing angles. The 
maximum was set at 30 m for an FOV of 0.006.  

The above process was repeated to produce separate sets 
of EO and IR images. The image resolution for both cameras 
was set to 1366x768, a standard resolution available in VBS. 
This is the closest resolution to the DCoMPASS EO camera, 
1394x1040. The DCoMPASS IR camera resolution is lower 
at 640x512. The two camera resolutions were kept the same 
in simulations so that differences in performance can be 
attributed to imaging modality rather than resolution. The 
effect of resolution on performance should be a subject for 
future study. IR simulations required further work to produce 
realistic images. When vehicles are first placed in a scene, they 
are cold by default and relatively featureless. After a while, 
detail begins to appear. To deal with this, camera capture was 
not initiated until 90 s after the beginning of the simulation. 
There is a trade-off in image quality against simulation time. 
Longer waiting times improve the detail on vehicles. To 
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produce high-quality images, the VBS render resolution was 
set at 114% of the captured image resolution, the smallest 
setting above 100%. These additional settings were applied to 
the IR and EO data to ensure consistency between the sets. 

All simulation settings and processing steps were defined 
using the Status Quo Function (SQF) language, a scripting 
langue used by VBS to run simulations automatically. This 
was preferable to the alternative of manually defining and 
running simulations. Although manual definition may allow a 
more nuanced set-up of object locations and scenarios, it does 
not allow for the high volume and variety of data generation 
necessary for developing a good training database. The VBS 
simulation has a record of the location and extent of each 
object in the 3D world. The eight corners of the 3D bounding 
box in world coordinates were converted to locations in 2D 
image coordinates. The min and max X and Y coordinates of 
these points were recorded to produce a 2D bounding box for 
the object in the image. This enables boxes of different sizes 
and aspect ratios to be produced as needed.  

Annotated images were manually reviewed. In several 
cases, objects were hidden either partially or fully behind 
environmental features, such as buildings or trees. Obscured 
objects have two effects. The first is that if images with hidden 
objects were presented to a classifier during the training stage, 
the algorithm would “learn” that objects sometimes appear 
behind buildings. This would cause spurious detections to be 
made on unseen data with buildings, even where there is no 
evidence an object is present. The second effect is present 
when measuring classifier performance. If an object is hidden, 
the classifier is likely to fail to detect it. However, the ground-
truth annotation has a record that an object is present and the 
classifier output would be marked as incorrect. According to 
a recent review [12] “very little work has been devoted to 
occlusion handling for generic object detection” and “the 
occlusion problem is far from being solved”. To avoid these 
problems, images were only kept in the data where more than 
half of the objects are “detectable”. Detectable was defined as 
where at least half of the object is visible, since recognition 
rates drop rapidly with occlusion proportion, and performance 
with half or less of an object visible is generally very poor 
[13]. In [14] objects are considered to exhibit “heavy 
occlusion” if less than 65% is visible. Determination of which 
images to keep was done manually. 

Using the above simulation procedure, 24188 images were 
produced in total, 12020 for EO, and 12168 for IR. The data 
were split so that 11 simulation locations were used for 
training and four different locations for testing. Each object 
had approximately 997 examples in the training database. The 
images were saved in the lossless compression PNG format. 
Future work should consider whether using a lossy 
compression format like JPG would affect the results. 

IV. SAR DATA AND SIMULATION METHODS 

Comprehensive SAR data sets with annotated objects in 
large scenes are not available. Therefore a data set was 
constructed by combining available background scene data 
with target vehicle information from the public release of the 
moving and stationary target acquisition and recognition 
(MSTAR) data set [15][16]. The output was a new data set of 
large scenes containing multiple target vehicles. 

The background scene data was selected as follows. 
QinetiQ owns a number of SAR datasets collected under 

various MOD programmes. A particular set of images, with 
aerial landscape views containing no targets, was identified 
for use. This dataset was collected during field trials in 2010 
using the PodSAR radar mounted on a Tornado aircraft. The 
images primarily consist of fields, trees, hedges, bushes, and 
roads, with a few buildings or structures. In radar terminology, 
this type of data is known as “clutter” to distinguish it from 
targets of interest. Seven large images were identified, ranging 
in size from 1752 to 23940 pixels wide and 4024 to 14204 
pixel high, with pixel spacing 0.225 m to 0.407 m, radar 
resolution 0.3 m to 0.466 m, and area 0.678 to 51.986 km2.  To 
ensure that no information about the background can leak into 
decisions about whether a target is present in the scene, the 
first six images were used in training and the final image used 
in testing. The test image has a higher contrast than the 
training images. It also exhibits a meandering beam pattern as 
the strip-map collection took place over a distance of about 
9 km. These differences ensure that reported results are not 
over-trained to particular image characteristics. As the test 
image is very wide, it was split into nine non-overlapping sub 
images before further processing. 

The public release version of the MSTAR dataset used for 
this project contains target images for: one of three T72 main 
battle tanks (MBTs); one of three BMP2 APCs; or a single 
BTR70 APC. The BMP2 vehicles are different serial numbers 
of the same variant. The T72 MBTs are different variants. The 
images are 128 x 128 pixels in size and have a radar resolution 
of 0.3048 m (1 foot) and pixel spacing 0.202 m in range and 
cross range. Training data was collected at an elevation of 15° 
and test data was collected at 17°. 

The background and target datasets were merged by 
inserting small target image chips into larger background 
images. The background images were manually analysed to 
find suitable areas where targets could be inserted. Before 
insertion, the following processes were applied to target image 
chips. First, rotation by 90° so shadows point down to match 
the background. Second, application of an alpha-channel 
transparency window. This is a full-amplitude circle centred 
on the chip centre, with a radius of 25 pixels, and a linearly 
decreasing alpha value (opaqueness) in a radial direction from 
the circle edge to the chip edge. This reduces insertion 
artefacts, making the final image more realistic. Third, the 
amplitude of the chip was scaled so the non-target mean 
matches the local mean of the background. In addition to 
target chips, clutter chips from the MSTAR dataset were 
randomly inserted into background scenes. This was done to 
ensure the classifier does not use any subtle insertion artefacts 
to help with the target detection process. Shadows in the 
MSTAR data are more pronounced than those in the QinetiQ 
clutter data. To ensure the two datasets match, noise of an 
appropriate power level was added to the target chips prior to 
insertion. Bounding box annotations were fixed to be 32x32 
pixels in size, centred on the inserted chip centre.  

The dynamic range of radar images is inherently very high, 
as radar returns from targets and buildings can be orders of 
magnitude brighter than those from fields and trees. In 
operational use, analysts adaptively adjust the brightness and 
contrast of the screen to understand the scene. For fields, 
higher contrast is required, but for buildings, lower contrast is 
required. In this work, image amplitudes were clipped so that 
pixels brighter than a certain threshold were set to the 
threshold. The thresholded image was then amplitude-scaled 
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to fit the dynamic range of the PNG format. The threshold was 
set to 98% for training images and 95% for test images. This 
partly accounts for differences in the images but also ensures 
the reported algorithm performance is not over-trained to a 
particular threshold. 

The above process produces images containing back-
ground scenes and targets. The images have different 
dimensions from each other. The object detection algorithms 
in this paper scale images so they are a standard size before 
input. This is appropriate for EO and IR images because 
objects appear as different sizes depending on how close they 
are to the camera and the level of zoom. Examples of objects 
at multiple scales are required in training. However, the 
physics of SAR image generation creates pixels, and hence 
targets, at the same size regardless of the sensor-target 
distance. This means the physical size of objects is encoded in 
the image. This is useful information for discriminating 
between targets and would be lost if whole images were scaled 
on input to the neural net. To avoid this, large images were 
“tiled” to produce constant size images of 768x768 pixels in 
size. In total, there are 1000 training image files, each 
containing zero, or more, inserted target and clutter chips (850 
images with targets and 150 without) and 315 test image files, 
each containing zero, or more, inserted target chips (268 
images with targets and 47 without). The images all have a 
pixel spacing of 0.26 m and a radar resolution of 0.3 m. The 
training database contained an average of 2072 examples per 
class. The scale issue was addressed in [17] by using sliding 
windows instead of tiles to process large images, but that 
network is only applicable to fixed-scale SAR images and not 
EO/IR. There are an order of magnitude fewer images for 
SAR than the EO/IR datasets. This is due to the manual nature 
of the radar data background and target merging process. With 
further work, improvements could be made to allow a greater 
degree of automation and increase the data volume. 

V. ALGORITHM PERFORMANCE  

The algorithms were trained on a G4dn.xlarge EC2 
instance on Amazon Web Services (AWS). For each 
algorithm, the weights were initialized from published pre-
trained models trained on photographs. It was found that using 
pre-trained, rather than randomized, initial weights improved 
performance for all algorithms and datasets tested, including 
IR and SAR, even though the sensing modality of the pre-
training data is different. This approach contrasts to [17], 
which only uses SAR data and no pre-training. A simple 
hyperparameter search was performed to obtain good values 
for the batch size, learning rate, and confidence threshold. The 
batch size was limited by the memory of the EC2 instances to 
6, 2, 16, or 2 images for RetinaNet, EfficientDet, YOLOv5s, 
or YOLOv5x with EO/IR data, and 8, 4, 16, or 8 with SAR 
data. The training duration and number of epochs with the EO 
data, for each of the algorithms was: RetinaNet (13 hr, 17), 
EfficientDet (88 hr, 99), YOLOv5s (5 hr, 40) and YOLOv5x 
(15 hr, 20). Similar figures were obtained for the IR data. 
Training duration was an average of 12 times faster for the 
SAR data due to the smaller size of the images and dataset.  

Each trained model was used to process test data on the 
EC2 instance and the low-SWAP NX board. A manual split 
of train/test data ensured no similar backgrounds in the train 
data were in the test data. For this reason automated cross-
validation was not used. Several performance metrics were 
computed for each algorithm and data set, including precision, 

recall, false alarm rate, and confusion matrices. Full results are 
in [18]. The primary metrics are mean average precision 
(mAP) and processing time per image. Results for the EC2 
instance are shown on the left of Fig. 1. Both RetinaNet and 
EfficientDet have several larger or smaller variants of model 
than those tested here, allowing for trades between speed and 
accuracy. The line associated with each data point in the figure 
is an estimate of what different accuracies or speeds could 
expected to be achieved with the variant models, using data 
given in [8]. The YOLOv5 performance curve is shown for 
the smallest (s) and largest (x) models. On the EC2 instance, 
YOLOv5 is more accurate and faster than the other algorithms 
for all datasets. The low mAP for EfficientDet in EO and IR 
data is driven by missed detections; the other algorithms have 
better detection performance. Example RetinaNet detections 
in EO and SAR data are shown in Fig. 2 and Fig. 3. 

Results for the NX board are shown on the right of Fig. 1. 
RetinaNet is more accurate than EfficientDet for the same 
processing speed, which mirrors the EC2 results. The speed 
for both algorithms is approximately two times slower on the 
NX board than EC2. YOLOv5 is more accurate, but slower 
than the other algorithms by a factor of about 4 for the small 
(s) model and 35 for the larger (x) model. Unlike on AWS, the 
PyTorch implementation of YOLOv5 was unable to make use 
of the OpenMP interface on the NX board, which significantly 
impeded the algorithm throughput. It is thought that if this 
issue were resolved the algorithm could be sped up. 

   
Fig. 1. Accuracy-speed trade-off. Left: G4dn.xlarge. Right: NX. 

One aim of this work was to see whether algorithms could 
be optimised for speed on low-SWAP hardware. RetinaNet 
and EfficientDet are implemented in the Keras/TensorFlow 
framework, but they are not highly optimised for specific 
hardware. Nvidia TensorRT (TRT) provides run-time 
performance optimisations for tensor operations on specific 
hardware platforms like the NX board. These include 
specialised libraries and hardware and lower precision 
numbers for the calculations, sacrificing small amounts of 
accuracy for increases in speed. TRT is integrated into 
TensorFlow as a module called TF-TRT. This can be accessed 
in Keras, allowing models to fall back to native TensorFlow 
when required. This gives flexibility in model support at the 
expense of performance, compared to pure binary TRT 
models. Each EfficientDet or RetinaNet model was converted 
to an optimised 16-bit floating-point format using TF-TRT. 
This format is specific to the hardware where it is generated. 
Only a subset of operations in each model are supported by 
the library for optimisation, so it is possible to create neural 
nets with a significant proportion of nodes that cannot be 
converted to TRT functions. Additionally, TRT only 
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optimises subgraphs of a minimum size to reduce the 
overhead of swapping to/from optimised formats. This results 
in some otherwise optimisable steps not being optimised due 
to context. These limitations mean some models have no 
performance gain because there is little optimised code.  

For each combination of EfficientDet/RetinaNet and EO/ 
IR/SAR data, the accuracy and throughput of the algorithms 
at inference time was measured with both optimised and un-
optimised versions of the models. The inference time per 
image is about ten times longer for the first image in a video 
stream, to allow various processes be loaded into memory. 
Thus, we analysed the truncated mean of the inference times 
for each stream. We found a 20-85% increase in throughput 
for EfficientDet but a greater than 80% decrease in throughput 
for RetinaNet, without a significant change in accuracy in 
either case. The decreased RetinaNet speed appears to relate 
to the amount of un-optimised steps and the overhead of 
repeatedly swapping between optimised and un-optimised 
parts of the network state. Due to time limitations and the fact 
that YOLOv5 is based on PyTorch rather than TensorFlow, 
optimisation of YOLOv5 was not attempted. However, a short 
experiment to optimise an off-the-shelf YOLOv4 model, 
which is based on TensorFlow, showed that image 
throughputs of 20-50 frames per second were possible with 
416x416 size images. This demonstrates that the NX platform 
is capable of high throughput with an appropriate model.  

 

Fig. 2. Example detections in an EO image. 

 

Fig. 3. Example detections in a SAR image. 

VI. CONCLUSIONS 

Three object detection algorithms, RetinaNet, EfficientDet 
and YOLOv5 have been analysed. They can be applied to any 
type of image as long as suitable training data is available. 
Successful application the algorithms to simulated EO, IR and 
SAR data has been demonstrated. This is believed to be the 
first time the same set of algorithms has simultaneously been 
tested on these three sensor types and compared in a unified 
framework. When tested on an EC2 instance, YOLOv5 was 
the best algorithm in terms of both accuracy and speed. On the 
off-the-shelf Nvidia Jetson Xavier NX low-SWAP device 
RetinaNet and EfficientDet produced operationally useful 
throughput for surveillance applications on a UAV, with 
reasonable accuracy. YOLOv5 had the better accuracy but did 
not achieve high throughput due to implementation issues.  
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Abstract—Multiple passive acoustic detectors exist
for under/above-water applications. Implementations
involving exponential filters have also been tested.
However, the literature provides little guidance about
their tuning, which may be non-intuitive. To alleviate
this shortcoming, this publication reviews the key con-
figuration parameters of a particular implementation of
such a detector. Performance metrics are also proposed
and their relationship to configuration parameters is
established. The computation of the global processing
gain is the main focus of this publication, and of interest
to practitioners the impact of configuration parameters
is studied. Examples demonstrate how the proposed
closed-form expression adequately matches simulated
results. Also, a novel and approximate output variance
expression is proposed. Early results indicate the need
for optimization among many performance metrics.

Index Terms—signal processing, detection, filter,
processing gain, acoustics, configuration

I. Introduction
Passive acoustics has been of interest for military pur-

poses since WWII [1], with modern applications inclusive
of wildlife monitoring [2], [3]. Passive acoustics aims to
“pull out” a signal of interest from ambient noise. Con-
ventionally, the very first stage involves target detection,
then followed by localization/tracking [4]. Detectors can
also be used to assess network connectivity [5].
The most elementary passive acoustic detector is based

on energy levels. To that effect, the SONAR equation
[6] refers to a constant detection threshold, which in
turns relates to performance. Usually, the type of acoustic
signals encountered (narrow-band, broadband, transient)
must be known a priori to better tune such detectors.
DRDC has developed and tested an underwater passive

acoustic detection scheme based on exponential filters [7],
[8]. This detector is also energy-based, but unlike many
schemes its performs a noise auto-normalization. A variant
of this scheme has been applied to cetacean detections
[9]. Such a filtering scheme can react appropriately to
environmental phenomena like squalls and rainfalls. How-
ever, the number of configuration parameters and their
interactions render its implementation challenging. Also,
references rarely treat interactions between successive sig-
nal processing steps from a performance standpoint, which
practitioners highly value. This publication addresses both
shortcomings by focusing on the global processing gain

with illustrative examples to convey results about the
impact of some key configuration parameters.

Section II describes the detection scheme. An overview
of global performance metrics steps and the derivation of
processing gain are provided in Section III. Section IV
presents global performance results. Simulated and real-
implementation results are provided in Section V before
summarizing and concluding with Sections VI and VII.
To be self-contained, this publication reviews concepts
that could be considered trivial by some readers before
disclosing new material.

II. Detection Scheme Description
R and N describe real and natural numbers, respectively.

Letters f , N and T represent frequency (Hz), number of
elements in a set, and duration. The letter t ∈ R+ (k ∈
N+) represents a positive continuous (discrete) time.

The block diagram of Figure 1 depicts key processing
steps of the proposed detector. Processing steps of Figure 1
convert an analog continuous-time pressure signal p(t) ∈ R
to a digital one p(k) ∈ R, and ultimately to a binary
value determining the presence or absence of a target
(or acoustic source). Blue-font variables in Figure 1 are
configuration parameters defined in Table I.

TABLE I: Configuration parameters.

Symbol Meaning
fs A-D sampling frequency

NF F T number of FFT points
overlap % overlap btw FFT samples
NA average sample size
γ1, γ2 filter time-constants
T threshold value

%P % bins > T , target present
%N % bins < T , target absent

The first computational step of Figure 1 digitizes the
time-varying and analog pressure signal p(t) through an
analog-to-digital conversion requiring a user-specified sam-
pling frequency fs ∈ R (s−1), which leads to a sampling
time Ts. The subsequent step is a holding mechanism, usu-
ally a zero-order hold. Not shown here is the quantization
converting the original continuous magnitude to a finite
value set whose size depends on the required precision.

The second block of Figure 1 applies shading and the
Fast Fourier Transform (FFT). The Hanning window is
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Fig. 1: Block-diagram representation of the detection scheme where blue-font variables are configuration parameters
(AEF = Arrangement of Exponential Filters). Only processing steps within the dashed lines are treated here.

selected here but its effect on the global processign gain
is ignored. As a reminder, the FFT uses NF F T ∈ N data
points p(k),p(k + 1),. . . ,p(k + NF F T − 1) of signal p(k)
and decomposes it in a collection of complex values a1 +
jb1, . . . , an + jbn quantifying the amplitude and phase of
a set of n equally-spaced frequencies of resolution

fresolution = fs

NF F T
= 1
Tint

, (1)

where Tint is the FFT integration time (s), i.e, the time
period captured by a single FFT. The ( )2 step of Figure 1
converts the array of n complex numbers [a1+jb1, . . . , an+
jbn] to n real values by performing the following non-
coherent operation cp = a2

p + b2
p with p = 1, 2, . . . , n, thus

leading to an FFT power spectrum. Subsequent steps until
the rule block of Figure 1 only deal with one frequency bin.
The averaging step in Figure 1 utilizes NA ∈ N samples

of FFT power spectra and a fixed percentage of overlap
among consecutive FFT outputs. The overlap determines
how many discrete-time samples are shared among two
consecutive FFT’s. Therefore, Ts,a, the sampling time
(period between two consecutive data points) at the input
(and output) of the moving-average step is given by

Ts,a = Ts

(
NF F T

100−%overlap
100

)
, (2)

thus impacted by parameters NF F T and %overlap.
The AEF block of Figure 1 stands for “Arrangement of

Exponential Filters”. It is beyond the scope of this paper
to discuss the merit/inconvenience of a particular arrange-
ment (ratio versus difference, for instance) of exponential
filters. Each exponential filter is defined by

y(k′) = γ u(k′) + (1− γ) y(k′ − 1), (3)

where 0 ≤ γ ≤ 1 is the filter time-constant, u(k′) the
measurement/input at the new discrete time index k′

based on sampling period in (2), and y(·) is the filter
output. Here, input signals are averaged power spectra.
The current setup makes use of the ratio (in dB) of
the output of two exponential filters with distinct time-
constants γ1 and γ2 where γ1 > γ2, γmin = min(γ1, γ2) and
γmax = max(γ1, γ2). Values for γ1, γ2 are usually chosen
based on the nature of signals and noise to filter out.

The rule of Figure 1 involves three parameters T , %P ,
and %N defined in Table I and omitted from this analysis.
Overall, this detector has nine configuration parameters.
III. Performance Metrics and Processing Gain
The individual impact of the first four configuration

parameters of Table I was analyzed in [10]. Due to page
limits, only a subset of those results is presented here.
A. Performance metrics

This analysis uses performance metrics characteriz-
ing the stability, long-term (steady-state)/transitory be-
haviours, and key features of the proposed scheme.

Bounded-input-bounded-output (BIBO) is the main
stability metric of interest. Two steady-state performance
metrics, the processing gain PG and the cut-off frequency
fc, as well as one transient metric, the settling time ts,
were studied. Why are those parameters important? The
larger PG is, the easier a target will be “pulled out
of noise”. The cut-off frequency fc becomes important
because the overall scheme acts as a low-pass filter and
a lower fc means that fewer high frequencies will remain.
The settling time is relevant in the sense that ideally, the
next processing step should not react based on short-lived
and potentially misleading transient behaviours.

The global characteristics resulting from steps described
in the dashed box of Figure 1 are PGglobal, fc,global, and
ts,global. Each processing step impacts the global perfor-
mance of the detection scheme as indicated in Table II.
Other features of importance are fresolution and Ta, the
frequency resolution (shown in equation (1)) enabling the
separation of two nearby frequencies and the length of time
averaging (developed in [10]), respectively.

TABLE II: Influence of configuration parameters on global
performance criteria

fs NF F T overlap NA γmin γmax

fc,global X X X X — X
PGglobal — X — X X X
ts,global X X X — X —
fresolution X X — — — —

Ta X X X X — —

Based on Table II, the number of configuration parame-
ters is not overwhelmingly large. However, intricacies arise
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because almost all configuration parameters affect many
performance criteria, including the global processing gain
whose key derivation steps are presented next.
B. Processing gain
For any of the processing step defined in Figure 1, we

assume that a signal polluted by noise is the process input
and that a noisy output signal is the response of the said
process subject to such input signal. In this publication,
the input-output processing gain PG means

PG =
SNRoutput signals

SNRinput signals
=
SNRO

SNRI
,

where each SNR (signal-power-to-noise-ratio) is

SNR =
P̄s

P̄n

=
P̄s+n − P̄n

P̄n

≈
RMS(Ps)
RMS(Pn), (4)

with the average power for signal “s” and noise “n”, P̄s

and P̄n, and the Root Mean Square (RMS), thus giving

PG =
P̄s,O/P̄n,O

P̄s,I/P̄n,I

=
(
P̄n,I

P̄n,O

)
×

(
P̄s,O

P̄s,I

)
.

From the above development, when the processing step
(FFT, moving/exponential averaging, etc.) does not in-
duce a permanent input-to-output gain change for a par-
ticular input signal (excluding the noise component), then
the processing gain reduces to the ratio of noise average
powers P̄n,I/P̄n,O. In the opposite case, then a frequency-
dependent expression can be derived from the processing
step impulse response as shown in [11].
If P̄s,O/P̄s,1 ≈ 1 and in presence of a stationary and

ergodic process generating a zero-mean noise, an assump-
tion commonly found in literature, then the signal power
reduces to its variance σ2 [11, p.280], which then leads to

PG =
P̄n,I

P̄n,O

=
σ2

n,I

σ2
n,O

=
(
σn,I

σn,O

)2

. (5)

Both processing gain and SNR can be expressed in an
absolute or dB scale. Note that distinct dB scalings apply
when considering SNR versus SaNR (signal-amplitude-
to-noise-ratio) or signal powers versus amplitudes. Note
that PG and SNR are interchangeable metrics for quan-
tifying the benefits of a particular processing step.

IV. Performance Analysis
Only the PGglobal performance metric is presented here

in full as it is the most compact development. Each of the
three main steps (FFT, averaging, and exponential filters)
are described next before deriving PGglobal.
A. FFT
As shown in [10], the maximal gain of the FFT process-

ing can be expressed as follows (assuming σ2
n,O/σ

2
n,I ≈ 1)

PGdB
F F T (NF F T ) = 10 log10

(
NF F T

2

)
, (6)

so a smaller gain is expected in reality.

B. Moving average
The proposed incoherent moving-average filter reduces

the variations in the background noise power by aver-
aging over NA successive FFT’s. The reduction in the
output noise standard deviation over NA FFT’s, that is
σNA F F T ′s, relative to the output noise standard deviation
of a single FFT, that is σsingle F F T , is given by√√√√( P̄n,O

P̄n,I

)
a

= σNA F F T ′s

σsingle F F T
= 1√

NA

. (7)

From Figure 1 the input signal of the incoherent averaging
is made of power spectra, which explains why the SaNR
expression (7) is the basis for deriving PGa, in combi-
nation with the fact that P̄s,O/P̄s,I = 1 for the moving-
average filter [10]. Expression (7) holds for most windows
and overlap of 50% or less [12]. With averaging performed
on the input signal, the gain of the incoherent averaging
can be expressed by [12, P.421]

PGdB
a (NA) = 10 log10

√
NA. (8)

C. Exponential filter
The capacity of a single exponential filter to reduce the

noise variance strictly depends on the value of γ [13](
P̄n,O

P̄n,I

)
exp

=
(
σ2

n,O

σ2
n,I

)
exp

= γ

2− γ , (9)

if time is allowed to grow indefinitely large. Using the
exponential filter impulse response, one can show [10] that
each exponential filter has unit process gain thus giving

PGdB
exp = 10 log10

(
2− γ
γ

)
. (10)

D. Exponential filter arrangement
Whether one considers the ratio or the difference of

exponential filters, the output of such an arrangement
needs to be looked at from the variance of combined
signals. When the Ratio of Exponential Filters (REF) is
considered, the approximate expression for variance of the
ratio of two signals in [14] is exploited. Here, only step-like
input signals of magnitude A feed the exponential filters
such that the variance of the REF reduces to (see ref. [10])

σ2
s+n,O

(
y1

y2

)
≈
σ2

n,I

A2

[
γ1

2− γ1
−

2cov(y1, y2)
σ2

n,I

+
γ2

2− γ2

]
, (11)

where y1, y2 are exponential filter output signals associated
to γ1, γ2. Figure 2 shows how expression 11 compares fa-
vorably to that of [14] and also to values directly computed
from manufactured datasets when γ1 = 0.1 and A = 1.

As σ2
s+n,O(y1/y2) ≈ σ2

n,O(y1/y2) (only dealing with
step-like input signals), expression (5) with (11) becomes

PGREF ≈ A2

[
γ1

2− γ1
−

2cov(y1, y2)
σ2

n,I

+
γ2

2− γ2

]−1

. (12)
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Fig. 2: REF output variance (assumes A = 1, γ1 = 0.1).

E. Global characteristics
The global processing gain (omitting quantization and

the window function) is derived from the sum of all
individual processing gains derived in (6), (8) and (12)

PGdB
global = PGdB

F F T (NF F T ) + PGdB
a (NA) + . . .

PGdB
REF (γ1, γ2), (13)

thus showing the effect of four of the six main configura-
tion parameters discussed earlier and present in Table II.
Alternatively, one can use the SNRdB

global metric instead.

V. Simulated Examples and Real Implementation
This section provides three simulated examples illus-

trating how to use the previous results to assess global
processing gain and how to determine feasible detection
ranges dependent upon said gain. The last example is an
actual implementation of the scheme shown in Figure 1 on
real acoustic data used to illustrate the effect of the NF F T

configuration parameter.

Example 1 This example uses the setup in [8] with:
NF F T = 1024, fs = 2500, overlap = 50%, NA = 6,
and γmax = 0.1, γmin = 0.001, and f0 = 300 Hz (thus
ω = 2πf0/fs = 0.75). Using those values in equation (13)
gives (using the leftmost value of Figure 2 of 0.0129 and
assuming A = 1 and γ1 = 0.1)

PGdB
global = 10 log10(1024/2) + 10 log10(

√
6)

· · ·+ 10 log10(1/0.0129) = 49.8,

thus showing that contributions to the global processing
gain are: 3.9 dB from averaging, 18.9 dB from the ratio
of exponential filter, and 27 dB from the FFT.

As shown in Example 1, with small moving-average sam-
ple sizes, i.e., 2 ≤ NA ≤ 8, and typical γ1, γ2 values, the
main contribution to the global processing gain, PGdB

global,
remains NF F T , the FFT data sample length.
The next example shows how to exploit the global

processing gain generated from the scheme of Figure 1 for
assessing detection ranges.

Example 2 With the setup of Example 1, the proposed de-
tector leads to a processing gain of about PGdB

global = Gp =
49.8 dB. Let us consider a vessel emitting sound at a source
level of SL = 120 dB [15] and located at a range R (in
metres) from the receiver. With a geometric spreading loss
of PL = 20 log10(R) and assuming no absorption losses,
the achievable detection range can be computed by solving
the SONAR equation SL − PL − NL + Gp = SE + DT ,
where SE=Signal Excess and DT=Detection Threshold
as per [16]. Noise level around 100 Hz is assumed to be
NL = 80 dB, thus mimicking a wind speed of 10 m/s as per
the approximation developed in [16]. Assuming an arbitrary
sum SE + DT = 9 (dB), the resulting range is given by
R = 10(120−80+49.8−9)/20 ≈ 11 km.

Example 2 illustrates how one could quantify the im-
provement in detection ranges resulting from changes in
global processing gain, PGdB

global, itself dependent upon
configuration parameters NF F T , NA, γmin and γmax as
per (13). Example 3 demonstrates the outcome of a simu-
lated case using the processing steps shown in Figure 1.

Example 3 As Example 1, this scenario uses the setup in
[8] and the processing steps of Figure 1. In this simulation,
the “signal” to be detected is a single tone centered at
300 Hz and of magnitude 1. The “noise” is uniformly
distributed and also of magnitude 1. The signal plus noise
makes up the signal p(t) entering the process chain of
Figure 1. The overall simulation lasts for 80 seconds with
the signal only becoming active after 20 seconds. Figure
3 displays three SNR curves computed based on a few
bins centered around 300 Hz. One curve is associated to
the signal passing through the FFT and windowing steps
(solid blue line), another curve measures the SNR after
the FFT averaging (dashed line), and the last curve relates
to the ratio of exponential filters (solid yellow line). As
per (4), computed SNR values based on simulated data
were obtained by taking the ratio of the output signal RMS
values around the 300 Hz frequency bin (thus mostly the
“signal”) over the output signal RMS values away from
that frequency (thus mostly “noise”). Note that the FFT
and averaging SNR values of Figure 3 are near the nominal
values of Example 1 and derived based on expressions (6)
and (8). The REF SNR is smaller than that found in Ex-
ample 1 because here A ≈ 0.1 thus bringing its contribution
closer to 0 dB, which is also predicted by equation (12).
Therefore, the analytic development of Section IV closely
matches simulation results and enables rapid assessments
of overall processing gain PGdB

global.

From all past examples, one could be misled thinking
that solely increasing NF F T to augment PGdB

global is a
logical approach. As shown next, augmenting NF F T too
much could be a mistake because it can have adverse
effects on fc,global and ts,global. Space limitations prevent
a full treatment of this topic here, but Example 4 shows
some of those potential detrimental effects.
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Fig. 3: SNR for major processing steps in Example 3.

Example 4 This example uses underwater acoustic data
collected in Gascoyne Inlet (NU) on August 21 2019. The
acoustic source consisted of a transducer transmitting three
tones at 681, 789, and 1157 Hz. Tones were projected
during five instances of varying lengths and then stopped.
Configuration parameters were: NA = 6, overlap = 50%,
γ1 = 0.1, γ2 = 0.001, and fs = 3, 000 sps. Other
experimental details can be found in [17]. Figure 4 shows
the output of the REF for the frequency bin nearest to
681 Hz for two distinct NF F T values (1024 and 4096).
The higher NF F T value attenuated noise more efficiently,
but the response became sluggish as observed by the slower
decay caused by an increased sampling period as predicted
by (2). This slow-decay in magnitude response could cause
masking issues if a weaker acoustic event follows one
that is louder. Such results suggest a need for optimizing
parameters based on all performance metrics of Table II.

Fig. 4: NF F T effect on ratio of exponential filters.

VI. Significance of Results
This self-contained publication provides a procedure for

assessing the global processing gain of arrangements of
exponential filters. For ratios of exponential filters, a novel
approximate output signal variance expression is derived.
Also, examples demonstrate the close match between
simulated cases and the predicted processing gain. The
proposed technique enables SONAR design refinements
without the need for simulations and provides a tool for
rapidly assessing the impact of configuration parameters.

VII. Conclusions
This publication reviews the main processing steps of

a detection scheme based on exponential filters. Three
main steady-state and transient performance metrics are
proposed but due to space limitations, only the expression
for the global processing gain, that is the gain resulting
from all processing steps, is presented here. Examples
illustrate: (a) the quality of the proposed technique, (b)
an approach exploiting these results for assessing detection
ranges, and (c) some conflicting performance outcomes for
key configuration parameters, thus indicating the need for
optimization.
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Abstract—The most important task of any radar is to detect
targets. From this perspective, they are machines for distinguish-
ing between two hypotheses: target absent and target present. The
test statistic—or detector function—used by the radar is clearly
of primary importance. In this paper, we explore the properties
of a detector function for quantum two-mode squeezing radar
and noise radar. This detector is derived from a second-order
approximation of the likelihood ratio, and is attractive because
it has a simple mathematical form. In order to analyze the
performance of this detector function, we derive an expression
for the receiver operating characteristic curve and verify it via
simulations.

Index Terms—Quantum radar, QTMS radar, noise radar,
detector function, likelihood ratio

I. INTRODUCTION

Modern radars have the ability to support a vast array of
functions: ranging, tracking, landscape imaging, and so on.
But the primary goal of radar has always been to detect targets.
Therefore, at a fundamental level, all radars are designed to
solve a decision problem: is a target present or absent? When
the question is put this way, we see that a radar is a physical
embodiment of the mathematical problem known as hypothesis
testing.

The hypothesis testing procedure involves calculating a test
statistic and comparing that to a threshold which is chosen to
achieve a given significance level. Or, to put it in terms better
suited to radar engineering, we calculate a detector function
and choose the threshold to achieve a desired probability of
false alarm. Indeed, the gold standard for evaluating radar
detection performance is the receiver operating characteristic
(ROC) curve, which gives the power of the hypothesis test as
a function of the significance level—that is, the probability of
detection as a function of the probability of false alarm.

When it comes to hypothesis testing, one of the most obvi-
ous choices of detector function is the likelihood ratio (LR).
Indeed, possible applications of the LR to radar detection have
been studied for a long time [1], [2]. However, these studies
are very general and often give rise to complicated detector
functions which are not always suitable for implementation in
radars.

In this paper, we focus on the application of the LR to noise
radar and its quantum-enhanced version, quantum two-mode
squeezing (QTMS) radar. This work is particularly timely
because of the great interest in quantum radar that was aroused
recently by the experiments performed by the Wilson group at
the University of Waterloo’s Institute for Quantum Computing
[3], [4], as well as a follow-up experiment performed by the
Fink group at the Institute of Science and Technology Austria
[5] which confirmed the leading results of the Wilson group.
This interest stems from the fact that QTMS radar is the
first type of quantum radar for which laboratory experiments
at microwave frequencies have been performed. It is now
understood that, from many points of view, QTMS radar is
an enhanced version of standard noise radars as described in,
e.g., [6]–[10]. QTMS radars, therefore, share many of the same
advantages as noise radars, such as their low probability of
intercept capabilities and their suitability to spectrum sharing
[11]. In particular, the form of the LR is largely the same
between the two types of radars, and the results in this paper
hold equally for noise radars and QTMS radars.

The main contribution of this paper is an explicit formula
for a simplified detector function for QTMS radar and noise
radar that is based on a second-order approximation of the
LR. Such a simplification is desirable because the exact LR
is very complicated. We then derive a formula for the ROC
curve of the approximate LR detector. Finally, we make use of
simulations to confirm the ROC curve formula and elucidate
certain properties of the approximate LR detector.

II. TARGET DETECTION USING QTMS/NOISE RADAR

Every noise radar or QTMS radar has three electromagnetic
signals associated with it: the transmitted signal, a reference
signal retained within the radar, and the received signal. The
reference signal is supposed to be highly correlated with the
transmitted signal so that any echo returning from a target is
also correlated with the reference signal; this correlation is
used to determine whether a target is present or not. Each
physical signal can be mathematically described by two real-
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valued time series, one representing the in-phase voltages of
the signal and the other representing its quadrature voltages.

In QTMS radars and in many noise radars, the two volt-
age time series of the transmitted and reference signals are
Gaussian white noise processes. In this paper, we will assume
that all other noise sources inside and outside the radar,
such as system noise or atmospheric noise, are modeled as
additive white Gaussian noise (AWGN). It follows that the
received signal will also be a Gaussian white noise process.
We will denote the in-phase and quadrature voltages of the
received signal by 𝐼1 and 𝑄1, respectively, and the in-phase
and quadrature voltages of the reference signal by 𝐼2 and 𝑄2.
(For the purposes of this paper, we do not need to introduce
notation for the transmitted signal.) In accordance with the
above discussion, each of these variables is a Gaussian white
noise process. The four voltage signals are fully characterized
by stating that they all have zero mean and by giving the 4×4
covariance matrix E[𝑥𝑥𝑇 ], where 𝑥 = [𝐼1, 𝑄1, 𝐼2, 𝑄2]𝑇 . In [12],
we showed that the covariance matrix E[𝑥𝑥𝑇 ] for noise radar
signals can be written in block matrix form as

𝚺 =

[
𝜎2

1 12 𝜌𝜎1𝜎2R(𝜙)
𝜌𝜎1𝜎2R(𝜙)𝑇 𝜎2

2 12

]
(1)

where 𝜎2
1 and 𝜎2

2 are the received and reference signal powers,
respectively, while 𝜙 is the phase shift between the signals, 12
is the 2 × 2 identity matrix, and R(𝜙) is the rotation matrix

R(𝜙) =
[

cos 𝜙 sin 𝜙

− sin 𝜙 cos 𝜙

]
. (2)

The covariance matrix for QTMS radar signals has the same
block matrix form, but with a reflection matrix instead of a
rotation matrix:

R′(𝜙) =
[
cos 𝜙 sin 𝜙

sin 𝜙 − cos 𝜙

]
. (3)

We may assume without loss of generality that 𝜌 ≥ 0, because
its sign can always be absorbed into R(𝜙) or R′(𝜙).

For the purposes of target detection, it is unimportant
whether R(𝜙) or R′(𝜙) is used. To maintain conformity with
our previous work on QTMS radar, we will use R′(𝜙).

The correlation coefficient 𝜌 characterizes the magnitude
of the off-diagonal elements of (1) and is intimately related
to the target detection problem. When the target is present,
𝜌 > 0 because the received signal will be correlated (possibly
quite weakly) with the transmitted signal, which is itself highly
correlated with the reference signal. On the other hand, when
the target is absent, 𝜌 = 0 because the received signal is purely
background noise. Distinguishing between the presence or
absence of a target, therefore, amounts to testing the following
hypotheses:

𝐻0 : 𝜌 = 0 Target absent
𝐻1 : 𝜌 > 0 Target present

(4)

The source of the “quantum advantage” of QTMS radars over
standard noise radars has been discussed in previous papers
[11]–[13], but in the context of (4) we may state the case as
follows: when a target is present, QTMS radars can achieve

higher values of 𝜌. Naturally, when there is no target, 𝜌 = 0
for both QTMS radars and noise radars. Therefore, QTMS
radars achieve a greater contrast between the two hypotheses,
making them easier to distinguish.

In order to perform this hypothesis test, we must decide
on a test statistic—or detector function—that allows us to
distinguish between the two cases. Such a detector would be
a generalization of matched filtering to the case where there
are more than two time series. Previous work has focused
on performing matched filtering between the complex signals
𝐼1 + 𝑗𝑄1 and 𝐼2 + 𝑗𝑄2 [6], or on estimating 𝜌 directly [14]. In
this work, we use the likelihood ratio test to derive a detector
function.

There are three other parameters in (1) to deal with: 𝜎1,
𝜎2, and 𝜙. None of these play a direct role in distinguishing
whether or not there is a target. To keep our problem simple,
we assume 𝜎1 = 𝜎2 = 1 and 𝜙 = 0, and show via simulations
that our results hold even when the assumption 𝜎1 = 𝜎2 = 1
is violated. Our assumption that 𝜙 = 0 is in line with previous
work [4], [5], [13], though in future work we will generalize
to the case of unknown 𝜙.

Under these assumptions, the mathematical problem that we
need to solve may be stated as follows: let 𝑁 independent
samples be drawn from a multivariate normal distribution with
zero mean and covariance matrix

𝚺(𝜌) =


1 0 𝜌 0
0 1 0 −𝜌
𝜌 0 1 0
0 −𝜌 0 1

 . (5)

Given these samples, use a likelihood ratio test to decide
whether 𝜌 = 0 or 𝜌 > 0. (Note that 𝑁 is the number of
integrated samples and is proportional to the integration time.)
This matrix is for QTMS radars, but our results apply to
standard noise radars as well if the negative signs are changed
into positive signs.

III. AN APPROXIMATE LR DETECTOR

In this section, we derive an explicit formula for the LR
detector function under the assumption that 𝜌 ≪ 1. This
assumption simplifies the problem greatly, and it also has an
important physical interpretation: 𝜌 is small when the target is
far away or when the radar cross section is small [15]. The case
of large 𝜌 is much less interesting because the target is then
very easy to see, so the probability of detection will always be
very high and there is no need to use a complicated detector.
For this reason, we will focus on the case where 𝜌 ≪ 1.

For 𝑁 samples drawn independently from a zero-mean
multivariate Gaussian distribution with covariance matrix (5),
the log-likelihood can be shown to be

ℓ(𝜌) = −𝑁

2

[
𝑃̄tot − 2𝐷̄1𝜌

1 − 𝜌2 + 2 ln(1 − 𝜌2) + 2 ln(2𝜋)
]

(6)

where

𝑃tot ≡ 𝐼2
1 +𝑄2

1 + 𝐼2
2 +𝑄2

2 (7)
𝐷1 ≡ 𝐼1𝐼2 −𝑄1𝑄2 (8)

61



and a line over any expression indicates the sample mean. For
example,

𝐼1𝐼2 =
1
𝑁

𝑁∑︁
𝑛=1

𝑖
(𝑛)
1 𝑖

(𝑛)
2 (9)

where 𝑖
(𝑛)
1 and 𝑖

(𝑛)
2 denote the 𝑛th samples of 𝐼1 and 𝐼2,

respectively.
The reason for naming the sum in (7) as 𝑃tot is because it

corresponds to the total power in the in-phase and quadrature
components of both the received signal and the reference
signal. The quantity 𝐷1 appeared in [4] under the name
“Detector 1” and was studied in a previous publication [13].
(Interestingly, the “digital receiver” in [5] can be shown to be
an implementation of 𝐷1.)

Under the small-𝜌 assumption, we may expand (6) in
powers of 𝜌, keeping terms up to second order:

ℓ(𝜌) ≈ −𝑁

2
[
𝑃̄tot + 2 ln(2𝜋) − 2𝐷̄1𝜌 + (𝑃̄tot − 2)𝜌2] . (10)

The LR detector is defined as

𝐷̂LR ≡ −2[ℓ(0) − ℓ( 𝜌̂)]
≈ 𝑁𝜌̂[2𝐷̄1 − (𝑃̄tot − 2) 𝜌̂] (11)

where 𝜌̂ is the maximum likelihood estimate of 𝜌. The factor
of −2 allows us to exploit Wilks’ theorem later, when we
derive an expression for the ROC curve.

It is a simple matter to maximize (10), leading to the
following approximation of the maximum likelihood estimate
𝜌̂:

𝜌̂ ≈ 𝐷̄1

𝑃̄tot − 2
. (12)

By substituting this into (11), we obtain the desired LR
detector function:

𝐷̂LR ≈
𝑁𝐷̄2

1
𝑃̄tot − 2

. (13)

This equation is an approximation of the exact LR detector,
correct up to second order in 𝜌.

IV. ROC CURVE FOR THE APPROXIMATE LR DETECTOR

In this section, we give an expression for the ROC curve of
the approximate LR detector. This expression is valid when
𝜌 is small and 𝑁 is large. Our argument is a heuristic one,
but we will show via simulations that our expression is a very
good approximation.

Our approach is to determine the distribution of the detector
function (13) under the two hypotheses (4). Once this is
known, it is a simple matter to write down the ROC curve
in terms of their cumulative density functions.

Under the null hypothesis 𝜌 = 0, we may immediately
state that the distribution of the LR detector in the limit
𝑁 → ∞ is 𝐷̂LR ∼ 𝜒2

1 , a chi-square distribution with one
degree of freedom. This is a consequence of Wilks’ theorem
[16], applied to the case that the difference in the number of
free parameters between 𝐻1 and 𝐻0 is 1.

We will now argue that, when 𝜌 > 0, the approximate
LR detector is approximately a noncentral chi-square random

variable. First, note that in the limit 𝑁 → ∞, the Central
Limit Theorem can be invoked to show that 𝐷̄1 is normally
distributed with mean 2𝜌 and variance 2(1 + 𝜌2)/𝑁 [13].
Since the approximate LR detector was derived under the
assumption that 𝜌 ≪ 1, we may simplify this and state that
𝐷̄1 ∼ N(2𝜌, 2/𝑁). To simplify the analysis, we introduce the
transformed random variable

𝑋 ≡
√︂

𝑁

2
𝐷̄1. (14)

It follows from the properties of the normal distribution that
𝑋 ∼ N(𝜌

√
2𝑁, 1).

We will now show that 𝑃̄tot ∼ N(4, 8/𝑁). From (7) and
(5), we immediately see that E[𝑃tot] = 4. Because 𝑃̄tot is the
sample mean of 𝑁 independent copies of 𝑃tot, E[𝑃̄tot] = 4.
The variance of 𝑃tot is more difficult to calculate, but using
equation (13) of [17] (or a computer algebra system such as
Mathematica), it can be shown that var[𝑃tot] = 8(1 + 𝜌2).
Because 𝜌 ≪ 1, we may drop the 𝜌2 term. We now know the
mean and variance of 𝑃tot, so we may once again invoke the
Central Limit Theorem to state that 𝑃̄tot ∼ N(4, 8/𝑁) when
𝑁 is large.

Now, let us define

𝑌 ≡ 𝑃̄tot

2
− 1. (15)

It is evident that 𝑌 ∼ N(1, 2/𝑁) and that

𝐷̂LR ≈
𝑁𝐷̄2

1
𝑃̄tot − 2

=
𝑋2

𝑌
. (16)

In the limit 𝑁 → ∞, the distribution of 𝑌 narrows and becomes
concentrated near 1. It follows that, with very high probability,
𝐷̂LR ≈ 𝑋2. But 𝑋2 is the square of a normally distributed
random variable with variance 1, so we may identify it as
a noncentral chi-square random variable with one degree of
freedom and noncentrality parameter (𝜌

√
2𝑁)2. We have thus

arrived at the desired result: when 𝑁 is large and 𝜌 is small,

𝐷̂LR ∼ 𝜒2
1 (2𝑁𝜌2). (17)

As expected, this reduces to the central chi-square distribution
predicted by Wilks’ theorem when 𝜌 = 0.

It is now a simple matter to calculate the ROC curve for
the approximate LR detector. Since the cumulative density
function for the 𝜒2

1 distribution is the regularized gamma
function 𝑃(1/2, 𝑥/2), the probability of false alarm for a given
threshold 𝑇 is given by the corresponding survival function
𝑆(𝑇), where

𝑝FA = 𝑆(𝑇) = 1 − 𝑃

(
1
2
,
𝑇

2

)
. (18)

Similarly, the survival function for the 𝜒2
1 (2𝑁𝜌2) distribution

is given by the Marcum Q-function 𝑄1/2 (𝜌
√

2𝑁,
√
𝑥). There-

fore, the ROC curve is given by

𝑝D (𝑝FA) = 𝑄 1
2

[
𝜌
√

2𝑁,
√︁
𝑆−1 (𝑝FA)

]
. (19)
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Fig. 1. Comparison of simulated ROC curves for the approximate LR detector
with theoretical ROC curves calculated from (19) for 𝑁 = 10 000 and varying
values of 𝜌.

V. SIMULATIONS

In this section, we present the results of simulating radar
detection data and calculating the approximate LR detector
from this data. Naively, this could be done by drawing
𝑁 random vectors from a multivariate normal distribution.
However, an inspection of (6), (7), and (8) shows that the
LR detector depends on the detection data only through the
sample covariance matrix

S̄ =
1
𝑁

𝑁∑︁
𝑛=1

𝑥𝑛𝑥
𝑇
𝑛 (20)

where 𝑥𝑛 is the 𝑛th sample vector. Therefore, to save compu-
tational time, we use the approach outlined in [14]. Instead of
drawing random vectors, we draw a single random matrix from
the Wishart distribution 𝑊4 (𝚺, 𝑁) and normalize the result by
𝑁 .

Our first simulation results are shown in Fig. 1. In this
figure, we confirm the accuracy of the ROC curve formula (19)
by comparing them to ROC curves obtained by simulation.
It is clear that, although several approximations were made
in deriving (19), the formula matches the simulation results
extremely well.

We stated in Sec. II that our approximate LR detector
works even when the assumption 𝜎1 = 𝜎2 = 1 is violated.
This is shown in Fig. 2, where we simulated ROC curves
for the approximate LR detector when (𝜎1, 𝜎2) = (0.1, 10)
and (0.01, 10 000). These simulated ROC curves match up
extremely well with (19). Therefore, we may conclude that the
approximate LR detector works even when the assumptions on
𝜎1 and 𝜎2 are strongly violated.

VI. CONCLUSION

In this paper, we have derived a detector function for QTMS
and noise radar based on a second-order approximation of the
likelihood ratio test statistic. This detector function is attractive
because it has a simple mathematical form and does not require
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Fig. 2. Comparison of simulated and theoretical ROC curves for the approxi-
mate LR detector when (𝜎1, 𝜎2) equals (a) (0.1, 10) and (b) (0.01, 10 000) .
In all cases, 𝑁 = 10 000.

large computational resources. We were able to find an explicit
expression for the ROC curve in the case where the number
of integrated samples are large. This expression was validated
using simulations of radar detection data.

In deriving our approximate LR detector, we assumed 𝜎1 =

𝜎2 = 1 and 𝜙 = 0. We showed via simulations that the detector
is still viable when the assumption 𝜎1 = 𝜎2 = 1 is violated. In
future work, we will generalize our LR detector to the case
where 𝜙 is unknown.
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Abstract—We investigate the detection of broadband weak
transient signals by monitoring a projection of the measurement
data onto the noise-only subspace derived from the stationary
sources. This projection utilises a broadband subspace decompo-
sition of the data’s space-time covariance matrix. The energy in
this projected ‘syndrome’ vector is more discriminative towards
the presence or absence of a transient signal than the original
data, and can be enhanced by temporal averaging. We investigate
the statistics, and indicate in simulations how discrimination can
be traded off with the time to reach a decision, as well as with the
sample size over which the space-time covariance is estimated.

I. INTRODUCTION

In a number of problems, it is paramount to detect the

emergence of a signal whose power may be significantly lower

than other sources that are already active in the environment.

This is the case e.g. in a cognitive radio scenario [1], where

secondary users may be utilising a specific frequency band,

but where the arrival of a distant and therefore quiet primary

user must be detected in order to instigate the secondary users

to vacate this part of the spectrum.

The detection of transient signals is generally based on

energy criteria, and can involve a fixed transform such as

a wavelet or short-time Fourier transform-type operation to

reveal particular patterns of the transient source [2]–[4].

Particularly when multiple measurements are available, data-

dependent transforms exploiting the eigenvalue decomposition

(EVD) of the covariance matrix of the data can generally attain

an optimum compaction of energy into a lower-dimensional

subspace in the sense of the Karhunen-Loeve transform [5];

therefore subspace-based methods have emerged that exploit

particular partitioning of the space spanned by eigenvectors of

the EVD [6]–[10]. While this work has peaked two decades

earlier, developments of energy-based subspace detectors are

still afoot [11].

The above methods [2]–[4], [6]–[11] operate on narrowband

data and calculate an instantaneous covariance matrix that will

only capture phase shifts between elements of the data vector.

To address the detection of broadband transient signals, it is

possible to operate with tapped delay lines or in frequency bins

created by a discrete Fourier transform (DFT), where problems

This work was supported by Dstl via the DASA Invisible Shield programme
and by the Engineering and Physical Sciences Research Council (EPSRC)
Grant number EP/S000631/1 and the MOD University Defence Research
Collaboration in Signal Processing.

can be treated as narrowband ones. However, when addressing

the problems in different bins independently, e.g. for the

purpose of parallelisation, generally the coherence between

bins is lost, leading to generally suboptimal solutions [12].

This paper investigates the detection of broadband weak

transient sources via broadband subspace-based methods [13],

which are afforded via a space-time covariance matrix that

takes both spatial and temporal correlations in the data into

account. Similar to narrowband subspace methods, a diago-

nalisation of this space-time covariance is required. For the

broadband problem, we are looking towards polynomial EVD

methods that can decouple the space-time covariance for every

lag value [14] — such decompositions have been shown to

exist in most case [15], [16] and a number of algorithms

have been developed to solve this diagonalisation often with

guaranteed convergence [14], [17]–[21].

In the following, we review the broadband signal scenario

and the description of the data’s second order statistics by

a space-time covariance in Sec. II. The broadband subspace

decomposition based on the space-time covariance is outlined

in Sec. III, leading to the proposed broadband subspace

detector in Sec. IV, including an investigation of the subspace

energy. The temporal correlation of the latter prohibits the

direct description of the subspace energy, but a decorrelation

via a decimated processor allows us to exploit some known

statistical results for generalised χ2 distributions [22]–[26],

and to subsequently define metrics such as the discrimination

and decision time in Sec. V. Following some numerical

simulations, Sec. VI draws conclusions.

II. WIDEBAND SIGNAL MODEL

A. Source Model

We assume that M sensors acquire a measurement vector

x[n] ∈ C
M over discrete time n ∈ Z, consisting of time

series x[n] = [x1[n], . . . , xM [n]]
T ∈ C

M . This sensor array

is illuminated by L < M sources sℓ[n] ℓ = 1, . . . , L via

transfer paths with impulse responses am,ℓ[n], m = 1, . . . ,M ,

ℓ = 1, . . . , L, whereby am,ℓ[n] describes the impulse response

of the path from the ℓth source to the mth sensor. This

path could be a simple delay in the case of a free-space

propagation environment, but can equally describe dispersive,

i.e. multipath, channels. For the contribution of the ℓth source,

this scenario is illustrated in Fig. 1; the source signal sℓ[n],
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uℓ[n]
sℓ[n]

x1[n]

x2[n]

xM [n]

a1,ℓ[n]

a2,ℓ[n]

aM,ℓ[n]

hℓ[n]

Fig. 1. Source model for a signal sℓ[n], ℓ = 1, . . . , L, contributing to the
sensor data. The source is characterised by an innovation filter hℓ[n] excited
by zero-mean unit-variance uncorrelated Gaussian noise uℓ[n] that generates
its desired PSD [27], and a broadband steering vector consisting of transfer
functions.

ℓ = 1, . . . , L, is generated by an innovation filter hℓ[n] ex-

cited by zero-mean unit-variance uncorrelated Gaussian noise

uℓ[n] [27].

If we place the M transfer paths for the ℓth source into a

vector

aℓ[n] =







a1,ℓ[n]
...

am,ℓ[n]






, (1)

then the data can be modelled as

x[n] =

L
∑

ℓ=1

aℓ[n] ∗ sℓ[n] + v[n] , (2)

with v[n] being additive white zero mean uncorrelated Gaus-

sian noise, and ∗ denoting the convolution operator. In par-

ticular, we assume that all source signals sℓ[n] as well as

the noise in v[n] are mutually independent. This scenario is

depicted in Fig. 1 for the case of a single source in a noise-free

environment. For L sources, the data vector x[n] is obtained

by superposition of L models as in Fig. 1.

B. Space-Time Covariance Matrix

To define problems based on cost functions such as the

mean square error, we require access to the second order

statistics of the data in x[n]. This is captured by the space-time

covariance matrix R[τ ] = E
{

x[n]xH[n− τ ]
}

, where E{·}
is the expectation operator, {·}H a Hermitian transposition,

and τ ∈ Z a lag parameter. This matrix contains auto-

and cross-correlation sequences, and satisfies the symmetry

R[τ ] = RH[−τ ]. The z-transform R(z) =
∑

τ R[τ ]z−τ ,

or in short R(z) • ◦ R[τ ], is known as the cross-spectral

density (CSD) matrix and satisfies the parahermitian property,

s.t.. RP(z) = RH[1/z∗] = R(z), whereby R(z) is identical to

its parahermitian transpose RP(z), with {·}P the parahermitian

transpose operator [28].

From (2) and Hℓ(z) • ◦ hℓ[n], and with γℓ(z) =
Hℓ(z)H

P
ℓ(z), we can also express the CSD matrix R(z) as

the expansion

R(z) =

L
∑

ℓ=1

aℓ(z)a
P
ℓ(z)γℓ(z) + σ2

vIM . (3)

In (3), a vector aℓ(z) is referred to as the broadband steering

vector of the ℓth source. A steering vector is used in the

beamforming terminology to describe the signature of the

source arriving from a specific direction. In the simplest case,

aℓ(z) can be a vector of fractional delays [29], [30], but can

also be a vector of general, rational transfer functions.

III. BROADBAND SUBSPACE DECOMPOSITION

A. Parahermitian Matrix Eigenvalue Decomposition

If R(z) arises from a source model such as in Fig. 1 with

stable and causal filters hℓ[n], and transfer paths am,ℓ[n], ℓ =
1, . . . , L, m = 1, . . . ,M , then R(z) is analytic. As a result,

the parahermitian matrix R(z) admits a parahermitian matrix

EVD (PhEVD) [15]

R(z) = Q(z)Λ(z)QP(z) (4)

=

M
∑

m=1

qm(z)qP
m(z)λm(z) , (5)

provided that the data vector x[n] is unmultiplexed [16]. In (4),

Q(z) contains in its columns the eigenvectors qm(z), m =
1, . . . ,M of (5). It is a paraunitary matrix such that

Q(z)QP(z) = QP(z)Q(z) = IM , (6)

representing a lossless filter bank [28]. The matrix Λ(z) is

diagonal and parahermitian, containing the eigenvalues

Λ(z) = diag{λ1(z), λ2(z), · · · , λM (z)} . (7)

Both Q(z) and Λ(z) are potentially transcendental but ana-

lytic functions, i.e. their time domain equivalents converge at

least exponentially and can be well-approximated by Laurent

polynomials.

B. Uniqueness and Ambiguity

Assuming that the M eigenvalues of R(z) are distinct

and only intersect in a finite number of points, then there is

only one solution for the functions λm(z), m = 1, . . . ,M
apart from a permutation. The latter can be addressed by

ordering the eigenvalues according to their power, similar how

in an ordered EVD eigenvalues are arranged in descending

order [31].

For distinct eigenvalues, the associated eigenvectors each

exist in uniquely defined 1-d subspaces, but can be multiplied

by arbitrary allpass functions. Therefore, w.r.t. the decompo-

sition in (4), the factor Λ(z) is unique, but there is an am-

biguity w.r.t. the paraunitary matrix holding the eigenvectors

in its columns: if Q(z) contains valid eigenvectors, then so

does Q(z)Φ(z), where Φ(z) is a diagonal matrix containing

arbitrary allpass filters.

C. Broadband Subspace Partitioning

The PhEVD in (4) admits a subspace decomposition,

R(z) = [U(z) U⊥(z)]

[

Λs(z) 0

0 Λs̄(z)

] [

UP(z)

UP
⊥(z)

]

, (8)
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where the eigenvalues are grouped into two submatrices

Λs(z) : C → C
R×R and Λs̄(z) : C → C

(M−R)×(M−R).

The eigenvectors associated with the eigenvalues in Λs(z)
are the columns of the matrix U(z) : C → C

M×(R, which

therefore span the subspace within which any components

related to these eigenvalues reside. This subspace is orthogonal

to its complement, spanned by the columns of U⊥(z) : C →
C

M×(M−R).

A common partitioning of Q(z) in (5) in both the narrow-

band [31] or the broadband cases [13] is a subspace decompo-

sition that defines signal-plus-noise and noise-only subspaces,

where Λs(z) contains the R signal-related, principal eigen-

values, and U(z) all associated eigenvector components. In

contrast, the eigenvalues Λs̄(z) define the noise floor, and the

columns of U⊥(z) span the associated noise-only subspace.

IV. COMPLEMENTARY BROADBAND MATCHED SUBSPACE

DETECTOR

A. Approach

We assume that a number of L sources have been stationary

for a period of time, over which a space-time covariance matrix

R̂[τ ] has been estimated, using e.g. the procedures outlined

in [32], [33] for the estimation and the optimum support

length of this estimate. Using an approximation of the PhEVD

in (4) by algorithms of the second order sequential best

rotation (SBR2) [14], [17] or sequential matrix diagonalisation

(SMD) [18], [34] families to factorise R̂(z) • ◦ R[τ ], we

establish the broadband signal-plus-noise subspace spanned

by the columns of U(z) and its complement, the noise-only

subspace, spanned by the columns of U⊥(z), as defined in

(8) with R = L.

If a new source enters the scene, then some of its compo-

nents may protrude into the noise-only subspace, where a step

change in energy can be detected more easily than directly

from the measurement x[n], since the energy contribution

of the stationary sources will be removed. We therefore

calculate a type of syndrome vector y[n] ∈ C
M−L based on

U⊥[n] ◦ • U⊥(z),

y[n] =
∑

ν

UH
⊥ [−ν]x[n− ν] . (9)

This is a type of projection onto a reduced (M−L)-dimensional

space, and yields the same energy in E
{

‖y[n]‖2
}

as a pro-

jection using the projection operator P (z) = U⊥(z)U
P
⊥(z),

which can be shown via a polynomial singular value decompo-

sition of UP
⊥(z) [14]. Therefore, the energy of the syndrome

y[n] can be used in a hypothesis test to detect the absence or

presence of a transient signal.

B. Signal Statistics

In the absence of a transient signal, let the CSD matrix of

x[n] be R(z) as in (3). Therefore the CSD of the syndrome

vector is

Ry(z) = σ2
vIM−L . (10)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

Fig. 2. Example of measured and theoretical generalised χ
2 distributions of

the energy ‖y[n]‖22 in the absence and presence of a transient signal.

If x′[n] is a modified data vector that in addition to the

stationary sources captured in x[n] includes a transient signal

with PSD γ′(z) and steering vector a′(z), then a modified

CSD matrix R′(z) arises

R′(z) = R(z) + a′(z)γ′(z)a′P(z) , (11)

and the modified syndrome has the CSD matrix

R′
y(z) = U⊥(z)a

′(z)γ′(z)a′P(z)UP
⊥(z) + σ2

vIM−L . (12)

The first term on the r.h.s. of (12) creates the offset in power

that allows us to potentially detect the presence of a transient

signal.

To examine the statistics of ‖y[n]‖22, we assume that the

noise components of x[n] are zero-mean and identically dis-

tributed Gaussian random variables. However, in the presence

of transient components, or subspace leakage of the stationary

sources, the elements of the syndrome vector will have Gaus-

sian distributions with different variances. Therefore, ‖y[n]‖22
will adhere to a generalised χ2 distribution [24], [25]. For

an example with M = 6, L = 3, and broadband steering

vectors of order 10 drawn from uncorrelated complex Gaussian

distributions, Fig. 2 shows the measured distributions in the

presence and absence of a transient component in comparison

to the theoretical values of a generalised χ2 distribution based

on the implementation in [26].

The discrimination between the cases of a transient source

being present or absent can be increased through temporal

averaging of energy terms ‖y[n]‖22. However, the generalised

χ2 distribution assumes a summation over squared Gaussian

distributed, uncorrelated variables. From (12), it is clear that

the terms contributed by the transient source will be correlated.

Therefore, direct temporal averaging leads to a distribution that

will no longer be covered by a generalised χ2 distribution.

C. Decimated Subspace Detector

In order to deal with large data volumes acquired at a

high sampling rate, and to concurrently temporally decorrelate

successive syndrome vectors in case of temporal averaging, it

is possible to sum over decimated syndrome vectors, such that

ξ
(K)
n,D =

1

K

K
∑

µ=0

‖y[n−Dµ]‖22 (13)
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Fig. 3. Flow graph of decimated averaging of syndrome energy.
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Fig. 4. Example of measured and theoretical generalised χ
2 distributions of

the energy ‖y[n]‖22 in the absence and presence of a transient signal.

can be used as a criterion for a hypothesis test. The processor

is outlined by the flow graph in Fig. 3, where the syndrome

energy is decimated by a factor D prior to averaging by a

sliding window of length K. It is possible to change the order

in which the decimator and the processor matrix U⊥(z) appear

in Fig. 3 by means of noble identities [28], thus achieving

a computationally efficient polyphase implementation of the

arrangement in Fig. 3.

The decorrelation, which may be achieved through a deci-

mation by D of the polynomial order of the processor matrix

U⊥(z), ensures that ξ
(K)
n,D follows a generalised χ2 distribution,

which permits theoretical predictions for a hypothesis test on

ξ
(K)
n,D. As an example, to highlight both the fit of the distribu-

tion but also the increase in discrimination by averaging over

a number of syndrome energies, Fig. 4 shows the scenario of

Fig. 2 for the case of averaging over K = 10 with a decimation

by D = 10.

V. SIMULATION AND RESULTS

A. Performance Metrics

We define two metrics for the detection of a transient

signal. The first is the discrimination of the variable ξ
(K)
n,D

in (13), which can be assessed independently of a specific

threshold e.g. by measuring the area under a receiver operating

characteristic (ROC) derived from the type of distribution

plots in Figs. 2 and 4 [35]. If A is the area under the

ROC curve, then its extreme values are A = 1
2 if the two

distributions coincide, and A = 1 in case the distributions

completely separate. Therefore, we have 1
2 ≤ A ≤ 1 and

measure the discrimination D = 2(1 − A), which tends to

zero as the distributions increasingly separate. Summing over

K terms, and potentially including a decimation by D takes

time to evaluate; therefore, a second metric is the decision

time T = (K−1)D+1, which is required to reach the above

discrimination D. We therefore assess discrimination D(T ) as

a function of the decision time T below.

TABLE I
POWER OF CONTRIBUTIONS FOR REALISTIC CHANNEL SCENARIO.

signal power

source 1 0.0000 dB
source 2 -4.3494 dB
source 3 -13.2865 dB
noise -16.2865 dB

B. Test Scenario

Based on multipath propagation responses determine by

a radio planning tool in the ISM band with a bandwidth

of 20MHz, we have generated transfer functions of order

40 for the case of three sources and M = 6 receivers in

a dense urban environment. The transfer functions are such

that the total power at the receivers for the various sources

is as given in Table I. Spatially and temporally uncorrelated

additive Gaussian noise corrupts each receiver at 3dB below

the weakest source.

We will work with two stationary sources, with the remain-

ing third source — either the medium-powered source 2 or

the weakest source 3 — contributing a transient signal. The

CSD matrix is either estimated from a finite amount of N
samples [32], [33], or calculated based on the ground truth

steering vectors and power spectral densities of the stationary

sources, i.e. for N −→ ∞.

C. Discrimination vs Decision Time

Fig. 5 shows two groups of curves. For a first group, sources

1 and 3 from Tab. I make up the stationary signals, and source

2 — of medium power — mimics the transient signal. In

this case, the distributions with the transitory source 2 being

absent or present separate well, and drop to close to machine

accuracy for a only a few number of summation terms K.

The estimation of the CSD matrix leads to some subspace

leakage [36], but with almost no performance degradation for

sample sizes of N = 10000 and N = 1000, where working

with an estimate is almost as good as operating with the ground

truth CSD matrix. Still very good discrimination is achieved

even when estimating R̂(z) over a very small sample size

of N = 100. The discrimination time T here refers to a

sampling rate of 20MHz, with a value of 5µs being equivalent

to averaging over K = 10 samples at a decimation ratio

D = 10.

A second group of curves in Fig. 5 refers to sources 1 and

2 forming the group of stationary signals, and the weakest

source 3 is taken as the transient signal. In this case, a larger

value K for temporal averaging is required to achieve better

discrimination, i.e. small values of D. The subspace leakage

experienced in the estimation process is now more pronounced

for low sample sizes N , such that the approach still works for

larger samples sizes but breaks down for N = 100, where

the low power of the source and the comparatively high noise

level lead to no discernible differences in the distributions.
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Fig. 5. Plots showing discrimination D vs decision time T for detecting
sources of different strength, and based on estimates of the space-time
covariance relying on various sample sizes N .

VI. CONCLUSION

In this paper we have proposed a broadband subspace-

based processor for the detection of weak transient signals.

By identifying the subspace of stationary sources, we monitor

a ’syndrome vector’ that gives access to the energy in the

noise-only subspace, and can be indicative of emerging source

signals. The discrimination of the processor can be enhanced

by temporal averaging, whereby a decimation stage reduces

the computation complexity as well the correlation in the data,

permitting to use generalised χ2 statistics in assessing the

distribution of the data. A simulation has demonstrated that

good discrimination is possible, whereby weaker sources can

be reliably detected as long as the space-time covariance is

estimated with sufficient accuracy, i.e. over a sufficiently long

time window.

The evaluation of the discrimination is threshold-

independent, and future work will focus on setting a suitable

detection threshold for a hypothesis test on the absence or

presence of a transient signal.
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Abstract—Rate-Splitting Multiple Access (RSMA) is a
robust multiple access scheme for downlink multi-antenna
wireless networks. In this work, we investigate a novel
application of RSMA for joint communications and jamming
with a Multi-Carrier (MC) waveform in Multiple Input
Single Output (MISO) Broadcast Channel (BC). Our aim
is to simultaneously communicate with Information Users
(IU) and jam Adversarial Users (AU) to disrupt their
communications in a setting where all users perform broad-
band communications by MC waveforms in their respective
networks. We consider the practical setting of imperfect CSI
at transmitter (CSIT) for the IUs and statistical CSIT for
AUs. The optimal information and jamming precoders are
designed to maximize the sum-rate under jamming power
constraints on the pilot subcarriers of AUs, a jamming
method considered to be among the most destructive methods
for MC waveforms under the considered system model. We
compare the sum-rate performance of RSMA and Space
Division Multiple Access (SDMA) schemes by numerical
results to demonstrate that RSMA achieves a significant sum-
rate gain compared to SDMA.

I. INTRODUCTION

Rate-Splitting Multiple Access (RSMA) is a multiple
access scheme based on the concept of Rate-Splitting (RS)
and linear precoding for multi-antenna multi-user commu-
nications. RSMA splits user messages into common and
private parts, and encodes the common parts into one or
several common streams while encoding the private parts
into separate streams. The streams are precoded using the
available (perfect or imperfect) Channel State Information
at the Transmitter (CSIT), superposed and transmitted
via the Multi-Input Multi-Output (MIMO) or Multi-Input
Single-Output (MISO) channel [1]. All the receivers then
decode the common stream(s), perform Successive Inter-
ference Cancellation (SIC) and then decode their respec-
tive private streams. Each receiver reconstructs its original
message from the part of its message embedded in the
common stream(s) and its intended private stream.

RSMA manages multi-user interference by allowing the
interference to be partially decoded and partially treated
as noise. RSMA has been shown to embrace and outper-
form existing multiple access schemes, i.e., Space Divi-
sion Multiple Access (SDMA), Non-Orthogonal Multiple

This work was supported by the Engineering and Physical Sciences
Research Council of the UK (EPSRC) Grant number EP/S026657/1,
and the UK MOD University Defence Research Collaboration (UDRC)
in Signal Processing.

Access (NOMA), Orthogonal Multiple Access (OMA)
and multicasting. The sum-rate performance of RSMA
has been demonstrated to be robust and to surpass the
performance of SDMA and NOMA under perfect and
imperfect CSIT in numerous works [1]–[5].

With increasing number of systems and applications, the
Radio-Frequency (RF) spectrum has become a congested
and contested environment. Both commercial and military
systems require broadband communications to meet the
data requirements for the advancing applications. In such
a congested and contested environment, efficient use and
sharing of spectrum is of high importance, especially for
military communications with strict reliability and robust-
ness requirements. An equally critical target in military
communications is denying the Adversarial Users (AUs)
of service. In this work, we are interested in jamming
methods targeting Multi-Carrier (MC) waveforms used for
broadband communications. Among the jamming methods
for MC waveforms, pilot subcarrier jamming is accepted
to be one of the most destructive ones which consist of
Artificial Noise (AN) (i.e., excluding the methods which
use valid data signals to cause misconception in the net-
work or attack the synchronisation of the waveform). Pilot
jamming aims to disrupt the channel estimation procedure
of the affected user to prevent error-free detection and
decoding of its intended messages [7]–[11].

In this work, we consider a scenario where a multi-
antenna military system aims to communicate in an RF-
congested environment while simultaneously performing
jamming to AUs in the same spectrum. We use RSMA for
multi-carrier multiple-access communications. Our aim
is to identify the performance benefits of RSMA for
joint communications and jamming and obtain optimal
precoders to maximize the mutual information for com-
munications with Information Users (IUs) while perform-
ing jamming on pilot subcarriers of AUs efficiently. We
consider the practical and realistic scenario of imperfect
Channel State Information at Transmitter (CSIT) for the
IUs and statistical CSIT for AUs, since obtaining an accu-
rate channel estimate for the AUs is generally not feasible
[13]. We give a formulation for MC waveforms to solve
the abovementioned problem, which turns out to be non-
convex. We propose a Successive Convex Approximation
(SCA) based algorithm, similar to the algorithm for single
carrier waveforms in [14], combined with the Sample
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Fig. 1: System model.
Average Approximated Weighted Minimum Mean Square
(SAA-WMMSE) algorithm in [3] to solve the problem.
We demonstrate by simulations that RSMA achieves a
significant sum-rate performance over SDMA.

Notations: Vectors are denoted by bold lowercase letters
and matrices are denoted by bold uppercase letters. The
operations |.| and ||.|| denote the absolute value of a
scalar and l2-norm of a vector, respectively, unless stated
otherwise. aH denotes the Hermitian transpose of a vector
a. CN (0, σ2) denotes the Circularly Symmetric Complex
Gaussian distribution with zero mean and variance σ2. In
denotes the n-by-n identity matrix. The operator tr(.) de-
notes the trace operation. The operator Diag(X1, . . . ,XK)
builds a matrix X by placing the matrices X1, . . ., XK

diagonally and setting all other elements to zero.

II. SYSTEM MODEL

We consider a Multi-Input Single-Output (MISO)
Broadcast Channel (BC) setting consisting of one trans-
mitter with nt transmit antennas, which aims to perform
communications and jamming simultaneously in an RF-
congested environment, as illustrated in Fig. 1. The trans-
mitter serves K single-antenna IUs indexed by K =
{1, 2, . . . ,K}, while simultaneously performing jamming
on L single-antenna AUs indexed by L = {1, 2, . . . , L}.
We assume that the IUs in the network are operating in the
same frequency band as the AUs. The transmitter employs
an MC waveform to communicate with the IUs, while the
AUs also use an MC waveform to communicate in their
corresponding separate networks. We define the set of sub-
carrier indexes in the signal band as S = {1, 2, . . . , N}.
Also, we define the set of pilot subcarriers of AUs in the
same signal band as Sp ⊂ S.

We employ 1-layer RSMA [4] to perform multiple-
access communications in the considered setting. RSMA
relies on splitting the user messages at the transmitter
side. The messages intended for the users, Wk,n, are split
into common and private parts, i.e., Wc,k,n and Wp,k,n,
∀k ∈ K, n ∈ S . The common parts of the messages of
all users are combined into the common message Wc,n.
The common message Wc,n and the private messages
are independently encoded into streams sc,n and sk,n,
respectively. Jamming is performed on subcarrier-n of
AU-l using the AN signal sel,n, ∀l ∈ L and ∀n ∈ Sp.
We assume that each subcarrier is assigned a separate
precoder. The MC transmit signal for RSMA is

xn = pc,ns
f
c,n +

K∑
k=1

pk,ns
f
k,n +

L∑
l=1

fl,ns
e
l,n, n ∈ S.

The vectors pc,n ∈ Cnt and pk,n ∈ Cnt are the linear
precoders applied to the common stream and the private
stream of IU-k on subcarrier n, ∀k ∈ K and ∀n ∈ S. The
precoder fl,n is used to transmit AN to AU-l, ∀l ∈ L.
The communications signals sfc,n and sfk,n and jamming
signals sel,n are chosen independently from a Gaussian
alphabet for theoretical analysis. We also assume that the
streams have unit power, so that E

{
sn(s)H

}
= IK+L+1,

where sn = [sfc,n, s
f
1,n, . . . , s

f
K,n, s

e
1,n, . . . , s

e
L,n].

An average transmit power constraint is set
as

∑N
n=1 tr(PnP

H
n ) + tr(FnF

H
n ) ≤ P̄t, where

Pn = [pc,np1,n, . . . ,pK,n] and Fn = [f1,n, . . . , fL,n].
The signal received by IU-k on subcarrier-n is

yk,n = hHk,nxn + zk,n, k ∈ K, n ∈ S, (1)

where hk,n ∈ Cnt is the channel vector of IU-k on
subcarrier-n and zk,n ∼ CN (0, 1) is the Additive White
Gaussian Noise (AWGN). Similarly, the signal received
by AU-l on subcarrier-n is written as

rl,n = gHl,nxn + νl,n, l ∈ L, n ∈ S, (2)

where gl,n ∈ Cnt is the channel vector of AU-l on
subcarrier-n and νl,n ∼ CN (0, 1) is the AWGN.

At the receiver side, detection of the messages is carried
out using Successive Interference Cancellation (SIC). The
common stream is detected first to obtain the common
message estimate Ŵc,n by treating the private streams as
noise. The common stream is then reconstructed using
Ŵc,n and subtracted from the received signal. The remain-
ing signal is used to detect the private messages Ŵp,k,n.
Finally, the estimated message for IU-k, Ŵk,n, is obtained
by combining Ŵc,k,n and Ŵp,k,n. We write the Signal-to-
Interference-plus-Noise Ratio (SINR) expressions for the
common and private streams at IU-k as

γc,k,n=
|hHk,npc,n|2

1 + Zc,k,n + Jk,n
, γk,n=

|hHk,npk,n|2

1 + Zk,n + Jk,n
,

with Zc,k,n =
∑
i∈K |hHk,npi,n|2, Jk =

∑
j∈L |hHk,nfj,n|2

and Zk,n =
∑
i∈K,i6=k |hHk,npi,n|2.

In this work, we consider the notion of jamming in
the context of denial of service for the AUs. Our aim
is to efficiently focus power on the AUs to disrupt the
correct detection and decoding of their intended data
transmissions from other users in their corresponding
network. Our performance criterion is the focused power
on pilot subcarrier-n of an AU-l, n ∈ Sp and l ∈ L,
expressed as

Λl,n = |gHl,npc,n|2 +
∑
k∈K

|gHl,npk,n|2 +
∑
l′∈L

|gHl,nfl′,n|2.

We assume that the transmitter has synchronisation with
the AU transmissions [9], [12], [13] and a perfect knowl-
edge of Sp [7]–[11].

We consider the practical case where the transmitter
does not have access to perfect Channel State Information
(CSI). The channel model of IU-k is expressed as

hk,n =
√

1−σ2
ieĥk,n + σieh̃k,n, (3)
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where ĥk,n is the estimate of the channel on subcarrier-
n at the transmitter and h̃k,n is the channel estimation
error with i.i.d. complex Gaussian elements of unit vari-
ance. The covariance matrix of the channel of AU-l on
subcarrier-n is expressed as Rgl,n = E

{
gl,ng

H
l,n

}
. We

assume that the channel is fixed during the transmission
of an MC waveform block. We also assume perfect CSI
at the receivers.

III. RSMA FOR JOINT COMMUNICATIONS AND
JAMMING WITH OFDM WAVEFORM

In this section, we give the problem formulation to
obtain the optimal precoders for the system model in
Section II. Our objective is to maximize the ergodic
mutual information under imperfect CSIT for IUs while
focusing a certain amount of jamming power on the
pilot subcarriers of the AUs. The receiver employs carrier
non-cooperative processing of the MC waveform. Such
approach considers an independent processing of each
subcarrier at the receiver, which is suitable for practical
scenarios due to its low complexity [16].

We define the matrices Hk = Diag(hk,1, . . . ,hk,N ),
P = Diag(P1, . . . ,PN ) and Zk = Diag((Zk,1+Jk,1+
N0), . . . , (Zk,N+Jk,N+N0)). Under the assumption of
carrier non-cooperative processing, the mutual information
at IU-k is expressed as Ik = log |I + Z−1k HH

k PPHHk|
[15], [16].

In order to obtain the optimal precoders that maxi-
mize the mutual information, we make use of the mu-
tual information - Mean Square Error (MSE) relations.
We note that in addition to the numerous works, such
approach is taken for designing the optimal precoders
for MC multi-antenna systems in [16] and RSMA in
MISO BC in [3]. We first obtain the optimal receive
filter, gk,n, that minimizes the Mean Square Error (MSE)
E
{
|εk,n|2

}
= E

{
|gk,nyk,n − xk,n|2

}
, ∀k ∈ K, ∀n ∈ S .

It is well known that the solution is given by a Minimum
MSE (MMSE) filter

goptk,n = pHk,nhk,n
(
|hHk,npk,n|2 + Zk,n + Jk,n +N0

)−1
.

The resulting MSE is expressed as

εoptk,n=
(
|hHk,npk,n|2+Zk,n+Jk,n+N0

)−1
(Zk,n+Jk,n+N0).

(4)

The mutual information-MSE relation is given by
Ik = − log |Ek|, where Ek = Diag(εoptk,1 , . . . , ε

opt
k,N ) [16],

which can be expanded as

Ik=− log

(
N∏
n=1

εoptk,n

)
=−

N∑
n=1

log(εoptk,n)=

N∑
n=1

Ik,n. (5)

In the context of RSMA, (5) represents the mutual
information for the private stream of IU-k and has the
requirement of being decodable by the corresponding user.
On the other hand, the common stream has a stricter
requirement of being decodable by all IUs in the system.
In order to satisfy such a requirement, we consider the mu-
tual information per subcarrier for the common stream, so
that the decodability of the message on each subcarrier is

guaranteed by all IUs1. We define Ic,k,n = − log(εoptc,k,n),
where εoptc,k,n is obtained by replacing pk,n and Zk,n in (4)
by pc,n and Zc,k,n, respectively.

Next, we determine the jamming power constraint for
statistical CSIT. We consider the average power focused
on subcarrier-n of AU-l [17]. Accordingly,

E

{
|gHl,npc,n|2+

∑
k∈K

|gHl,npk,n|2+
∑
l′∈L

|gHl,nfl′,n|2
}

= pHc,nRgl,npc,n+
∑
k∈K

pHk,nRgl,npk,n+
∑
l′∈L

fHl′,nRgl,nfl′,n

, Λ̄l,n(Pn,Fn). (6)

We formulate the optimization problem as

max
P,F,c

∑
n∈S

∑
k∈K

(Ck,n + Ik,n(Pn,Fn)) (7a)

s.t.
∑
k∈K

Ck,n ≤ Ic,k,n(Pn,Fn),∀n ∈ S,∀k ∈ K (7b)

Λ̄l,n(Pn,Fn) ≥ J thrl,n , ∀n ∈ Sp, ∀l ∈ L (7c)∑
n∈S

tr(PnP
H
n ) + tr(FnF

H
n ) ≤ P̄t, (7d)

c ≥ 0. (7e)

where c = [C1,1, . . . , CK,1, . . . , C1,N , . . . , CK,N ]
T with

Ck,n being the portion of the common mutual informa-
tion for IU-k on subcarrier-n. Rate-MSE transformations
similar to the one in (5) have been used in [3] without
an MC waveform to transform the non-convex sum-rate
maximization problem for RSMA into a convex one.
Therefore, we follow the approach in [3] and define the
augmented MSEs ξc,k,n = uc,k,nεc,k,n − log2(uc,k,n) and
ξk,n = uk,nεk,n − log2(uk,n) to obtain ξoptk,n = 1−Ik,n and
ξoptc,k,n = 1−Ic,k,n, ∀n ∈ S. The resulting formulation is

min
P,F,x,u,g

∑
n∈S

∑
k∈K

(Xk,n + ξk,n(Pn,Fn)) (8a)

s.t.
∑
k∈K

Xk,n+1 ≥ ξc,k,n(Pn,Fn),

∀n ∈ S,∀k ∈ K (8b)

Λ̄l,n(Pn,Fn) ≥ J thrl,n ,∀n ∈ Sp, ∀l ∈ L (8c)∑
n∈S

tr(PnP
H
n ) + tr(FnF

H
n ) ≤ P̄t, (8d)

x ≤ 0, (8e)

where x = [X1,1, . . . , XK,1, . . . , X1,N , . . . , XK,N ]
T and

Xk,n = −Ck,n. For the sake of brevity, we skip detailed
derivations to extend the problem formulation for the im-
perfect CSIT case by the Sample Average Approximation
(SAA) and refer the interested reader to [3].

We note that the constraint (8c) is not convex due to the
convex function Λ̄l,n(Pn) constrained to a lower bound.
We follow the approach followed in [14] and obtain a
convex constraint by using first-order Taylor expansion
for the quadratic function in (8c). Specifically, one can
lower bound the term pHk,nRgl,npk,n at a point ptk,n as

1By carrier cooperative processing, the decodability can be guaranteed
over Ic,k instead of Ic,k,n with proper coding methods [18].
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Algorithm 1: SCA-based algorithm

t← 0, i← 0, WSR0 ← 0, P̂, F̂
while |WSRi −WSRi−1| > εr do

ui ← updateWeights(P̂, F̂)
gi ← updateFilters(P̂, F̂)
while |WMMSEt −WMMSEt−1| > εm do

(Pt+1, Ft+1, xt+1) ← (10) for given ui,
gi and (Pt, Ft)

WMMSEt+1 ← updateWMMSE(Pt+1,
Ft+1)
t← t+ 1

end
P̂← Pt, F̂← Ft

WSRi+1 ← updateWSR(P̂, F̂)
t← 0, i← i+ 1

end
return (P̂, F̂)

pHk,nRgl,npk,n

≥ 2Re
{

(ptk,n)HRgl,npk,n
}
− (ptk,n)HRgl,np

t
k,n

, φ̄t(pk,n,Rl,n) (9)

Using the function in (9), we write

Λ̄l,n(Pn,Fn) ≥

φ̄t(pc,n,Rl,n)+
∑
k∈K

φ̄t(pk,n,Rl,n)+
∑
l∈L

φ̄t(fl,n,Rl,n)

, Λ̄tl,n(Pn,Fn)

The final problem formulation is written as

min
P,F,x,u,g

∑
n∈S

∑
k∈K

(Xk,n + ξk,n(Pn,Fn)) (10a)

s.t. Λ̄tl,n(Pn,Fn) ≥ J thrl,n , n ∈ Sp, l ∈ L (10b)

(8b), (8d) (8e).

The SCA-based algorithm to solve (10) is given in Alg. 1.
We set the power threshold on subcarrier-n of AU-l as

J thrl,n = ρ
P̄t
|Sp|L

τl,n, ∀n ∈ SpL, ∀l ∈ L, (11)

where ρ ∈ [0, 1] determines the strictness of the jamming
power threshold by adjusting it to a percentage of the
maximum value, |Sp| denotes the cardinality of the set Sp
and τn,l is the largest eigenvalue of the matrix Rgl,n .

IV. SIMULATION RESULTS

We perform simulations to demonstrate the sum-rate
performance achieved by RSMA and SDMA using the
optimized precoders. Note that the optimal precoders for
SDMA can be obtained by turning off the common stream
in the optimization problem formulation. We set nt = 4,
K = 2 and L = 1 for the system parameters. We use
Cyclic-Prefix (CP)-OFDM waveform with 32 subcarriers
and a CP length of 10µs. The error variance of the
channels of the IUs is modeled as σ2

ie = (P̄t/N)−α ,
where α is the CSIT quality scaling factor [3], [6], and
is set as α = 0.6 in the simulations. We define the
private rate of IU-k for an MC waveform as Rk = Ik/N ,
∀k ∈ K, following the formulation in [18] for the carrier
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Fig. 2: Power thresholds with different strategies.
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Fig. 3: Sum-rate vs. SNR with different strategies.

cooperative case. This serves as an upper bound for the
non-cooperative case since carrier cooperative processing
is a more general model [16]. Accordingly, the common
rate is defined as Rc,k = 1

N

∑
k∈K Ck. The sum-rate for

RSMA is calculated as Rsum =
∑
k∈K

(
Ck

N +Rk
)
.

We consider two different strategies to set the threshold
for the jamming power. Fig. 2 illustrates the jamming
threshold values J thr1,n obtained by the proposed strate-
gies. In Strategy 1, the threshold coefficient ρ is varied
proportional to the number of pilots, such that ρ ∝ |Sp|.
Such method ensures that the total jamming power focused
on an AU varies with the number of pilots, while the
focused jamming power threshold per subcarrier stays
the same. In Strategy 2, the threshold coefficient ρ is
kept constant irrespective of the number of pilots. In this
case, the focused jamming power threshold varies with
varying number of pilots, which leads to increased focused
jamming power per subcarrier when the number of pilots
decreases (or vice versa).

We start our analysis with basic multi-antenna
channel models in the form of h1,n = [1, 1, 1, 1]H ,
h2,n = [1, ejθ, ej2θ, ej3θ]H with θ = 4π/9 and
g1,n = [1, ejβ , ej2β , ej3β ]H with β = 2π/9, ∀n ∈ S.
Note that the channel is not frequency-selective in the
considered model. i.e., the channel frequency response is
identical on each subarrier. The second-order statistics of
the channel g1,n is obtained by averaging the correlation
matrix over β ∈ [0,+4π/9]. Fig. 2 shows the jamming
power thresholds for the two strategies described above.

Fig. 3a shows the sum-rate performance of RSMA and
SDMA for jamming power threshold according to Strategy
1 as depicted in Fig. 2a. It is observed from the figure that
the sum-rate decreases with increasing number of pilot
subcarriers to jam as expected. The decrease in the sum-
rate performance of SDMA is higher than that of RSMA,
implying that RSMA achieves higher sum-rate on the
subcarriers used for joint communications and jamming.

73



5 10 15 20 25 30

SNR (dB)

0

2

4

6

8

10

12

14

16

18

20

S
u
m

-R
a
te

 (
b
p
s
/H

z
)

RSMA, 8 Pilots
RSMA, 16 Pilots
SDMA, 8 Pilots
SDMA, 16 Pilots

Fig. 4: Sum-rate vs. SNR, strategy 1, urban macro-cell.

Fig. 3b shows the sum-rate performance of RSMA and
SDMA with respect to SNR for jamming power threshold
set according to Strategy 2 as depicted in Fig. 2b. In
contrast to the case in Fig. 3a the sum-rate increases as the
number of pilots increases for both RSMA and SDMA.
Such behaviour is explained as follows. Recall that the
sum-rate is defined as the average of mutual information
over all subcarriers. In jamming strategy 2, the portion of
the total transmit power allocated to the pilot subcarriers
does not change significantly with varying number of
pilots. Similarly, the remaining transmit power distributed
among the data subcarriers is approximately constant with
varying number of data subcarriers. Consequently, the
mutual information over data subcarriers decrease with
increasing number of data subcarriers . Therefore, the
use case with 8 pilot and 24 data subcarriers achieve
less sum-rate than the one with 16 pilot and 16 data
subcarriers, when the sum-rate is calculated as the average
mutual information over all subcarriers. RSMA achieves
a significantly higher sum-rate on the subcarriers with
joint communications and jamming, thus resulting with
an increase in the rate averaged over all subcarriers with
increasing number of pilot subcarriers. On the other hand,
SDMA achieves a lower rate on those subcarriers, thus the
increase being much less significant compared to RSMA.

Next, we investigate the performance under a
frequency-selective channel model. We use the Quadriga
Channel Generator [19] to generate channels according to
the 3GPP Urban Macro-Cell channel model. The channel
each of IU have a delay spread of 1200ns and 23 clusters,
with each cluster consisting of 20 rays. The channel of the
AU have a delay spread of 1200ns with identical numbers
of clusters and rays. The OFDM subcarrier spacing is
set as 60kHz to observe the frequency-selectivity in the
considered channel model. Fig. 4 shows the sum-rate
performance of RSMA and SDMA under such channel
model. The results show that RSMA has improved sum-
rate performance with respect to SDMA under realistic
frequency-selective channels.

V. CONCLUSION

We design optimal precoders for joint communications
and jamming using RSMA with an MC waveform. We
formulate the optimization problem as the maximization
of the mutual information with a minimum jamming

power constraint on pilot subcarriers of the AUs while
performing data transmission to IUs. We consider the
practical case of imperfect CSIT for the IUs and statistical
CSIT for the AUs. By simulation results, we show that
RSMA can achieve significantly higher sum-rate than
SDMA while focusing the same amount of jamming
power on AU pilot subcarriers.
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Adaptive Kernel Kalman Filter
Mengwei Sun, Mike E. Davies, Ian Proudler, James R. Hopgood

Abstract—This paper presents a novel model-based Bayesian
filter called the adaptive kernel Kalman filter (AKKF). The
proposed filter approximates the arbitrary probability distri-
bution functions (PDFs) of hidden states as empirical kernel
mean embeddings (KMEs) in reproducing kernel Hilbert spaces
(RKHSs). Specifically, particles are generated and updated in
the data space to capture the properties of the dynamical
system model, while the corresponding kernel weight vector
and matrix associated with the particles’ feature mappings are
predicted and updated in the RKHS based on the kernel Kalman
rule (KKR). We illustrate and confirm the advantages of our
approach through simulation, offering detailed comparison with
the unscented Kalman filter (UKF), particle filter (PF) and
Gaussian particle filter (GPF) algorithms.

Index Terms—Adaptive kernel Kalman filter, kernel Kalman
rule, kernel mean embedding, non-linear Bayesian filter

I. Introduction
Non-linear/non-Gaussian estimation problems in dynamic

systems arise in many fields including statistical signal pro-
cessing, target tracking, satellite navigation, and so on. In
order to make inference about a dynamic system, dynamical
state-space models (DSMs) are required, including a process
model describing the evolution of the hidden states with time,
and a measurement model relating the observations to the
states. From a Bayesian perspective, the filter for dynamical
system inference is designed to estimate the hidden states
by recursively computing the posterior probability density
function (PDF). Historically, the main focus of sequential
Bayesian filters has been on model-based systems where there
exists an explicit formulation of the DSM [1]. However, more
recently data-driven Bayesian filters have been proposed where
the DSM is unknown or partially known but data examples of
state-observation pairs are provided [2]. In both scenarios the
filters can be broken down into prediction and update stages.

The Kalman filter (KF) provides the optimal Bayesian so-
lution for linear DSMs when both the prediction and posterior
distributions are Gaussian. The extended Kalman filter (EKF)
is a common form for the application of the KF to nonlinear
systems [3], by using the first derivatives to approximate the
observation function by a linear system of equations which
can cause poor approximation performance when the model is
highly non-linear or when the posterior distributions are multi-
modal. The unscented Kalman filter (UKF), an alternative to
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the EKF, was proposed in [4] and uses a weighted set of
deterministic particles (so called sigma points) in the state
space to approximate the state distribution. Compared with
the EKF, the UKF can significantly improve the accuracy of
the approximations, but divergence can still occur as in both
filters the state distributions are essentially approximated as
Gaussian. A more general solution to the non-linear Bayesian
filter can be found in the bootstrap particle filter (PF) proposed
in [5], in which the hidden state distributions are represented
through a weighted set of random particles. Resampling is a
necessary step in the bootstrap PF which induces an increase in
complexity and is hard to parallelize [6]. To avoid the need for
resampling, some specific implementations of the bootstrap PF
have been proposed that further approximate the hidden state
distribution at each time with a Gaussian, such as the Gaussian
particle filter (GPF) [6], and the Gauss–Hermite filter [7].

Different from the approaches above, a number of works
have used the recently formulated kernel Bayes rule (KBR)
to develop data-driven Bayesian filters based on kernel mean
embeddings (KMEs) [2], [8]. Here the unknown measurement
model was inferred from prior training data. Owing to the
virtue of KMEs, these methods can effectively deal with
problems that involve unknown models or strong non-linear
structures [9]. However, the feature space for the kernel
embeddings remains restricted to the feature space defined by
the training data set. Therefore, the performance of these filters
relies heavily on there being sufficient similarity between the
training data and the test data [10].

Inspired by the KBR [8] and kernel Kalman rule (KKR)
[11], we explore the potential of KMEs within full model
based filters and introduce a new hybrid filter called the
adaptive kernel Kalman filter (AKKF). The main contributions
of this paper can be summarized as:
• We derive a new model based Bayesian filter that is a

hybrid of kernel based methods and PFs, in which both
the prediction and posterior distributions are embedded into
a kernel feature space but the known measurement and
transition operators are used to calculate the update rules.
This is in contrast to the PF where the prediction and
posterior distributions are calculated through empirical PDF
estimates in the data space.

• The proposed filter can avoid the problematic resampling
in most PFs. In passing, we also highlight a missing link
between the UKF sigma point method and the kernel con-
ditional embedding operator.

The rest of the paper is set out as follows. The KME and KKR
are reviewed in Section II. Section III presents the proposed
AKKF. Simulation results for bearing–only tracking (BOT)
problem are presented in Section IV and finally conclusions
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are drawn in Section V.

II. Preliminaries

In this section, we briefly review the frameworks of the
KME and data-driven KKR, see [8] and [11] for details.

A. Kernel Mean Embedding

A reproducing kernel Hilbert space (RKHS) denoted as Hx

on the data space X with a Kernel function kx(x, x′) is defined
as a Hilbert space of functions with the inner product 〈·, ·〉Hx

that has some additional properties [8]. The KME approach
represents a conditional distribution P(X|y) by an element in
the RKHS as,

µX|y := EX|y
[
φx(X)

]
=

∫
X

φx(x)dP(x|y). (1)

where φx(x) ∈ Hx represents the feature mapping of x in
RKHS Hx for all x ∈ X. µX|y is a family of points, each
indexed by fixing Y to a particular value y. By defining the
conditional operator CX|Y as the linear operator which takes
the feature mapping of a fixed value y as the input and
outputs the corresponding conditional KME [10], the KME
of a conditional distribution defined in (1), under certain
conditions, is calculated as,

µX|y = CX|Yφy(y) = CXY (CYY + λI)−1 φy(y). (2)

Here, CXY and CYY represent the covariance operators in
the tensor product feature spaces Hx ⊗ Hy and Hy ⊗ Hy,
respectively. The term λ is a regularization parameter to ensure
that the inverse is well defined.

If instead of access to the true underlying distribution, as
required by (1), an empirical estimate of the PDF is available
through a particle representation, the KMEs can be estimated
directly from these particles. Hence, given the sample set
DXY = {(x{1}, y{1}), . . . , (x{M}, y{M})} which are drawn i.i.d. from
P(X,Y) with the feature mappings Φ :=

[
φx(x{1}), . . . , φx(x{M})

]
and Υ :=

[
φy(y{1}), . . . , φy(y{M})

]
, the estimate of the conditional

embedding operator ĈX|Y is obtained as a linear regression in
the RKHS [12], as shown in the illustration in Fig. 1. Then,
the empirical KME of the conditional distribution is calculated
by a linear algebra operation as,

µ̂X|y = ĈX|Yφy(y) = Φ (GYY + λI)−1 ΥTφy(y) = Φw, (3)

w = (GYY + λI)−1 G:,y. (4)

Here, GYY = ΥTΥ is the Gram matrix for the samples from
the observation variable Y . The input test variable is y ∈ Y.
The kernel weight vector w =

[
w{1}, . . . ,w{M}

]T
includes M

non-uniform weights and is calculated based on the vector
of kernel functions G:,y =

[
ky(y{1}, y), . . . , ky(y{M}, y)

]T
. In

summary, an empirical KME can represent a PDF over a
basis at RKHS with the corresponding weight vector, which
has the advantages of low computational cost and low sample
complexity.

Fig. 1: KME of the conditional distribution P(X|y) is embedded as a point in kernel
feature space as µX|y =

∫
X
φx(x)dP(x|y). Given the training data sampled from P(X,Y),

the empirical KME of P(X|y) is approximated as a linear operation in RKHS, i.e., µ̂X|y =

ĈX|Yφy(y) = Φw. Legend: · samples, ×: empirical KME, ∗: KME.

B. Kernel Kalman Rule

The KKR was proposed in [11] as a recursive least squares
estimator for KMEs of posterior distributions. In the pro-
posed empirical KKR [11], the mean embedding and co-
variance operator are predicted and updated similar to the
way a conventional KF does but relying on the training
data set DX̃XY = {(x̃{1}, x{1}, y{1}), . . . , (x̃{M}, x{M}, y{M}). Here,
x̃{i} denotes the preceding state of x{i}, i = 1, . . . ,M, and y{i}

is the corresponding observation. The feature mappings of
training data are represented as Φ̃ :=

[
φx(x̃{1}) . . . , φx(x̃{M})

]
,

Φ :=
[
φx(x{1}) . . . , φx(x{M})

]
and Υ :=

[
φy(y{1}) . . . , φy(y{M})

]
,

respectively. The estimate of the preceding state is given by
the KME µ̂+

xn−1
and the covariance operator Ĉ+

xn−1,xn−1
. Based on

the derivations in [11], the kernel Kalman filter prediction and
update steps consist of the following:

µ̂−xn
= ĈX|X̃ µ̂

+
xn−1
, (5)

Ĉ−xn,xn
= ĈX|X̃Ĉ

+
xn−1,xn−1

ĈT
X|X̃ +V. (6)

µ̂+
xn

= µ̂−xn
+ Qn

(
φy(yn) − ĈY |X µ̂

−
xn

)
, (7)

Ĉ+
xn,xn

= Ĉ−xn,xn
− QnĈY |XĈ

−
xn,xn

. (8)

Here, the conditional embedding operators for the distributions
P(X|X̃) and P(Y |X), represented by ĈX|X̃ and ĈY |X , are calcu-
lated based on training data as ĈX|X̃ = Φ

(
Kx̃x̃ + λK̃

)−1
Φ̃ and

ĈY |X = Υ (Kxx + λK)−1 Φ, respectively. The Gram matrices are
Kx̃x̃ = Φ̃TΦ̃ and Kxx = ΦTΦ. The covariance of the transition
residual matrix is represented as V, and the kernel Kalman
gain operator Qn is given by [11],

Qn = Ĉ−xn,xn
ĈT

Y |X

(
ĈY |XĈ

−
xn,xn
ĈT

Y |X + R
)−1

. (9)

where R is the covariance of the residual of the observation
operator.
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It should be noted that the existing filters based on the KKR
are fully data driven and therefore of use when the DSM is
not available and the test data has high similarities to the
training data. Data-driven based KKR filters have been used
for tracking problems that include the position estimate of a
target which follows rotation in a circle or oscillatory rotation
[11]. However, the data-driven based filters are only effective
when training data provides a good description for the current
state, and will fail when the target moves out of the training
space. To mitigate this shortcoming, we present a new type
of kernel Kalman filter defined for model based scenarios in
Section III.

III. Adaptive Kernel Kalman Kilter
Inspired by the data-driven based KKR [11] and PF, the

proposed adaptive kernel Kalman filter aims to take all the
benefits of the KKR and PF. The proposed AKKF is executed
in both data space and kernel feature space. In the kernel
feature space, the kernel weight vector and positive definite
weight matrix are estimated using the KKR, which requires
an embedding of the state update function to update the
estimate from time n − 1 to time n. Then an embedding
of the measurement function is used to update the prior
estimate at time n to the posterior estimate at time n. In data
space, the embeddings for the state process and measurement
functions are obtained as follows: a proposal distribution is
generated using information from the kernel space at time
n − 1, which is then propagated through the non-linear DSM.
The following subsections will derive the proposed AKKF,
with the implementation is summarized in Algorithm I.

A. Embedding the Posterior Distribution at Time n − 1
Let the particles and corresponding kernel feature mappings

at time n − 1 be represented by x{i=1:M}
n−1 and φx(x{i=1:M}

n−1 ),
respectively. Given also the previous weight vector w+

n−1 and
positive definite weight matrix S +

n−1, the empirical KME and
covariance operator for the posterior p(xn−1|y1:n−1) are:

µ̂+
xn−1

= Φn−1w+
n−1, (10)

Ĉ+
xn−1 xn−1

= Φn−1S +
n−1ΦT

n−1. (11)

where the feature mappings is calculated as Φn−1 =[
φx(x{1}n−1), . . . , φx(x{M}n−1)

]
[11]. Specifically, suppose xn−1 =[

xn−1,1, . . . , xn−1,d
]T is a d-dimension vector and the quadratic

kernelis utilized. Then, its feature mapping is [13],

φx(xn−1) =
[
x2

n−1,d, . . . , x
2
n−1,1,

√
2xn−1,d xn−1,d−1, . . . ,

√
2xn−1,2xn−1,1,

√
2xn−1,d, . . . ,

√
2xn−1,1, 1

]T
.

(12)

Therefore, from (10), the empirical KME µ̂+
xn−1

is represented
in terms of the expectations of X2

n−1 and Xn−1, as µ̂+
xn−1

=[
E(X2

n−1),
√

2E(Xn−1X′n−1),
√

2E(Xn−1), 1
]T

. Then, the E(Xn−1)
and E(X2

n−1) are extracted from µ̂+
xn−1

and passed to the data
space. As pointed out in [14], the approximation of a
Gaussian distribution is easier to realize than the approxima-
tion of an arbitrary non-linear function. Hence, the proposed
AKKF uses a new weighted sample representation called

Algorithm 1 Adaptive kernel Kalman filter

Require: DSM: process model and measurement model.
1: Initialization: Set the initial particles in the data space

x̃{i=1:M}
0 ∼ Pinit, w0 = 1/M [1, . . . , 1]T.

2: for n = 1 : N do
3: Prediction:

• First, in the data space: x{i}n = f (x̃{i}n−1, u
{i}
n ),

⇒ Second, in the kernel feature space with basis Φn:
w−n = Γn−1w+

n−1, S −n = S̃ +
n−1 + Vn.

4: Update:
• First, in the data space: y{i}n = h(x{i}n , v

{i}
n ),

⇒ Second, in the kernel feature space with basis Φn:
w+

n = w−n +Qn

(
G:,yn −Gyyw−n

)
, S +

n = S −n −QnGyyS −n .
µ̂xn = Φnw+

n .
5: Proposal particles draw:

• First, in the data space:
x̃{i=1:M}

n ∼ N
(
E (Xn) ,E

(
X2

n

)
− E (Xn)E (Xn)T

)
.

⇒ Second, in the kernel feature space with basis Ψn:
w̃+

n = Γnw+
n , S̃ +

n = ΓnS +
n ΓT

n .
6: end for

proposal particles to approximate the KME that can be exactly
propagated through the non-linearity. The proposal particles
are generated according to the importance distribution as,

x̃{i=1:M}
n−1 ∼ N (E (Xn−1) ,Cov (Xn−1)) , (13)

Cov (Xn−1) = E(X2
n−1) − E (Xn−1)E (Xn−1)T . (14)

The feature mappings of the proposal particles are represented
as Ψn−1 =

[
φx(x̃{1}n−1), . . . , φx(x̃{M}n−1)

]
. Then, the posterior distri-

bution p(xn−1|y1:n−1) can also be embedded using the new basis
Ψn−1 and therefore the weight vector and covariance operator
are transformed into Ψn−1 as,

µ̂+
xn−1

= Ψn−1w̃+
n−1, (15)

Ĉ+
xn−1 xn−1

= Ψn−1S̃ +
n−1ΨT

n−1. (16)

Substituting (15) into (10), and (16) into (11), respectively,
the proposal kernel weight vector w̃+

n−1 and matrix S̃ +
n−1 are

calculated as,

w̃+
n−1 =

(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+
n−1 = Γn−1w+

n−1, (17)

S̃ +
n−1 = Γn−1S +

n−1ΓT
n−1, (18)

where Γn−1 defined in (17) represents the change of basis from
Φn−1 to Ψn−1, Kx̃x̃ = ΨT

n−1Ψn−1 represents the Gram matrix of
the proposal particles at time n − 1, Kx̃x = ΨT

n−1Φn−1 is the
matrix between the particles and proposal particles at time
n − 1, and λK̃ is the regularization parameter to modify Kx̃x̃.

B. Prediction from Time n − 1 to Time n

The proposal particles at time n− 1 are propagated through
the process function to achieve the prediction particles, i.e.,

x{i}n = f (x̃{i}n−1, u
{i}
n ), i = 1 . . . M. (19)
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where u{i}n represents a process noise sample drawn from
the process noise distribution. Then, the transitional proba-
bility p(xn|xn−1) is embedded using the new basis defined
by the feature mappings of the prediction particles Φn =[
φx(x{1}n ), . . . , φx(x{M}n )

]
, and is approximated as:

p(xn|xn−1) 7→ µ̂−xn
= Φnw−n = Ĉxn |xn−1 µ̂

+
xn−1
,

= Φn
(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+
n−1,

(20)

where w−n is the prior kernel weight vector and Ĉxn |xn−1 rep-
resents the empirical transition operator. Next, the empirical
predictive covariance operator Ĉ−xn xn

with the corresponding
prior kernel weight matrix S −n is computed as,

Ĉ−xn xn
= ΦnS −n ΦT

n = Ĉxn |x̃n−1 Ĉ
+
xn−1 xn−1

ĈT
xn |x̃n−1

+Vn,

=Ĉxn |x̃n−1Ψn−1S̃ +
n−1ΨT

n−1Ĉ
T
xn |x̃n−1

+Vn = ΦnS̃ +
n−1ΦT

n +Vn.
(21)

Here, Vn represents the transition residual matrix,

Vn =
1
M

(
Ĉxn |x̃n−1Ψn−1 − Φn

) (
Ĉxn |x̃n−1Ψn−1 − Φn

)T
,

=Φn

[
1
M

((
Kx̃x̃ + λK̃ I

)−1 Kx̃x̃ − I
) ((

Kx̃x̃ + λK̃ I
)−1 Kx̃x̃ − I

)T
]

︸                                                                  ︷︷                                                                  ︸
Vn

ΦT
n ,

(22)
where Vn is the finite matrix representation of Vn. Based on
(20)-(22), the prior w−n and S −n are calculated as,

w−n =
(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+
n−1 = Γn−1w+

n−1, (23)
S −n = S̃ +

n−1 + Vn. (24)

C. Update at Time n

The observation particles are updated based on the obser-
vation model as,

y{i}n = g(x̃{i}n , v
{i}
n ), i = 1 . . . M. (25)

where v{i}n represents a measurement noise sample drawn
from the measurement noise distribution. The kernel map-
pings of observation particles in the kernel feature space
are Υn =

[
φy(y{1}n ), . . . , φy(y{M}n )

]
. The posterior KME and the

corresponding covariance operator are calculated as [11],

µ̂+
xn

= Φnw+
n = µ̂−xn

+ Qn

[
φy(yn) − Ĉyn |xn µ̂

−
xn

]
, (26)

Ĉ+
xn xn

= ΦnS +
n ΦT

n = cov(φx(xn) − µ̂+
xn

). (27)

where w+
n and S +

n represent the posterior kernel weight and
matrix, respectively. The kernel Kalman gain operator denoted
as Qn is derived by minimizing the residual error Ĉ+

xn xn
.

According to derivations in [11], Qn is calculated as,

Qn = Ĉ−xn xn
CT

yn |xn

(
Ĉyn |xn Ĉ

−
xn xn
ĈT

yn |xn
+ R

)−1
. (28)

where R is the covariance matrix of the observation operator
residual and is approximated as R = κI. The empirical
likelihood operator is calculated as,

Ĉyn |xn = Ĉyn xn Ĉ
−1
xn xn

= Υn

(
ΦT

n Φn + λK I
)−1

ΦT
n ,

= Υn (Kxx + λK I)−1 ΦT
n = ΥnK−1

xx ΦT
n .

(29)

Here, the Gram matrix of particles at time n is calculated as
Kxx = ΦT

n Φn, and λK is the regularization parameter to modify
the covariance operator Kxx. In this paper, λK is set to be 0.
Substituting (21) and (29) into (28), Qn can be calculated as,

Qn = ΦnS −n ΥT
n

(
ΥnS −n ΥT

n + κI
)−1

= Φn S −n
(
GyyS −n + κI

)−1︸                 ︷︷                 ︸
Qn

ΥT
n .

(30)
where Qn is the finite matrix representation of Qn in terms of
the current basis Φn. The Gram matrix of the observation at
time n is Gyy = ΥT

n Υn. Then, the updated KME vector and
matrix are given by,

µ̂+
xn

= Φnw+
n = Φn

[
w−n + Qn

(
G:,yn −Gyyw−n

)]
, (31)

Ĉ+
xn xn

= ΦnS +
n ΦT

n = Ĉ−xn xn
− ΦnQnGyyS −n ΦT

n . (32)

where the kernel vector of the measurement at time n is G:,yn =

ΥT
nφy(yn). Based on the derivations above, the weight mean

vector and covariance matrix are finally updated as,

w+
n = w−n + Qn

(
G:,yn −Gyyw−n

)
, (33)

S +
n = S −n − QnGyyS −n . (34)

IV. Simulation Results

Bearing–only tracking (BOT) is one of the fundamental
problems in target tracking systems. In this section, we report
the tracking performance of different filters applied to BOT
problems of a single target using a single sensor in a 2-D
space. The corresponding dynamical state-space model (DSM)
is described by the equations:

xn =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 xn−1 +


0.5 0
1 0
0 0.5
0 1

 un, (35)

yn = tan−1
(
ηn

ξn

)
+ vn. (36)

Here, n represents time index and n = 1, . . . ,N. The hidden
states are xn = [ξn, ξ̇n, ηn, η̇n]T , where (ξn, ηn) and (ξ̇n, η̇n)
represent the target position and the corresponding velocity in
X-axis and Y-axis, yn is the corresponding observation. The
process noise un follows Gaussian distribution un ∼ N(0, σ2

uI2)
and σu = 0.001. Following [6], the prior distribution for
the initial state is specified as x0 ∼ N(µ0,P0) with µ0 =

[−0.05, 0.001, 0.7,−0.05]T and,

P0 =


0.1 0 0 0
0 0.005 0 0
0 0 0.1 1
0 0 0 0.01

 .
Fig. 2 and Fig. 3 display two representative trajectories and

the tracking performance obtained by four filters: UKF, GPF,
PF, and the proposed AKKF using a quadratic kernel. The
observer is located at [0, 0]. The numbers of particles used for
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Fig. 2: Trajectory-1: Example of tracking a moving target in two dimensions with the
PF, UKF, GPF, and AKKF filters.
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Fig. 3: Trajectory-2: Example of tracking a moving target in two dimensions with the
PF, UKF, GPF, and AKKF filters, where UKF diverges.
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Fig. 4: LMSE performance comparison of the PF, UKF, GPF, and AKKF filters for
Trajectory-1.

PF, GPF and AKKF are 50, while the benchmark performance
is given by a PF with 2000 particles. Fig. 4 and Fig. 5 shows
the average logarithmic mean square error (LMSE) obtained
for 100 random realizations of trajectory-1 and trajectory-2
as a function of particle number denoted as M. From the
simulation results, we can arrive at the following conclusions.
First, for BOT problems, the tracking performance of PF,
GPF and AKKF is obviously better than UKF which shows
divergence for trajectory-2 as shown in Fig. 3. Second, the
proposed AKKF shows significant improvement compared to
the PF and GPF with small particle numbers, as shown in Fig.
4 and Fig. 5.
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Fig. 5: LMSE performance comparison of the PF, UKF, GPF, and AKKF filters for
Trajectory-2.

V. Conclusions

This paper provided a novel model based kernel Kalman
filter. By embedding the probabilities into kernel spaces, more
feature information of the hidden states and observations can
be captured and recorded. Therefore, the proposed AKKF
out performs existing algorithms when applied to a BOT
problem.
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Abstract—In this paper, a Bayesian approach is proposed
for the early detection of a drone threatening or anomalous
behaviour in a surveyed region. This is in relation to revealing, as
early as possible, the drone intent to either leave a geographical
area where it is authorised to fly (e.g. to conduct inspection
work) or reach a prohibited zone (e.g. runway protection zones
at airports or a critical infrastructure site). The inference here is
based on the noisy sensory observations of the target state from
a non-cooperative surveillance system such as a radar. Data from
Aveillant’s Gamekeeper radar from a live drone trial is used to
illustrate the efficacy of the introduced approach.

Index Terms—Bayesian inference, drone, intent prediction,
Kalman filtering, non-cooperative surveillance, radar

I. INTRODUCTION

Small unmanned air systems (sUASs) or drones are poised
to play an increasingly important role in various fields given
their high potential benefits, for example in agriculture, e-
commerce, media, inspection and maintenance, to name a few.
The trends in UAS technologies suggest that the low altitude
airspace could be populated by different drone platforms in
the near future. This motivated large initiatives such as the EU
Single European Sky ATM Research (SESAR) Joint Undertak-
ing programme [1] to enable complex drone operations with a
high degree of automation. This encompasses ground-based
technologies for real-time Unmanned Traffic Management
System (UTMS). However, the threat drones can pose to the
safety and security of the public (e.g. operating in the presence
of manned aviation) is widely recognised and non-cooperative
drone surveillance is hence key for UMTS.

Several civilian ground UAS surveillance technologies have
emerged, where typically only radar sensors can detect sUASs
at long distances and wide ranges [2]–[4], unlike for example
electro-optical/infrared and acoustic ones. Nonetheless, they
often lack the means to determine which of the detected drones
require the operator’s (urgent) attention or further scrutiny or
even necessitate triggering an alarm (e.g. closing the airspace).
This is particularly critical in the future as scenes become
more congested with the commercial use of sUAS and UTMS
operators can be easily overwhelmed.

In this paper, we attempt to address from a Bayesian
perspective the problem of predicting, as early as possible,

This work is funded by the Defence Science and Technology Laboratory
(DSTL) under the DASA contract DSTLX1000144447.

anomalous or threatening behaviour of a target based on noisy
sensory observations, for instance from a radar. Anomaly
or threat here is defined as the UAS intending to leave
(maliciously or not) a geographic region which it is authorised
to fly in (e.g. to carry out surveillance or inspection tasks)
or reach prohibited area(s) such as no-fly zones near airports
[5]. Real radar data is used to demonstrate the performance
of the proposed approach. Such predictive capability can be
crucial for smart UMTS solutions because it facilitates auto-
mated decision making and prioritisation of potential threats
for effective resources allocation, e.g. operator’s attention
or secondary systems. It can also circumvent the need for
human-intensive inspection and provide sufficient time to
avoid triggering drastic measures (e.g. warning a hobbyist
drone operator instead of closing the airspace).

A. Problem Formulation

Let A be the authorised flying zone for a sUAS and mn

at time instant tn be the drone state (e.g. its location in 3-
D or any other spatio-temporal characteristics) measured by
a non-cooperative surveillance sensor (e.g. radar). The objec-
tive in this paper is to sequentially estimate the probability,
Pr(Des = A|m0:n), of A being the intended destination of
the UAS, i.e. the drone intends to remain in this area. The
observation sequence m0:n is made successively at ordered
time instants {t0, t1, ..., tn}. Similarly, A can be defined as
a prohibited flying region for the UAS and the task becomes
monitoring the probability of the drone aiming to reach it. With
the proposed intent inference approach a number of areas,
Ai, i = 1, 2, . . . ,M , can be simultaneously considered and
no restriction on the region(s) shape is imposed in principle.

B. Related Work and Contributions

In recent years there has been a surging interest in predict-
ing intent (such as destination or future actions) of tracked
objects owing to its potential applications in smart navigation,
robotics, etc. Some methods, dubbed data-driven for instance
[6]–[8], capitalise on the availability of sufficiently large
data to train a prediction model (e.g. a neural network).
However, such training data may not be always available
and its collection-labelling can be prohibitively expensive. For
instance, data of drones flying within a surveillance area is
often limited due to operational constraints. Therefore, the
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intent prediction problem in this paper is tackled within a
Bayesian object tracking framework with minimal training
data requirements, only to parameterise the underlying models.
A model-based approach is subsequently designed which can
effectively infer the un-observable UAS intent.

Existing model-based intent inference techniques in object
tracking are largely focused on: 1) determining the target final
destination out of a finite set of nominal endpoints at known
locations, e.g. [9]–[13], see [14], [15] for an overview; 2)
destination-aware tracking based on reciprocal processes [16]
for pre-defined endpoints; 3) long-term trajectory forecasting
using motion models learnt in advance, e.g. [17], [18]. How-
ever, they either cannot be directly applied to scenarios where
the object destination is unknown a priori, time-varying and
can be anywhere in the considered region (i.e. a continuous
intent space), e.g. [9]–[15], or require an off-line training phase
for the learning of intent parameters [17], [18].

Compared to the above related work, here we introduce a
more natural solution to the considered intent prediction prob-
lem which relies on devising a dynamical model to the latent
intent and connecting it to the target (e.g. UAS) kinematic
states via some carefully designed stochastic process. The idea
is close in spirit to the virtual leader model [19], [20] and the
bulk model [21] for group tracking and has recently been used
for destination inference in [22], [23]. More specifically, in this
paper we
• introduce a probabilistic framework for the early detec-

tion of threatening/malicious drone intent (e.g. exiting or
reaching A) in non-cooperative surveillance contexts and
demonstrate its performance using real radar data,

• adopt a new modelling approach based on the virtual
leader setting in [20], however not for group object
tracking, but for predicting the target intent. The latter can
dynamically change over time here and the destination
sought by the object/UAS can be an extended spatial
region of any shape, located anywhere in the surveyed
area. Thus, it does not require the prior knowledge of a
set of possible endpoints as in [9]–[15],

• propose a simple, low-complexity, Kalman filter-based
inference scheme based on continuous state-space models
and asynchronous measurements can be treated.

II. MOTION AND INTENT MODEL

Since the movement pattern of a target is often related
to its underlying intent (e.g. reaching or remaining in a
given location or area), we consider a dynamical model that
represents the object motion under the influence of a latent
destination. Here, this hidden destination can dynamically
change over time and it is continuous in space. Specifically,
the applied model has the following state transition density

p(sn+1|sn) = p(xn+1, rn+1|xn, rn) (1)

with sn = [xn, rn]T being the overall state variable at tn.
Here, xn consists of object kinematic states such as position,
velocity and acceleration while rn is a latent variable for the
target/drone intent. Models with the structure depicted by (1)

have been widely studied and appeared under various guises in
the object tracking field. Examples include the virtual leader
model, e.g. [19], [20], the bulk model [21], and the latent
destination model [23]. In this paper, we adopt the following
linear stochastic differential equations (SDEs) for the object
motion xt = [xt, ẋt]

T and the intended destination location
rt = rxt in a 1-dimensional Cartesian coordinate system

dẋt = {ηx(rxt − xt)− ρxẋt}dt+ σxdBt (2)
drxt = σrdBt (3)

with ηx and ρx being positive constants. Bt is a 1-dimensional
standard Brownian motion and σx, σrx are the diffusion con-
stants. According to (2), the position and velocity of the object
will revert towards the location of the latent destination at rxt
and 0, respectively. The zero-reverting part −ρxẋt serves to
prevent the object velocity from becoming excessively high.
Consequently, (1) can be factorised as

p(sn+1|sn) = p(xn+1|xn, rn)p(rn+1|rn)

This model can be readily adapted to scenarios where the
object has a fixed final destination by setting σr = 0. It is
also possible to include higher-order kinematics, for instances,
st = [xt, ẋt, r

x
t , ṙ

x
t ]T with the velocity ṙxt the object velocity

reverts to being part of the state. In this case, the model bears
a resemblance to the group virtual leader model [20] with the
number of objects being one. Moreover, the presented model
can be used for estimating the intended destination of a fast-
manoeuvring object if (2) is, for example, Lévy process-driven
[23]. The above SDEs can be formalised in a vector-matrix
form as below, with st = [xt, ẋt, r

x
t ]T ,

dst = Astdt+ LdBst (4)

A =

 0 1 0
−ηx −ρx ηx

0 0 0

 , L =

 0 0
σx 0
0 σr

 , Bst = [Bt, Bt]
T

A k-dimensional system model can be obtained readily by
cascading several such 1-dimensional models. It can be shown
that the solution to (4) is given by:

sn = Fτsn−1 +

∫ τ

0

eA(τ−u)LdBsu

with τ = tn− tn−1 and Fτ = eAτ . Correspondingly, the state
transition density is of a Gaussian form:

p(sn|sn−1) = N (sn|Fτsn−1, Qτ ) (5)

where Qτ =
∫ τ
0
eA(τ−u)LLT eA(τ−u)T du.

It is emphasised that with this modelling approach the target
destination can: a) dynamically change over time subject to
the underlying stochastic model; b) be anywhere within the
surveyed region since rn is a continuous random variable with
a support Rk, where k = 1, 2 or 3.

III. PROPOSED INTENT PREDICTION METHOD

The pseudo-code of the proposed, simple, intent inference
routine at time tn is provided in Algorithm 1. Next, we detail
how this predictor is formulated.
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Algorithm 1 Intent Detection Algorithm
Input: mn, p(sn−1|m0:n−1)
Output: p(sn|m0:n), Pr(Des = A|m0:n)
1. Compute p(sn|m0:n−1) via standard Kalman prediction;
2. Compute p(sn|m0:n) via standard Kalman correction;
3. Obtain p(rn|m0:n) from p(sn|m0:n);
4. Compute the prob. of A being the destination via (7);

A. State estimation

The aim here is to estimate the latent destination density
p(rn|m0:n) given indirect sensor observations made up to
the current time tn, for instance noisy measurements of a
target trajectory in 2-D or 3-D. This can be the drone location
produced by the Gamekeeper radar as in Section IV. The
observation density is given by

p(mn|sn) = N (mn|Gnsn,Σn) (6)

where the observation matrix Gn extracts the Cartesian coor-
dinates from the state vector while Σn is the noise covariance
matrix. This particular setting immediately permits us to use a
Kalman filter for the online state estimation task. As a result,
we can easily obtain the desired latent destination posterior
density p(rn|m0:n) as a marginal of the overall Gaussian
distribution p(sn|m0:n). Nonetheless, it is worth pointing out
that the method proposed here is not limited to linear Gaussian
systems. When non-linear and/or non-Gaussian observation
model is treated, a particle filtering based scheme can be
applied for state (including intent) estimation.

B. Spatial region as the intended destination

Since the posterior density of intent is estimated in this
paper as described above, the probability that a target aims
to leave (or reach) an extended spatial region (or any point
within it) can be readily obtained by evaluating the integral

Pr(Des = A|m0:n) =

∫
A
p(rn|m0:n)drn, (7)

where A is the authorised/prohibited region. The integral in
(7) can be easily calculated for a Gaussian (or a mixture of
Gaussians) and regions of rectangular (or cuboid) shapes can
simplify the evaluation (e.g. using the multivariate cumulative
distribution functions). For other distributions and geometric
shapes, approximations can be applied and tractability of the
integral estimation should be considered. Whilst this will be
treated in more detail in future work, it is not expected to lead
to drastically different outcomes to approximating the area of
interest with L simpler shapes (e.g. rectangles, ellipsoids, etc.)
via

∑
l

∫
Al
p(rn|m0:n)drn.

Compared to examining specific spatial points or locations,
e.g. in [9], [15], calculating the probability that geographical
area(s) or any point/region within it/them in this paper is a
more generic and fitting formulation for the tackled problem
of early prediction of a threatening or anomalous drone
behaviour.

IV. EXPERIMENTAL RESULTS

To show the capability of the proposed intent inference ap-
proach real measurements, namely 3-D positional information
of the tracked-recognised drone, from Aveillant’s Gamekeeper
radar is used below. They are for a drone flight from the
SESAR SAFIR live demonstrations performed close to the
Port of Antwerp, Belgium, see [24]. We specifically consider
the task of predicting, as early as possible, when the drone
intends to leave an authorised flying zone, if at all. The
covariance of the noisy 3-D Cartesian observations from the
radar is given by Σn = 152I3×3.

A. Overview of Aveillant Gamekeeper radar

The Aveillant Gamekeeper 16U staring radar system in
Figure 1 has been specifically designed for high performance
detection-recognition of drones within the range of 7.5km in
its current configuration. It differs fundamentally from existing
mechanical or electronic-steering scanning radars by continu-
ously illuminating the volume of interest on transmit and forms
multiple simultaneous receive beams. This enables continuous
dwelling on target and provides exceptionally detailed target
specific measurements (e.g. high Doppler resolution) that
are utilised by specialised processing techniques for better
detection, tracking in 3-D and discrimination of slow, low
altitude, and small UAS targets [2], [3].

B. Considered Scenarios

Here, a “permitted” geographical area A is artificially
chosen to enable assessing the following two settings:
• Drone remains in the region: in this example A covers all

of the six waypoints of the drone trajectory as depicted in
Figure 2. It can be seen from the figure that the calculated
probability of the drone intending to remain in the autho-
rised area (or equivalently having a destination within
it) at each time step is noticeably high. For instance,
the introduced prediction algorithm reports probabilities
consistently above 0.8 when σr = 25. Although σr = 0
consistently produces probabilities of one, the model in
this case assumes a fixed latent destination which renders
the proposed approach not capable of effectively handling
change in intent (e.g. exist or re-entry as in the next

Fig. 1. Aveillant’s Gamekeeper staring radar.
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Fig. 2. A drone flying in a permitted zone A (shaded region). Top: estimated
probabilities of the drone intending to stay in A for various parameters of the
proposed approach; vertical lines indicate the timings when the UAS reaches
each of its six waypoints. Bottom: filtered target track and its color signifies
the probability of UAS remaining in A for σr = 25; t0 = 0s is the flight
start time.

example). Further, several fluctuations in the calculated
probabilities can be observed. This is to be expected and
reflects the fact that the algorithm does respond to a
target behaviour that might suggest it is intending to exist
A such as approaching the region boundary (e.g. whilst
heading to waypoint 6 towards the end of the flight) or
seemingly heading there (e.g. when it nears waypoint 1
and travels between waypoints 1 and 2). At such time
instants, the drone velocity can be key to determine the
underlying intent; this is seamlessly considered by the
proposed inference technique and it is incorporated in
the adopted extended motion and intent model.

• Drone exits and re-enters the region: in Figure 3 the
authorised zone A is now shifted such that the drone
waypoints 1 and 2 are outside A. It is clear from the
figure that the applied predictor can reveal, away from
the boundary and with increased confidence, the drone
intent to: a) leave A shortly after take-off at t0 (i.e.
near waypoint 6) where the probability rapidly decreases
during this flight section and then reduces to nearly zero
as the target exits the permitted region, and b) enter again
A when travelling from waypoint 2 to 3 and quickly

Fig. 3. An example with the drone exiting region A (shaded region) at
tout ≈ 13.1s and then re-enters at tin ≈ 67.2s; t0 = 0s is the flight start
time. Top: estimated probability of the target intent to remain in A and the
six vertical lines indicate when the drone reached each of the six waypoints
in its trajectory. Bottom: filtered target track and its color signifies probability
of the drone remaining in or entering A for σr = 25.

becomes nearly 1 as the UAS re-enters the authorised
area. Conversely, region A can be treated as a prohibited
region and the objective is then to detect if the drone
aims to reach it. In this case, the predictor can infer
the UAS intent to enter this region well before it does
(approximately 17.2s in advance from waypoint 2). It can
also be noticed that there are several drops (except when
σr 6= 0) in probabilities when the drone travelled from
waypoint 5 to 6. This is attributed to the drone undertak-
ing manoeuvring turns during this leg of the journey and
its velocity can support the possibility that it might leave
the area. The algorithm responds accordingly, especially
as the drone nears the boundary of A at waypoint 6. It is
noted that such unsmooth track sections can be induced
by noisy sensor observations. Again, assuming a fixed
latent destination makes the algorithm insensitive to the
change of intent; this is obvious from Figure 3 top panel
where the predictor with zero destination process noise
takes substantially longer time to react to the re-entry
intent in comparison to a non-zero σr accounting for a
dynamically changing intent.

It must be noted that the available short real drone trajectory
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(just over two minutes) is for a benign waypoint driven
flight. This should be taken into account when assessing the
advantages of the presented inference framework, namely how
early it can reveal a malicious behaviour should be viewed
relative to the corresponding time between a waypoint and the
drone exist/entry location to A. Whilst remarkably early intent
predictions can be delivered by the introduced algorithms
for longer UAS threatening tracks, this will require further
evaluation from representative data for such scenarios; a topic
that can be addressed in future work.

The above two examples clearly illustrate the efficacy of
the proposed approach, which can give additional time for
the non-cooperative surveillance system to take timely action
to minimise the impact of a drone threatening or anoma-
lous behaviour. This includes warning the drone operator (if
possible) and employing secondary systems. On the other
hand, alternative simple methods (e.g. those based on the
observed drone’s positions and proximity to a region) do not
have a predictive capability and typically report a problem
when the drone has already left (or reached) A. They can
also be prone to errors due to inaccurate sensor observations,
unlike here where suitable models are applied and inference
is done sequentially such that the intent prediction certainty
is propagated throughout the target track. Additionally, late
threat detection can in some cases lead to drastic measures
such as triggering an alarm and closure of airspace.

V. CONCLUSION

A Bayesian inference approach for the detection of drone
threatening behaviour in a surveyed region is presented. Whilst
it is discussed in the context of radar-based non-cooperative
drone surveillance, the introduced framework is agnostic to
the employed sensor (i.e. not limited to radar) and/or the
target type (i.e. not necessarily a UAS). The intent detec-
tion approach can facilitate automated decision making and
resource allocation in UMTS. More importantly, it is software-
based and can be employed by an extant systems, e.g. at the
command and control level. In a future publication, we will
report on additional work that we have carried out under this
DSTL contract in which waypoints for drones are explicitly
detected and learned from the data within a jump particle filter
framework, reporting tracking as well as more intent prediction
results.
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Abstract—Bi-static sensing, where the transmitter and receiver
of sensors are separately located, underlies a wide range of
collaborative sensing systems. Bi-static detections generally fea-
ture a signal time-of-flight (ToF) and an angle-of-arrival (AoA).
The current practice in multi-object tracking uses the bi-static
geometry to map these pairs onto a selected coordinate frame
and filter the mapped detections with a noisy range-bearing (i.e.,
a mono-static) sensor model. However, the uncertainties in ToF-
AoA pairs are not equivalently captured by this model, and the
sensing geometry may result in significant degradation of the
modelling accuracy. We introduce bi-static likelihood and false
alarm models together with Monte Carlo (MC) computational
methods to accurately capture the uncertainties involved and use
them within Bayesian filtering. We demonstrate the efficacy of
our proposed model in simulations with multiple objects using a
sequential MC version of the generalised labelled multi-Bernoulli
(GLMB) track filter. We compare the filtering performance with
the conventional approximation mentioned above.

I. INTRODUCTION

Situational awareness in both defence and non-defence con-
texts benefits from separately placed transmitter and receiver
nodes. These systems provide spatial diversity that improve
the sensing performance [1], [2], flexibility in resource use,
and, robustness against failures. Example applications include
underwater surveillance using multi-static sonar networks [3]–
[5] (including ‘dipping’ sonars and sonobuoys deployed from
helicopters), counter rocket-artillery-mortar (CRAM) appli-
cations [6], and urban air space control with multi-static
radars [7].

Each separately located transmitter/receiver pair in these
systems form a bi-static pair as the atomic active sensing unit
to consider when processing the signals [8]. In this work, we
consider Bayesian filtering of detections from bi-static pairs
and estimating the number of objects and their trajectories,
i.e., bi-static tracking, motivated by the above mentioned
applications.

Coupled with a bi-static detection are estimates of the angle-
of-arrival (AoA) and time-of-flight (ToF) of the signal that
has led to the detection. The AoA is the angle with which
the wavefront of the probing pulse sent by the transmitter has
arrived at the receiver after getting reflected by the object of
interest, or background reflectors (see, Fig.1). The ToF is the
time it took for the probing signal to travel from the transmitter
to the reflector and then to the receiver. The product of ToF
with the propagation speed is often referred to as the bi-static
range.

Fig. 1: Bi-static sensing: A transmitter (orange triangle) sends
a probing waveform at time zero, a reflector (blue circle) is at
[x, y]T moving with velocity [ẋ, ẏ]T , and a receiver (orange
circle) receives the reflected probe at time τ with wavefront
approach angle θ.

Bi-static detections involve uncertainties in these estimates,
thus, AoA and ToF are noisy. In addition, some of these
detections may be false alarms. Bayesian filtering algorithms
take into account these uncertainties through measurement
likelihood and clutter models [9], [10]. As a result, the fidelity
of these models directly affect the tracking performance.

A common practice in tracking with bi-static detections is
to map pairs of AoA and ToF onto the Euclidean plane, i.e.,
calculate the coordinates of the reflector position in Fig.1, and
use range-bearing uncertainty models (see, e.g., [11], [12]).
However, conventional likelihood and clutter models in the
range-bearing domain are valid for mono-static configurations
in which the transmitter and the receiver are co-located. The
degradation in modelling accuracy might be small when the
reflector is located at a much larger distance compared to the
bi-static baseline, i.e., the distance between the transmitter
and the receiver. In some applications including underwater
sensing, however, such advantageous geometries should not
be expected, especially when mobile transmitter and receiver
platforms are used [5].

We address modelling of bi-static measurements in Bayesian
track filtering by directly relating (ToF, AoA) pairs to the
reflector kinematics thereby resolving the discrepancy of the
measurement noise model in the above mentioned standard
approximation. This also allows us to specify false alarms
distribution in the original measurement domain as per the
modelling requirements in tracking [13] and avoid false track
initiations that stem only from imprecise modelling of false
alarms. The result is an endogenous generative model for bi-
static detections collected in scans.

The structure of the paper is as follows: In Sec. II we
introduce the endogenous bi-static model and compare it
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with a standard approximation. We explain how this model
is used in multi-object tracking in Sec. III. We demonstrate
the efficacy of our approach through a simulation example in
Sec. IV, and, finally we conclude.

II. BI-STATIC DETECTIONS AND MODELLING

In a bi-static system, a transmitter located at xtx probes a
region of interest with a waveform (Fig. 1). A receiver located
at xrx collects reflected signals from the region and processes
the front-end signals to detect reflected replicas by matched
filtering [14].

Each detection is associated with the total time for the
probing waveform to propagate and reach the reflector and be
received at the receiver, i.e., ToF. Let us denote this quantity
by τ , the total length of the path by R̃, and the propagation
speed by c (assumed constant for simplicty). For a reflector
located at x, the ToF is given by

τ =

(
‖xtx − x‖+ ‖xrx − x‖

)
c

, (1)

where ‖.‖ denotes the l2 vector norm and the numerator R̃ ,
τ×c is referred to as the bi-static range. Note that this value is
lower bounded by the baseline distance between the transmitter
and the receiver Rb. Iso-range curves are hence ellipsoids with
xtx and xrx at the foci [15], [16].

In this work we assume that the receiver is capable of
finding the AoA of the detected signal wavefronts given by

θ = ](x− xrx). (2)

Some bi-static systems can measure the Doppler shift of the
detected signals and distinguish between returns from moving
targets of interest and stationary objects. However, the focus of
this paper is on settings where such processing is not available.

Measurement likelihood models relate a state vector x that
is often selected as a concatenation of a location x and a
velocity vector ẋ. The above ToF and AoA equations (1) and
(2) specify a bi-static mapping z = B(x;xtx, xrx) where z ,
[τ, θ]T denotes a bi-static measurement and T is the vector
transposition operation. The deviations that lead to errors in
τ and θ exhibit the law of large numbers and the errors are
normal. Therefore, the likelihood function is given by

l(z = (τ, θ)|x;xtx, xrx) = N (z;B(x;xtx, xrx),ΣB), (3)

where the right hand side of the above equation is a bi-variate
Gaussian with a covariance of ΣB . For example, invoking the
assumption that the errors in τ and θ are independent leads
to a diagonal covariance matrix ΣB = diag(σ2

τ , σ
2
θ) where

σ2
τ and σ2

θ are the noise variances in ToF and AoA values,
respectively.

The false alarms in Bayesian track filtering algorithms are
modelled using a population process on the measurement
space which is Z = (τmin, τmax]× [0, 2π) where τmin = Rb/c
is the elapsed time for a transmitted waveform to propagate
along the baseline distance from the transmitter directly to the
receiver. Often a Poisson distribution with rate λ and uniform
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(b) Widely-used surrogate

Fig. 2: Likelihoods evaluated for (τ = 10
√

2c, θ = 3π/4) and
στ = 0.1s, σθ = 1rad over a grid of reflector positions in the
x − y plane using (a) the endogenous bi-static model (3) for
a transmitter and receiver located at x = −5c and x = 5c,
respectively, and, (b) the surrogate model (5) for a virtually
co-located transmitter/receiver located at x = 5c.

spatial distribution over the measurement space Z are used.
Let us denote this distribution by

κ(z) = Pois(λ,UZ), (4)

where UZ denotes a uniform density over Z .
The endogenous bi-static model in (1)–(4) directly fits

into the dynamic multi-object models used in Bayesian track
filtering [17] as the measurement model.

A. Widely used surrogate likelihood

Most work on bi-static tracking replaces the bi-static mea-
surement pair with the corresponding point on the Euclidean
plane. Then a virtual co-located transmitter/receiver pair lo-
cated at xvs measures the range and bearing of this point.
However, the uncertainties in the bi-static domain are not
transformed. Instead, the likelihood function used in Bayesian
filtering implies that the errors of these virtual measurements
are assumed to be normal, i.e.,

lS(z|x) , N
(
B(y;xvs, xvs);B(x;xvs, xvs), Σ̃S

)
(5)

y , B−1
(
z = [τ, θ];xtx, xrx

)
,

with the inverse transform above explicitly given in the Ap-
pendix.

It is instructive to compare the bi-static likelihood in (3)
and the widely used surrogate in (5). Both likelihoods use a
Gaussian template, however, the domain of the distributions
are different because the surrogate model transforms the bi-
static measurement to a virtual mono-static sensor’s measure-
ment parameterised on xvs. When x is much more distant
than the bi-static baseline, i.e., ‖x− xtx‖ ≈ ‖x− xrx‖ �
‖xrx − xtx‖, the region of typical measurements in both
likelihoods are similar. However, when this condition is not
met, there might be large discrepancies. Moreover, the level
of accuracy varies with xvs given xrx and xtx making it
impractical to optimise when transmitter/receiver platforms are
mobile.

We illustrate a comparative example in Fig. 2. We consider
a transmitter located at xtx = [−5c, 0]T and a receiver at
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xrx = [5c, 0]T with c denoting the propagation speed (see,
also Fig. 1). We evaluate the endogenous likelihood in (3)
for z = (10

√
2c, 3π/4), στ = 0.1s, σθ = 1rad, and a grid

of x over which the likelihood evaluates larger compared
to other possible values of x. The resulting contour map is
given in Fig. 2a. In order to visually reveal the effects of
using the surrogate, we repeat the evaluation with (5) for a
virtual co-located transmitter/receiver pair at xvs = [5c, 0]T .
The resulting contour map is in Fig. 2b. The uncertainty
regions in Fig. 2a and Fig. 2b appear similar to ellipses
with almost perpendicular minor and major axes which results
in significantly different posterior distributions when these
likelihoods are used in a Bayes update.

The surrogate likelihood (5) imposes the use of a different
clutter distribution than (4). This distribution is (equivalently)
selected to have a uniform spatial distribution over ZS =
(0, τmax) × (0, 2π], instead of Z defined above which leaves
out [0, τmin] in its domain. In other words, instead of κ(z)
in (4),

κS(z) = Pois(λ,UZS ) (6)

is used in filtering bi-static detection with the surrogate model.

III. BI-STATIC UPDATE IN BAYESIAN TRACKING

In this section, we address the utilisation of the proposed
bi-static model in multi-object filtering and in particular in
sequential Monte Carlo (SMC) generalised labelled multi-
Bernoulli filtering (GLMB). The measurement likelihood func-
tion of the GLMB filter is introduced in Sec. III-A. Important
aspects of the filter implementation that recursively computes
the filtering posteriors using this likelihood are highlighted in
Sec. III-B.

A. Generalised labelled multi-Bernoulli filter [9]

The GLMB model and recursive Bayesian filtering formulae
were introduced in [9] to address estimation of target tra-
jectories in a random finite set (RFS) framework. The com-
putational details of the prediction and measurement update
equations of the GLMB filter can be found in [18]. For the
sake of simplicity, we shall limit the discussion to the multi-
object measurement likelihood function which encapsulates
all elements directly affected by the sensor modelling and
evaluated in the update step.

A population of objects is described by a multi-object state
X in an appropriate state space X . At time k, each object
with state (x, `) ∈ X , comprising a kinematic state x and
a discrete label ` described by its state space L, is detected
with probability pD(x, `), and if so, it produces a measurement
whose state is distributed according to a likelihood l(·|x, `).
The multi-object observation Z = {z1, . . . , z|Z|} ∈ Z is then
the union of measurements of detected objects and Poisson
distributed false alarms arriving with intensity κ.

Let hX ,
∏

x∈X h(x) denote multi-object exponential
of the real-valued function h. Under assumptions that the
measurements originating from object detections are generated
independently from each other, and the false alarms are

independent of the detections, the multi-object likelihood is
given by [18]

g(Z|X) = e−
( ∫

κ(z′)dz′
)
κZ

∑
θ∈Θ(L(X))

[
ψZ(·; θ)

]X
, (7)

ψZ(x, `; θ) =


pD(x,`)l(zθ(`)|x,`)

κ(zθ(`))
, if θ(`) > 0

1− pD(x, `), if θ(`) = 0
. (8)

Here, θ : L → {0, 1, . . . , |Z|} is an association map that
hypothesises track l generated measurement θ(l) and imposes
the constraint that a single track can generate at most one
measurement. pD is the probability of detection as a function
of the target state. It can be selected as zero if x is on the
path between the transmitter and the receiver to account for
the receiver being blinded by the direct path signal.

In (7), Θ(L(X)) is the subset of association maps from
those labels only in X , i.e., L(X) where L({(x, `)}) , `.
Thus, GLMB filtering marginalises out all such hypotheses
unlike tracking algorithms that find the most likely global
association hypothesis [9], in principle. The implementation
approach we adopt from [18] uses Murty’s algorithm [19]
to approximate (weighted) summations of these terms when
computing the filtering posterior with the above likelihood.

In summary, the multi-object measurement likelihood
in (7), (8) captures a sensor-specific single-object measurement
likelihood, detection and false alarm models. In Section IV,
we compare the proposed endogenous model l(z|x), κ(z) with
the widely used surrogate model lS(z|x), κS(z) in the tracking
performance they result when used in (7), (8) .

B. Implementation details

In this paper we are using the SMC (or particle) imple-
mentation of the GLMB filter, with details available in [18],
[20]. Thus, the filtering update boils down to evaluating the
proposed likelihood at the particle points and the false alarm
function for the bi-static measurements.

The standard GLMB formulation [18] assumes a priori
information on object birth, which is rarely available in
practice. Therefore, this paper adopts an adaptive birth model
that initiates the birth components from measurement data [21]
(for a similar approach, see also [22]).

IV. EXAMPLE

In this section, we provide an example in which there are
four objects moving with almost constant speed, and, a mobile
transmitter platform and a receiver both following a clock-wise
arc as depicted in Fig. 3. The propagation speed is selected as
c = 1490 m/s which is one of the typical configurations when
using underwater sonar. The transmitter is omni-directional
and sends the probing waveform to the environment every
20 seconds. The receiver detects reflections with probability
PD(x) = 0.95 (independent of the state, for simplicity) and
finds ToF and AoA with standard deviations of στ = 0.1s and
σθ = 1rad, respectively. The expected number of false alarms
is selected as λ = 5. We consider 50 scans. The resulting bi-
static ToF and AoA measurements are given in Fig. 4a. The
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Fig. 3: Multi-object bi-static tracking scenario: Trajectories of
the objects, transmitter platform and the receiver platform.
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Fig. 4: (a) Bi-static ToF and AoA measurements over time.
(b) Virtual mono-static ToF and AoA measurements.

ToF is lower bounded by the time it takes for one transmitted
pulse to travel directly from the transmitter to the receiver.

First, we use the proposed endogenous likelihood and false
alarm model (1)–(4) in GLMB filtering implemented using
SMC as detailed in Section III-B. The trajectories output for
the bi-static ToF and AoA measurements in Fig. 4a are given
in Fig. 5. The results exhibit a reasonable level of accuracy
in estimating the number of trajectories and localisation. It
is noted that the track continuity for the horizontal northern
trajectory is not as good as that for the other three trajectories.
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Fig. 5: Estimated trajectories using the endogenous bi-static
model in GLMB filtering. Different track labels are depicted
with different colours.
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Fig. 6: Estimated trajectories using the surrogate observation
model in GLMB filtering. Different track labels are depicted
with different colours.

This might be related to the bi-static geometry of this track.
Before continuing with the a quantitative assessment of the
tracking performance, we present the results obtained using
the surrogate model.

The widely-used surrogate model in bi-static processing
uses mono-static ToF and AoA measurements as explained in
Sec. II. These measurements for a virtual transmitter/receiver
pair following the original bi-static receiver’s location are
given in Fig. 4b. We filter these measurements using the
surrogate model in the GLMB filter. The resulting trajectory
estimates are given in Fig. 6. Note that there are false trajecto-
ries around the vertical track in the East. The track continuity
and localisation accuracy for the horizontal track in the North
is also worse compared to that obtained by using the proposed
approach.

We make a quantitative comparison of the tracking perfor-
mances by using the OSPA-on-OSPA, or, OSPA2, distance
metric for trajectories [23]. OSPA2 satisfies the metric ax-
ioms between arbitrary sets of trajectories and penalises track
switches along with location and cardinality errors.

First, we evaluate the OSPA2 between the ground truth
in Fig. 3 and the estimates output by the proposed model
in Fig. 5, and, depict the results in Fig. 7. Specifically, we
perform the evaluation for 5 scan long time windows after
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Fig. 7: OSPA2 error metric from the ground truth to the
estimated trajectories using the proposed model (blue lines)
and the widely-used surrogate (red lines): Total OSPA2 (top),
localisation error (mid-pane) and cardinality error (bottom).

partitioning the trajectory sets over time to understand the
dynamic behaviour of the errors. The OSPA order and the cut-
off parameter used are p = 1 and c = 1500m, respectively,
with the l2 distance as the base distance. OSPA2 can be
decomposed into a localisation error and a cardinality error
(i.e., error in the number of trajectories). The total error,
localisation error and the are depicted by blue lines in Fig. 7.

Second, we find the error figures for the surrogate model
which are given in red lines. The proposed approach consis-
tently performs better than the widely-used surrogate model
in terms of localisation accuracy, avoidance to initiating false
trajectories and total OSPA2.

V. CONCLUSIONS

In this work, we have considered Bayesian filtering of bi-
static detections for multi-object tracking and proposed an
endogenous likelihood and false alarm model. The modelling
assertion is that the errors in the time-of-flight and angle-of-
arrival values associated with bi-static detections are Gaussian,
but distinct from the usual approximations used for mono-
static detections. The model is amenable for Monte Carlo
computational methods in Bayesian tracking. In a simulated
example, we have demonstrated that the proposed model
outperforms a widely-used standard approximation.

APPENDIX

A. Inverse bi-static mapping B−1

Let us consider the inverse bi-static mapping given by
B−1 : (τmin, τmax] × [0, 2π) × R2 × R2 → R2 which
maps bi-static measurements to points in the Cartesian space
given the location of the transmitter and receiver, i.e., y =
B−1(τ, θ;xtx, xrx). Let us denote the bi-static range of the
ToF by R = c×τ , the unit vector pointing at the AoA by e ,
[cos(θ), sin(θ)]T , and the bi-static baseline by b = xtx−xrx.
Then, the point y on the Euclidean plane that induces the bi-
static pair (τ, θ) is found as

y = xrx +
R2 − bTb

2R− 2bTe
e. (9)

ACKNOWLEDGEMENT

The authors would like to thank the UK Defence Science
and Technology Laboratories (Dstl, Grant no. 1000143726)
for financial support as part of Project BLUE, which is part
of the UK MoD University Defence Research Collaboration
(UDRC) in Signal Processing.

REFERENCES

[1] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO Radar with
Widely Separated Antennas,” IEEE Sig. Proc. Mag., vol. 25, no. 1, pp.
116–129, 2008.

[2] Y. Pailhas, Y. Petillot, K. Brown, and B. Mulgrew, “Spatially distributed
mimo sonar systems: Principles and capabilities,” IEEE Journal of
Oceanic Engineering, vol. 42, no. 3, pp. 738–751, 2017.

[3] R. Tharmarasa, T. Kirubarajan, and T. Lang, “Joint path planning and
sensor subset selection for multistatic sensor networks,” in 2009 IEEE
Symp. on Comp. Int. for Security and Defense App., 2009, pp. 51–8.

[4] G. Yang, Y. Li, X. Xiang, and Z. Wang, “Review of development of
multi-static sonar for underwater object detection,” in 2012 International
Conference on Computer Application and System Modeling, 2012.

[5] G. De Magistris, M. Uney, P. Stinco, G. Ferri, A. Tesei, K. Le Page,
“Selective information transmission using convolutional neural networks
for cooperative underwater surveillance,” the Proc. of FUSION’20, 2020,
pp. 1–8.

[6] J. F. Ralph and J. M. Davies, “Semi-active guidance using event driven
tracking,” in the Proc. of FUSION’11, 2011, pp. 1–7.

[7] B. Griffin, A. Balleri, C. Baker, and M. Jahangir, “Optimal receiver
placement in staring cooperative radar networks for detection of drones,”
in 2020 IEEE Radar Conference (RadarConf20), 2020, pp. 1–6.

[8] J. Li and P. Stoica, Eds., MIMO Radar Signal Processing. John Wiley
& Sons, 2009.

[9] B. -T. Vo and B. -N. Vo, “Labeled random finite sets and multi-object
conjugate priors,” IEEE Trans. on Sig. Proc., vol. 61, no. 13, pp. 3460–
3475, 2013.
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Abstract—Graph filters (GFs) have attracted great interest
since they can be directly implemented in a diffused way. Thus
it is interesting to investigate GFs to implement signal processing
operations in a distributed manner. However, in most GF models,
the input signals are assumed to be time-invariant, static, or
change at a very low rate. In addition to that, the GF coefficients
are usually set to be node-invariant, i.e. the same for all the
nodes. Yet, in general, the input signals may evolve with time
and the underlying GF may have parameters dependent on
the nodes. Therefore, in this paper, we consider dynamic input
signals and both types of GF coefficients, node-variant, i.e. vary
on different nodes, and node-invariant. Then, we apply LMS
and RLS algorithms for GF design, along with two others
called adapt-then-combine (ATC) and combined RLS (CRLS)
to estimate the GF coefficients. We study and compare the
performance of the algorithms and show that in the case of
node-invariant GF coefficients, CRLS gives the best performance
with lowest mean-square-displacement (MSD), whereas, for node-
variant case, RLS represents the best results. The effect of bias
in the input signal has also been examined.

Index Terms—Graph Signal Processing, Graph Filtering, Dis-
tributed Processing, Adaptive algorithms

I. INTRODUCTION

In order to infer information from sensor networks, con-
ventional centralized processing is often used but may require
high transmission power, large communication bandwidth, and
costly energy consumption in the central unit. Therefore, a
distributed approach has been suggested where each node only
communicates with its neighbouring nodes, exchanging the
information locally, and has its own light processing unit [1]–
[4].

A sensor network can be modelled as a graph where the
sensors are represented as graph nodes and the inter-sensor
communications links are denoted as graph edges. As such,
we can apply graph signal processing (GSP) methods, which
has emerged recently to extend the classical signal processing
concepts to the signals on the vertices of a graph [5]. Spectra
of graphs, graph filters (GFs) and other tools to process graph
signals are defined accordingly [6], [7]. A practical benefit of
GFs is that they may be directly implemented in a distributed
manner [8]–[12].

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1 and the MOD
University Defence Research Collaboration in Signal Processing.

GSP has been applied to various applications ranging from
social media webs, brain activity connections and wireless
sensor networks, to power grids and transportation networks
[6]. For defence applications, one can imagine situations where
a number of sensors, such as sonobuoys or disposable RF
connected sensors, are deployed to communicate and infer
information based on the observations and measurements.
These sensors can be considered as the nodes in a graph and
then GSP methods, such as GF, can be applied to analyse the
data more efficiently in a distributed fashion.

Graph filtering is one of the core tools in GSP, which can
be exploited to represent a transformation of the graph input
signals.In the general case, a GF is a transformation matrix
mapping the input signal, x, to the output. Therefore, any
linear transformation, T(x) = Bx, can be implemented by a
GF. Since the structure of the network, the graph topology,
is fundamental in distributed processing, it is required to
incorporate the graph shift operator, S (a matrix representing
the graph structure) in the GF design. In this paper, we
assume that B is shift invariant with respect to S and can
be represented as a polynomial of S, i.e. S is shift enabled
[11].

In most models such as [12]–[14], the input signals on the
nodes are assumed to be static, i.e. time-invariant, which is not
always true. Therefore, in [9], a GF model is introduced which
incorporates the time-varying behaviour of the signals. Even
though this model is more general, the authors still assume
that the GF coefficients are node-invariant, i.e. are the same
on different nodes. On the other hand, in [13], node-variant
filters are proposed such that the coefficients vary from node
to node. It gives more flexibility which enables the design of
more general filters with lower orders. Nevertheless, the model
is for time-invariant inputs. Therefore, to be more generic, we
consider a node-variant GF model, with time-variant inputs.

Having decided on the GF model, we need an algorithm
to estimate the GF coefficients. Given the reference system
we then use adaptive GF algorithms to estimate the coeffi-
cients. First, we consider an adapt-then-combine (ATC) least
mean squares (LMS) algorithm which combines the estimated
coefficients on the neighbouring nodes [9]. We compare this
to an LMS algorithm that operates independently on each
node, which is equivalent to ATC without its combine step,
and therefore permits a node-variant solution. In addition to
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that, we apply the recursive least square (RLS) algorithm in
[14] to use it for graph filter design by integrating the graph
shift operator (GSO) in the model. As in [14], we also add
a combine step to RLS, called combine RLS (CRLS), which
makes it comparable to ATC. Ultimately, we implement these
approaches and compare their performance with biased and
unbiased time-variant input signals.

In the following, we start with a review of graph filter design
in Section II. Then in Section III we explain adaptive filters on
graphs. Section IV is dedicated to experimental results, while
conclusions are drawn in Section V.

II. GRAPH FILTER DESIGN AND IMPLEMENTATION

Various approaches to designing a distributed system are
possible. Here we envisage finding the coefficients off-line
for the GF design. Then the GF and hence T(x) can be
implemented in a distributed manner.

A. Graph Filter Models

Let us consider an undirected graph G with a set of N nodes
or vertices, N , and a set of edges or links, E , such that if node
i is connected to node j, then (i, j) ∈ E . The neighbourhood
of node i is defined as the set of nodes Ni = {j|(i, j) ∈ E}
connected to i including node i itself. For any given graph, an
adjacency matrix, A, is defined as an N × N square matrix
with non-zero elements aji ∈ R if and only if (i, j) ∈ E . For
each graph, there exists a GSO, S, which can be chosen as A,
the adjacency matrix, or L, the Laplacian matrix [6], [7]. In
this paper we will be using the adjacency matrix as the shift
operator.

In GSP applications, one is interested in the analysis of
signals on the graph, defined by x = [x1, x2, ..., xN ]T ∈ RN ,
where xk represents the value of the signal at node k. The
graph signal at discrete time t is denoted by x(t). In distributed
processing problems, we have a transform, T, which maps
the input graph signals, x(t), to the desired outputs on the
nodes, y(t) = T(x(t)). Recall that T(x) can be represented
as a polynomial in the shift matrix. Our goal is to model this
transform as a GF.

In this section we start with node-variant GFs with time-
varying inputs. We also assume that the shift operation takes
a non-negligible amount of time with the same delay as the
sampling period of the input signal. In this node-variant case,
the GF coefficients are different on each node, k, and can
be put in an M ×N matrix D with each element D(m, k) =
hom,k, being the optimal mth coefficient on the kth node. Then,
an N element vector h(m) can be defined as the mth row of
D, while the kth column of D can be symbolized by an M×1
vector ho

k. The filter model can be then described as:

y(t) =

M−1∑
m=0

diag(h(m))Smx(t−m) + v(t), (1)

where M is the order of the graph filter, and v(t) =
[v1(t), v2(t), ..., vN (t)]T is multivariate Gaussian distributed
noise which may not be always present, but we include that
to be comparable to the model in [9].

For the simplest case where the coefficients are node-
invariant, all the N elements of h(m) will be the same on
different nodes, and so diag(h(m)) = INh

o
m, hom ∈ R.

Thus for the time-invariant input and node-invariant filter, the
equation can be written as:

y(t) =
M−1∑
m=0

homSmx(t) + v(t). (2)

In other words, the general model (1) becomes time-
invariant just by setting x(t − m) = x(t) for all m, and
node-invariant by setting hom,k = hom for all k, enforcing the
coefficients to be the same on different nodes as in (2).

III. ADAPTIVE FILTERS ON GRAPHS

Based on (1) for the general node-variant case, the output
signal on each node, say kth node, yk(t), can be modelled
separately as:

yk(t) =
M−1∑
m=0

hom,k[S
mx(t−m)]k + [v(t)]k, (3)

where [.]k represents the kth row of a vector.
Similar to [9], we define vector z(t −m) , Smx(t −m),

and then an M × 1 vector zk(t) as:

zk(t) , col{[z(t)]k, [z(t− 1)]k, ..., [z(t−M + 1)]k}. (4)

Then (3) can be written alternatively as:

yk(t) = zTk (t)h
o
k + vk(t), t ≥M − 1. (5)

where the optimum ho
k is the kth column of D, and the

adaptive filter model is zTk (t)hk. We then define a global cost
function:

J(D) =
N∑

k=1

Jk(hk), (6)

where Jk(hk) is the local cost function at node k which can
be mean square error for LMS based algorithms:

Jk(hk) = E{|yk(t)− zTk (t)hk|2}, (7)

or weighted least squares error function for RLS based algo-
rithms:

Jk(hk) =
t∑

i=1

λt−i|yk(i)− zTk (i)hk|2, (8)

where λ is a forgetting factor. This optimization problems
are to be solved using adaptive methods as described in the
following sections.
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A. LMS-Based Algorithms

In [9] the ATC approach is proposed to estimate the filter
coefficients iteratively:{
ψk(t+ 1) = hk(t) + µkzk(t)(yk(t)− zTk (t)hk(t)),
hk(t+ 1) =

∑
l∈Nk

clkψl(t+ 1),
(9)

where hk(t) is the vector of filter coefficients updated at
time t, µk the step-size, and clk are non-negative combination
factors:

clk > 0,
N∑
l=1

clk = 1 and clk = 0 if l /∈ Nk. (10)

In other words, C , [clk] is a left-stochastic matrix and
ψk(t+1) is an M×1 intermediate vector to represent the two
step algorithm. As a result, the coefficients will be averaged
over the nodes, converging to the same values on different
nodes. Thus, the ATC is intended for a problem with node-
invariant coefficients.

To modify this algorithm to be node-variant we effectively
remove the combine step by setting the combination matrix C
to an identity matrix I.

B. RLS-Based Algorithms

In this section, we apply the RLS algorithm for use with a
graph. We incorporate the structure of the underlying graph of
the network by including the GSO, S. Moreover, we estimate
distinctive parameters (GF coefficients) on each node. Even
though the RLS algorithm has previously been applied to a
sensor network problem in [14], the authors did not include
the shift operator in the model.

To perform an RLS algorithm, the weighted sample covari-
ance matrix at each time is required:

R̂zk
(t) =

t∑
i=1

λt−izk(i)z
T
k (i) + λtδIM , (11)

where zk(t) is the vector defined in (4) which can also be
represented as:

zk(t) , [x(t),Sx(t− 1), ...,SM−1x(t−M + 1)]Tk . (12)

The parameter, λ, is the forgetting factor and δ is a small
positive number that serves as a regularization parameter.
We need the inverse matrix Pk(t) = R̂−1zk

(t) which is not
feasible to calculate in a compact form. Therefore, we update it
iteratively along with the coefficients. The following algorithm
is RLS with a combine step which we call CRLS. This is a
modified version of Diffusion BC-RLS algorithm in [14], but
with the GSO, S, incorporated in the regressor, zk(t), and no
compensation step:

Pk(t+ 1) = λ−1
(
Pk(t)−

λ−1Pk(t)zk(t)z
T
k (t)Pk(t)

1 + λ−1zTk (t)Pk(t)zk(t)

)
φk(t+ 1) = hk(t) +Pk(t)zk(t)(yk(t)− zTk (t)hk(t)),

hk(t+ 1) =
∑
l∈Nk

cklφk(t+ 1). (13)

Similar to ATC, CRLS has a combine step with combination
matrix C, which averages the coefficients across the neigh-
bouring nodes. Therefore, it is also a node-invariant algorithm.
For the node-variant case we effectively remove the combine
step by setting the C to an identity matrix I. This results in a
node-variant RLS algorithm.

C. Effect of Biased Graph Signals

The data that has been addressed in various other publica-
tions [9], [13], [14], are often assumed to be zero-mean. It
is possible that the graph signal, x(t), is not zero mean [9].
Therefore, we briefly investigate the effect that a bias term in
the data has on the above algorithms. In this case there is a bias
term, b ∈ RN added to the data, such that xb(t) = x(t) + b.
We have E{xb} = b, so that, Rb = R + bbH , where bbH

is a rank-one matrix. As a result, the bias term changes the
eigenvalues of the covariance matrix, and generally increases
both the signal power and the condition number. Since every
value in Rb is larger than the equivalent values in R, we
find that the covariance matrix of non-zero-mean data will
contain a larger estimation error [15]. As the bias increases
the condition number, it will deform the mean-squared-error
(MSE) cost function, and gradient-based methods such as the
LMS may converge slower. For RLS-type algorithms, this
difference in convergence will be less pronounced due to the
gradient correction via the estimate of the inverse covariance
matrix.

IV. EXPERIMENTAL RESULTS

Similar to [9], we generated random connected Erdös-Renyi
graphs, with N = 20 nodes; and example of which is shown in
Fig. 1. Using a similar construction as in [9], “this graph was
obtained by generating an N ×N symmetric shift matrix, S,
whose entries were governed by Gaussian distribution N (0, 1)
and then threshold edges to be between 1.2 and 1.8 in absolute
value to yield an effective probability of an edge p ≈ 0.07.
The edges were soft thresholded by 1.1 to be between 0.1 and
0.7 in magnitude.” The shift matrix, S, was then normalized
by 1.1 times its largest eigenvalue to prevent instability. It
ensures that Sm contracts for increasing m, and hence does
not cause stability issues.

In [9], the authors assumed that the graph signal, x(t),
is i.i.d Gaussian with zero-mean and covariance matrix Rx,
where Rx was chosen as the solution of the Lyapunov equa-
tion SRxS

T−Rx+I = 0. This is equivalent to generating the
signals through a Gauss-Markov model with the shift operator,
S, as its transfer function. The logic behind this choice is that
usually in real situations the input signals on the neighbouring
nodes are somehow related.

To investigate the effect of bias, we added a DC compo-
nent to the input signal, which was chosen to be 2.5 times
the input variance σ2

x. The factor 2.5 is selected based on
the convergence behaviour of the algorithms. In order to
be comparable to [9],“the noise v(t) was also set to zero-
mean Gaussian with covariance Rv = diag{σ2

v,k}Nk=1, where
the variances σ2

v,k were randomly generated from uniform
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Fig. 1. A random Erdos-Renyi graph with N = 20 nodes.

distribution U(0.1, 0.15). The filter order M was set to 3
and the coefficients hom,k of the target filter, i.e T(x) were
randomly drawn from a uniform distribution U(0, 1).”

For LMS and ATC algorithms, the step-size, µ, was chosen
as 1/ζmax, where ζmax is the maximum eigenvalue of the
covariance matrix R̂zk

as in (11) with i = t, λ = 1 and
δ = 0. For RLS and CRLS algorithms, the forgetting factor,
λ, was selected as 0.9999. The combine factors for ATC [9],
and CRLS were set to clk = 1/|Nk| for l ∈ Nk, where |.|
denotes the cardinality of its entry.

We ran 200 Monte-Carlo simulations and for each simula-
tion a new random Erdös-Renyi graph was generated. Since
the explained procedure does not guarantee the connectivity
of the generated random graphs, we discarded all the graphs
that were not connected. Along with that, at each simulation,
a new input signal was generated based on the new shift
matrix. The ground truth filter coefficients were also randomly
generated at each run. After each simulation the mean-squared-
displacement (MSD)s, E{||ho

k − hk||2}, between the ground
truth coefficients and the estimated parameters were calculated
for each node, k, and then after 200 runs, averaged over all
the simulations. This MSD metric calculates the deviation of
each estimated parameter from the ground truth coefficients
and so demonstrates how well a system has been identified.

We set the ground truth coefficients, ho
k, to be either node-

invariant or node-variant. Then we ran the algorithms for
both biased and unbiased input signals. Fig. 2 shows an
example MSD of the estimated coefficients on all the nodes,
k = 1, . . . , N , for one of the coefficients, m, where the ground
truth was node-invariant and input was biased. We can see that
CRLS and ATC show the best performance with the lowest
MSD, while RLS has moderate performance, and LMS results
are not very appealing. It is not surprising since ATC and
CRLS combine the coefficients at each iteration steps which
results in an average value on different nodes, or in other
words, it results in node-invariant estimations. The algorithms
typically suffer from gradient noise, in particular the LMS type

ones. Additional averaging over the graph dimension helps to
reduce its effect.
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Fig. 2. MSD between the node-invariant ground truth GF coefficients and
the estimated values applying, LMS, ATC, RLS, and CRLS algorithms with
biased input on all the nodes k = 1, . . . , N , averaged over 200 Monte-Carlo
simulations in dB.

Table I represents the averaged MSD over all the nodes for
the four different scenarios, node-invariant and node-variant
ground truths with unbiased and biased inputs. We can see that
for node-invariant ground truth, ATC and CRLS show better
performance with lower MSD, while LMS shows the worst
results. This is reasonable as in the ATC and CRLS there
is a combine step which gets the average of the coefficients
to be the same on all the nodes. On the contrary, for node-
variant case, ATC and CRLS display higher, worse, MSDs,
while RLS gives the lowest MSD. It is also noticeable that
the performance of LMS for both node-variant and invariant
cases are more or less the same. Similar behaviour can also
be observed for RLS algorithm. Therefore, for real data and
applications, where the nature of underlying GF model is not
necessarily known, RLS, can be a better choice since it shows
robustness under four different conditions.

By looking at Table I, we can also see that the bias has
considerable effect on LMS, increasing its MSD. However,
the main impact of the bias is the convergence speed of the
error shown in Fig. 3, which is calculated on each node as:

ek(t) = E{|yk(t)−
M−1∑
m=0

hm,k[S
mx(t−m)]k|2}, (14)

where E{} here represents an ensemble average over 200
Monte-Carlo simulations. As seen in Fig. 3, the LMS and
ATC algorithms, converge considerably faster when the input
signal is unbiased. Bias also increases the convergence time
for RLS and CRLS, but it is not that pronounced.

V. CONCLUSION

In this paper a general graph filter (GF) model has been
considered, which can be applied for both time-invariant and
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TABLE I
MSD VALUES BETWEEN THE GROUND TRUTH AND THE ESTIMATIONS

AVERAGED OVER ALL THE NODES, k, AND COEFFICIENTS, m, AFTER 200
MONTE-CARLO SIMULATIONS IN [DB].

node-invariant node-variant

unbiased biased unbiased biased

LMS -22.72 -15.81 -22.26 -15.76

ATC -39.39 -42.33 (-10.74) (-8.78)

RLS -31.38 -32.60 -30.82 −32.79

CRLS -46.37 −48.03 (-10.91) (-10.89)
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Fig. 3. Error between the desired output and the estimated output after each
iteration on a random node, with node-invariant coefficients for (a) unbiased
and (b) biased inputs.

time-varying inputs. In other words, it integrates the dynamic
behaviour of the input signal. In addition to that, the model
is modified to be compatible for both node-invariant, where
the parameters are the same on different nodes, and node-
variant, where the parameters are node dependent. Then, four
different adaptive algorithms, namely LMS, ATC, RLS and,
CRLS, have been applied to estimate the model parameters,
GF coefficients, by minimizing a cost function. By comparing
the algorithms, CRLS has shown the best performance for
node-invariant case, while the RLS has given the lowest MSD
for node-variant coefficients. The impact of bias in the input
signal has also been examined, showing the most deterioration
for LMS algorithms. The bias has also shown a considerable

effect on the convergence of LMS and ATC algorithms by
decreasing their convergence speed. Having considered all the
factors, RLS seems to be a better choice as it shows robust
performance under different conditions.
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Approximate Proximal-Gradient Methods

Anis Hamadouche, Yun Wu, Andrew M. Wallace, and João F. C. Mota

Abstract—We study the convergence of the Proximal-Gradient

algorithm for convex composite problems when both the gradient
and the proximal mapping are computed approximately. This
scenario occurs when the gradient is computationally expensive
and the proximal operator is not available in closed form and may
be computed only up to a certain fixed precision. We establish
tight deterministic bounds and propose new probabilistic upper
bounds on the suboptimality of the function values along the
iterations under some statistical assumptions on the perturbed
iterates. We use the Proximal-Gradient algorithm to solve ran-
domly generated LASSO problems while varying the fixed-point
machine representation and the proximal computation precision.

Index Terms—Convex Optimization, Proximal Gradient, Ap-
proximate Algorithms.

I. INTRODUCTION

Many problems in statistics, machine learning, and engi-

neering can be posed as composite optimization problems:

minimize
x∈Rn

f(x) := g(x) + h(x) , (1)

where x ∈ R
n is the optimization variable, g : R

n → R a

differentiable convex function, and h : R
n → R∪ {+∞} is a

closed, proper, and convex function, which is not necessarily

differentiable but which enables the inclusion of constraints

into (1).

An important example is empirical risk minimization

(ERM), the foundational framework in machine learn-

ing. There, g(x) = (1/m)
∑m

i=1
ℓ(w(zi; x), yi), where

{(zi, yi)}m
i=1 is a collection of training feature vectors zi and

associated labels yi that we wish to fit with a parametric

function w(·, x), and h(x) is a regularizer on the parameters

x, e.g., a norm of x. A concrete example of this framework

is logistic regression [1].

Another example is compressed sensing [2], in which one

attempts to reconstruct a sparse vector x⋆ ∈ R
n from linear

measurements y = Ax⋆, where A ∈ R
m×n has more columns

than rows, i.e., m < n. One way to achieve this is by solving

(1) with g(x) = ‖Ax − y‖2
2 and h(x) = ‖x‖1.

Finally, composite problems like (1) arise in control ap-

plications, for example in the control of the trajectory of a

drone, in which x encodes both a state-vector (e.g., position

and velocity of a drone) and the input (e.g., the acceleration in

a given direction and steering). In this case, g often encodes

a final goal for the state-vector as well as energy penalties,
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MOD University Defence Research Collaboration.
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while h encodes state-space dynamics and control constraints

[3].

Resource-constrained platforms. Most algorithms that

solve (1) assume that computations can be performed with

infinite (or near-infinite) precision. While such precision can

be achieved in standard computation devices, power-efficient

platforms like FPGAs, which are commonly deployed in

battery-operated equipment, have much lower precision. Solv-

ing problems like (1) under these scenarios often requires

completely new strategies [4]. For example, if we solve (1)

with standard algorithms, e.g., proximal-gradient or interior-

point methods, the resulting solution will satisfy the finite

precision constraints of the computing machine rather than in-

finitely precise solutions satisfying optimal convergence rates.

Early termination of iterative algorithms and reduced precision

(RP) via finite precision arithmetic can save computational

time or power while tolerating losses in accuracy in resource-

constrained systems. Furthermore, many optimization software

solvers are approximate and this must be accounted for in

convergence analysis [5].

Problem statement. The aforementioned approximation

techniques come at a cost of reduced accuracy and increased

algorithmic perturbations. Given the convex composite opti-

mization problem (1), we define the approximate gradient step

operator T G
k : Rn → R

n at iteration k as

T G
k (x) := x − sk∇ǫk

1 g(x) , (2)

where sk > 0 is the stepsize, ∇ǫk

1 g := ∇g + ǫk
1 , and ǫk

1 ∈ R
n

is the gradient error. We also define the approximate proximal

operator of h, T P
k : R

n → R
n, as

T P
k (x) := prox

ǫk

2

h (x) , (3)

where

prox
ǫk

2
1

sk
h
(y) :=

{

x ∈ R
n : h(x) +

1

2sk

‖x − y‖2
2 ≤ ǫk

2

+ inf
z

h(z) +
1

2sk

‖z − y‖2
2

}

, (4)

where ǫk
2 ∈ R is the error associated to the proximal com-

putation. Then, the approximate proximal gradient operator is

given by the following operator product

T P G
k = T P

k T G
k . (5)

The approximate proximal gradient algorithm sequence is

generated by sequentially applying the mapping sequence

{T P G
k }k>0, i.e.,

xk+1 = T P G
k (xk) = prox

ǫk

2

h (xk − sk∇ǫk

1 g(xk)). (6)
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More precisely, our goal is to establish conditions on the

problem and on the errors ǫk
1 and ǫk

2 under which (6) con-

verges. In such cases, we also aim to obtain the respective

rate of convergence. Summary of prior work. It is known

that when (1) is convex and g has an L-Lipschitz-continuous

gradient, then the exact proximal method, i.e., with ǫk
1 = 0n

and ǫk
2 = 0 for all k, and its accelerated counterpart, require,

respectively, O(1/ρ) and O(
√

1/ρ) iterations to achieve an

error ρ in the objective function [6], [7]. Although this seems

promising in noise-free applications, running the same type of

algorithms in resource-constrained environments often leads to

unexpected outcomes, as the well-known optimal convergence

bounds no longer hold in the presence of gradient and proximal

computation errors.

Following [8], the work in [9] showed that the above nearly

optimal rates can still be achieved when the computation of the

gradients and proximal operators are approximate. This variant

is also known as the Inexact Proximal-Gradient algorithm. The

analysis in [9] requires the errors to decrease with iterations

k at rates O(1/ka+1) for the basic PG, and O(1/ka+2) for

the accelerated PG for any a > 0 in order to satisfy the

summability assumptions of both error terms. The work in

[9] established the following ergodic convergence bound in

terms of function values of the averaged iterates for the basic

approximate PG:

f
(1

k

k
∑

i=1

xi
)

− f(x⋆) ≤ L

2k

[∥

∥

∥
x⋆ − x0

∥

∥

∥

2
+ 2Ak +

√

2Bk

]2

,

(7)

where x⋆ is any optimal solution of (1), L is the Lipschitz

constant of ∇g, x0 is the initialization vector, and

Ak =

k
∑

i=1

(‖ǫi
1‖2

L
+

√

2ǫi
2

L

)

Bk =

k
∑

i=1

ǫi
2

L
.

Our approach. In the case of deterministic errors ǫk
1

and ǫk
2 , we get inspiration from [7] to derive, using simple

arguments, upper bounds on f
(

1

k

∑k
i=1

xi
)

−f(x⋆) throughout

the iterations. The resulting bounds not only are simpler and

tighter than (7), but also decouple the contribution of the two

types of errors, ǫk
1 and ǫk

2 . In the case of random errors, we

show that we can bypass the need to assume that ǫk
1 and ǫk

2

converge to zero. We believe this line of reasoning is novel in

the analysis of approximate PG algorithms.

Contributions. We summarize our contributions as:

• We establish convergence bounds for the approximate PG

in the presence of deterministic errors.

• We extend the analysis to incorporate random errors

and propose new parameterized probabilistic convergence

bounds with a tuning parameter.

• We propose new models for the proximal and gradient

errors that satisfy interesting martingale properties in

consistence with experimental results.

II. MAIN RESULTS

All the proofs of the results in this section will appear in a

subsequent publication.

Consider the approximate PG algorithm in (6). Before

stating our convergence guarantees for approximate PG, we

specify our main assumptions on the problem and describe

the class of algorithms that our analysis covers.

All of our results assume the following:

Assumption II.1 (Assumptions on the problem).

• The function h : Rn → R∪ {+∞} is closed, proper, and

convex.

• The function g : R
n → R is convex and differentiable,

and its gradient ∇g : R
n → R

n is Lipschitz-continuous

with constant L > 0, that is,

∥

∥∇g(y) − ∇g(x)
∥

∥

2
≤ L

∥

∥y − x
∥

∥

2
, (8)

for all x, y ∈ R
n, where ‖ · ‖2 stands for the standard

Euclidean norm.

• The set of optimal solutions of (1) is nonempty.

The above assumptions are standard in the analysis of PG

algorithms and are actually required for convergence to an

optimal solution from an arbitrary initialization.

Error models and assumptions. Our analysis assumes two

different scenarios:

1) The sequences of errors {ǫk
1}k≥1 and {ǫk

2}k≥1 are deter-

ministic, or

2) The sequences of errors {ǫk
1}k≥1 and {ǫk

2}k≥1 are dis-

crete stochastic processes, in which case we use ǫk
1Ω

and

ǫk
2Ω

to denote their respective realizations at iteration k.

In scenario 2), the sequences {xk}k≥1 and {yk}k≥1 become

random as well. And we also use xk
Ω

and yk
Ω

to denote the

respective random vectors at iteration k, where Ω denotes

the sample space of a given probability space. We make the

following assumption in this case:

Assumption II.2. In scenario 2), we assume that each random

vector ǫk
1Ω

, for k ≥ 1, satisfies

E
[

ǫk
1Ω

∣

∣ ǫ1
1Ω

, . . . , ǫk−1
1Ω

]

= E
[

ǫk
1Ω

]

= 0 , (9a)

P
(

|ǫk
1Ωj | ≤ δ

)

= 1 , for all j = 1, . . . , n, (9b)

E
[

ǫk
1Ω

⊤
xk

Ω

∣

∣ ǫ1
1Ω

, . . . , ǫk−1
1Ω

, x1
1Ω

, . . . , xk−1
1Ω

]

= E
[

ǫk
1Ω

⊤
xk

Ω

]

= 0 ,
(9c)

where ǫk
1Ωj in (9b) denotes the j-th entry of ǫk

1Ω
, and δ > 0 is

some finite constant.

The first assumption, (9a), states that ǫk
1Ω

is independent

from past realizations and has zero mean. The second assump-

tion, (9b), states that the absolute value of each entry of ǫk
1Ω

is bounded by δ almost surely. Finally, the third assumption,

(9c), states that ǫ1
1Ω

, . . . , ǫk−1
1Ω

, ǫk
1Ω

and x1
1Ω

, . . . , xk−1
1Ω

, xk
1Ω

are

mutually independent.

Let us define the residual error vector as follows:

rk
Ω

= xk
Ω

− xk, (10)
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where xk
Ω

and xk stand for the perturbed and gradient-error-

free iterates, respectively. Similar assumptions can be made

about rk
Ω

, mainly:

E
[

rk
Ω

∣

∣ r1

Ω
, . . . , rk−1

Ω

]

= E
[

rk
Ω

]

= 0 , (11a)

E
[

rk
Ω

⊤
xk

Ω

∣

∣ r1

Ω
, . . . , rk−1

Ω
, x1

1Ω
, . . . , xk−1

1Ω

]

= E
[

rk
Ω

⊤
xk

Ω

]

= 0 .
(11b)

Lemma II.3. Let xk and xk be the approximate and exact

proximal-gradient iterates and let ǫk
2 be the proximal error at

instant k. Assume a constant stepsize sk = s > 0, for all k.

Then, the norm of the residual vector rk = xk − xk satisfies

∥

∥rk
∥

∥

2
≤
√

2sǫk
2 , ∀k>0. (12)

Lemma II.3 bounds the norm of the residual vector rk as a

function of ǫk
2 . Therefore, boundedness of the latter implicitly

implies boundedness of the norm of the former.

We start by considering deterministic error sequences

{ǫk
1}k≥1 and {ǫk

2}k≥1, and then we consider the case in which

these sequences are random, as in Assumption II.2.

Deterministic errors. Our first result provides a bound for

the ergodic convergence of the sequence of function values,

and decouples the contribution of the errors in the computation

of gradient and in the computation of the proximal operator.

Theorem II.4 (PG, deterministic errors). Consider prob-

lem (1) and let Assumption II.1 hold. Then, for arbitrary error

sequences {ǫk
1}k≥1 and {ǫk

2}k≥1, the sequence generated by

approximate PG in (6) with constant stepsize sk := s ≤ 1/L,

for all k, satisfies

f
( 1

k + 1

k
∑

i=0

xi+1
)

− f(x⋆) ≤ 1

k + 1

[

k
∑

i=0

ǫi
2

+

k
∑

i=0

(

ǫi
1 − 1

s
ri+1

)⊤
(x⋆ − xi+1) +

1

2s

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2

]

− 1

k + 1

[ 1

2s

k
∑

i=0

∥

∥ri+1
∥

∥

2

2
+

1

2s

∥

∥x⋆ − xk+1
∥

∥

2

2

]

, (13)

where x⋆ is any solution of (1) and ri is the residual vector

associated with error ǫi
2 defined in (10).

This result implies that the well-known O(1/k) convergence

rate for the gradient method without errors still holds when

both ǫk
2 and (ǫk

1 − 1

s
rk+1)⊤(x⋆ −xk) are summable. Note that

a faster convergence of these two errors will not improve the

convergence rate but will yield a better coefficient.

Consider now the case in which the sequence {rk}k>0

cannot be observed [as xk in (10) is usually unobservable],

but is bounded, e.g., if {ǫk
2} is bounded as in Lemma II.3.

Then, to obtain a convergence bound that is independent of

the particular sequences {xk}k≥0 and {rk}k>0, we can apply

Cauchy-Schwarz’s inequality to the first term involving rk in

the right-hand side of (13) followed by Féjer’s inequality (see

[7, Thm. 10.23]):

Corollary II.5. Under the same conditions as Theorem II.4,

the sequence generated by approximate PG in (6) satisfies

f
( 1

k + 1

k
∑

i=0

xi+1
)

− f(x⋆) ≤ 1

k + 1

[

k
∑

i=0

ǫi
2

+
k
∑

i=0

∥

∥ǫi
1 − 1

s
ri+1

∥

∥

2

∥

∥x⋆ − xi+1
∥

∥

2
+

1

2s

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2

]

− 1

k + 1

[ 1

2s

k
∑

i=0

∥

∥ri+1
∥

∥

2

2
+

1

2s

∥

∥x⋆ − xk+1
∥

∥

2

2

]

, (14)

where, again, x⋆ is any solution of (1) and we used Lemma

II.3 to bound
∥

∥rk
∥

∥.

Notice that, by Féjer’s inequality [7, Thm. 10.23],
∥

∥x⋆ − x0
∥

∥

2
upper bounds all residuals

∥

∥x⋆ − xi
∥

∥

2
. Since

{ǫk
1}k≥1 is a centered sequence, the use of Cauchy-Schwarz’s

inequality followed by Féjer’s inequality yields a bound looser

than the one in (13). Yet, the O(1/k) convergence rate is still

guaranteed with weaker summability assumptions of {ǫk
2}k≥1

and {
∥

∥ǫk
1

∥

∥}k≥1. If we set both errors to zero for all k ≥ 1,

we recover the error-free optimal upper bound L
2k

∥

∥x⋆ − x0
∥

∥

2

2

[7].

Next we relax the summability assumption on ǫk
1 and ǫk

2

and replace it with the weaker assumption of boundedness.

Random errors. Let us now consider the case in which ǫk
1 ,

ǫk
2 and therefore xk, are random, and let ǫk

1Ω
, ǫk

2Ω
and xk

Ω be

the corresponding random variables/vectors, respectively.

Theorem II.6 (Random errors). Consider problem (1) and

let Assumption II.1 hold. Assume that the rounding error

{ǫk
1Ω

}k≥1 and residual error {rk
Ω

}k≥1 sequences satisfy As-

sumption II.2 and P
(

ǫk
2Ω

≤ ε0

)

= 1, for all k > 0, and for

some ε0 ∈ R. Then, for any γ > 0, the sequence generated by

approximate PG in (6) with constant stepsize sk := s ≤ 1/L,

for all k, satisfies

f

(

1

k

k
∑

i=1

xi
Ω

)

− f(x⋆) ≤ 1

k

k
∑

i=1

ǫi
2Ω

+

γ√
k

(

√
n|δ| +

√

2ε0

s

)

∥

∥

∥
x⋆ − x0

∥

∥

∥

2
+

1

2sk

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2
,

(15)

with probability at least 1 − 2 exp(− γ2

2
), where x⋆ is any

solution of (1).

For large scale problems,1 we typically have n ≫ 1

s
≥ L;

therefore, we obtain the following approximated bound,

f

(

1

k

k
∑

i=1

xi
Ω

)

− f(x⋆) .
1

k

k
∑

i=1

ǫi
2Ω

+ γ

√

n

k
|δ|
∥

∥

∥
x⋆ − x0

∥

∥

∥

2

+
1

2sk

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2
, (16)

1And for same levels of error magnitudes δ and ε0.
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with the same probability. In the absence of computational

errors, (15) coincides with the results of Theorem II.4 and

Corollary II.5, which reduce to the deterministic noise-free

convergence upper bound, i.e, L
2k

∥

∥x⋆ − x0
∥

∥

2

2
. With exact

proximal operation and approximate gradient computations

(i.e., ǫk
2 = 0 and ǫk

2 6= 0 for all k ≥ 0), if we let the machine

precision δ to decrease at O( 1

k0.5+δ ), i.e, progressively increase

computation accuracy, then we obtain the optimal convergence

rate O( 1

k
). In order to recover the same convergence rate

for the approximate proximal case, we also need the sum of

the ensemble means E(ǫi
2Ω

) to decrease as O( 1

k1+δ ), which

is a weaker than what [9] [cf.(7)] requires: O( 1

k2+δ ). This

result also suggests that a slower O( 1√
k

) convergence rate

(same as noise-free subgradient method) is achieved when the

sequence of ensemble means {E(ǫk
2Ω

)} is summable for all

centered and bounded sequences {ǫk
1Ω

}, and consequently the

proximal error is the main contributor to any divergence from

the optimal set X⋆.

Notice that for a fixed machine precision δ and probability

parameter γ we obtain a computable error residual constant

rather than variable running error terms as in Theorem II.4,

Corollary II.5 or (7) without making any summability assump-

tions on {
∥

∥

∥
ǫk

1Ω

∥

∥

∥
} (as in Corollary II.5) or {ǫk

1Ω
} in general.

Moreover, the effect of the dimension n of the problem

variable appears explicitly in (15), but neither in Theorem II.4,

nor in Corollary II.5, nor in (7). The latter suggests that

using progressively sparser gradient vectors2 can potentially

accelerate the convergence speed (e.g, by using n′ ≪ n), but

never faster than the optimal (limit) speed of O( 1

k
). Overall,

better design parameter selections would result in better error

residuals rather than exceeding the optimal convergence rate.

The following result applies if we relax the summability of

{ǫk
2Ω

} but still assume statistical stationarity.3

Theorem II.7 (Random errors). Consider problem (1) and

let Assumption II.1 hold. Assume that the rounding error

{ǫk
1Ω

}k≥1 and residual error {rk
Ω

}k≥1 sequences satisfy As-

sumption II.2, and that the proximal computation error is

upper bounded, i.e., ǫk
2Ω

≤ ε0 for all k ≥ 1, and also

stationary with constant mean E(ǫ2Ω
). Then, the sequence

generated by approximate PG in (6) with constant stepsize

sk := s ≤ 1/L, for all k, satisfies

f

(

1

k

k
∑

i=1

xi
Ω

)

− f(x⋆) ≤ E
(

ǫ2Ω

)

+
γ√
k

(

ε0

2
+

√
n|δ|

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

)

+
1

2sk

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2
,

(17)

with probability at least 1 − 2 exp(− γ2

2
), where x⋆ is any

solution of (1).

The following corollary applies to approximate PG with

uniformly distributed proximal error.

2As is the case in Proximal-Gradient algorithm when applied to LASSO.
3This means that the ensemble mean and the variance are time-invariant.

Corollary II.8 (Random uniformly distributed proximal

error). Let the proximal computation error be upper bounded,

i.e., ǫk
2Ω

≤ ε0, for all k ≥ 1. If the latter is stationary and

uniformly distributed over its range, i.e., ǫk
2Ω

∼ U{0, ε0}, then

substituting E(ǫ2Ω
) = ε0

2
in the bound of Theorem II.7 gives

f

(

1

k

k
∑

i=1

xi
Ω

)

−f(x⋆) ≤ ε0

2
+

γ√
k

(

ε0

2
+

√
n|δ|

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

)

+
1

2sk

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2
, (18)

with probability at least 1 − 2 exp(− γ2

2
), where x⋆ is any

solution of (1).

In terms of the proximal error ǫk
2Ω

, using a concentration-

based probabilistic bound, i.e., ǫk
2Ω

≤ (1/2 + γ/
√

k)ε0 results

in a sharper bound than what we would have obtained if we

used the more conservative deterministic upper bound ǫk
2Ω

≤
ε0.

III. QUANTIZATION ERRORS

We start by briefly reviewing the theory behind hardware

quantization. Quantization is a critical step between data-level

and hardware-level, which can be thought of as a type of

contract between the two levels of the application in order to

allocate a certain (finite) number of bits (resource) to represent

an infinitely precise parameter or a value from a continuous

signal in the digital circuit with finite precision. This very

initial step of data type/hardware design plays a major role in

determining the overall precision for the application as well

as the complexity of the implementation.

Quantization errors can be reduced by choosing an ap-

propriate number of bits (usually the higher the number of

used bits the less the error will be). However, this reduction

comes at the cost of using more hardware resources for storage

and computation. The trade-off between error attenuation and

calculation precision, energy and speed (or latency), is subject

to application constraints.

Fixed-point number system. Fixed-point machine repre-

sentation can be interpreted in different ways, and we discuss

here the two most common approaches. In the first case, all the

word (W ) bit elements are allocated for value representation

assuming all signal values are always positive. As can be

deduced from the machine representation system’s name, i.e,

”fixed-point,” the set of bits in W are split by a fixed-point

into I most significant bits (MSBs) and F least significant

bits (LSBs) representing the integer and the fractional parts,

respectively. This quantization is called unsigned I.F or uI.F

for short. The quantized value is evaluated by the following

formula,

uI.F (x) =
W −1
∑

i=0

bi(x)2i−F , (19)

with F, W ∈ N+. The corresponding dynamic range (DR) is

given by DRuI.F = [0; 2I − 2−F ]. The signed I.F, or sI.F

can be obtained from I.F by encoding the sign of the value
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using one bit and this is typically done by taking the most

significant bit (MSB) of the integer part I as being a sign

bit. Although this operation would reduce the integer part’s

number of bits I to I − 1, the two’s complement approach

handles negative numbers and therefore extends the DR in the

negative direction, i.e., DRsI.F = [−2I−1; 2I−1 − 2−F ], and

the quantized value is now given by

sI.F (x) =
W −2
∑

i=0

bi2
i−F − bW −12I−1. (20)

Quantization Rules. Once a machine representation is

defined, quantization rules need to be established in order to

define the quantization behaviour under decreasing accuracy

and/or overflow in subsequent operations. Although the IEEE

754 standard uses round-to-nearest integer4, other modes of

rounding also exist in the literature. For instance, rounding

towards the standard limits (0, +∞, −∞) is also known as

directed rounding. Moreover, rounding can be deterministic

in a pre-defined rule or stochastic according to a random

distribution.

IV. EXPERIMENTAL RESULTS

We now apply the proposed bounds to analyze the conver-

gence of the approximate proximal gradient algorithm when

applied to solve randomly generated LASSO problems:

minimize
x∈Rn

1

2
‖Ax − y‖2

2 + λ‖x‖1 ,

where n = 100 (dimension of x) and A ∈ R
m×n has

m = 500 rows. We run a total of 5 random experiments

for every algorithm parameter selection. We mainly vary the

bitwidth (BIT), the fraction width (FRAC.) of the fixed-

point representation in (20), the CVX [10] solver’s precision

(PRECISION) to approximate the proximal step (4), and the

tolerance bound of the approximate PG (ABSTOL in Table I).

We record and take the average over all 5 experiments of

the residual error in the iterates ‖x − x⋆‖2, the residual error

(suboptimality) in the function values f − f⋆, and the total

number of iterations k (k, iters.). The results are summarized

in Table I. We also plot the proposed convergence bounds,

the error-free optimal bound as well as the original bound

in (7) for the different tests as depicted in Figs. 1-3. Note

that for the probabilistic bounds we tune the parameter γ to

obtain 3 different bounds which hold with probabilities 1,

0.5 and 0.25, respectively. From Figs.1-3, we can clearly

see that our proposed bounds give better approximations of

the discrepancy caused by perturbations, and consequently

we obtain better error terms. As a necessary condition for

convergence, we only required the partial sums
∑k

i=1
ǫi

2 and
∑k

i=1

∥

∥ǫi
1

∥

∥

2
to be in o(k), in contrast to the stronger condition

o(
√

k) of (7). For the probabilistic bounds, we do not assume

summability of the error terms but only require them to be

4If the correct answer is exactly halfway between the two, the system
chooses the output where the least significant bit of the fraction (mantissa
M) is zero.

Fig. 1. Upper bounds based on Theorems II.4 & II.7 and their corresponding
corollaries vs (7)

Fig. 2. Upper bounds based on Theorems II.4 & II.7 and their corresponding
corollaries vs (7)

Table I
RESULTS OF OUR EXPERIMENTS.

PRECISION BIT FRAC. ABSTOL ‖x − x⋆‖2 f − f⋆ k, iters.

2.22e-16 8 4 2.22e-16 0.052609 1.3818 85
0.001 0.15256 6.2202 20

16 6 2.22e-16 0.13947 5.1224 79
0.01 0.1418 5.6894 15

8 2.22e-16 0.09152 3.1661 79
0.001 8 4 0.001 0.14508 5.555 20

0.01 0.14271 5.6136 14
16 8 2.22e-16 0.096077 4.1512 84

0.001 0.13155 4.5246 18
0.01 8 4 0.01 0.12847 4.4239 14

16 6 0.01 0.13084 4.3855 14
8 0.01 0.15369 5.8671 15
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Fig. 3. Upper bounds based on Theorems II.4 & II.7 and their corresponding
corollaries vs (7)

bounded. Consequently, the probabilistic bounds achieve better

approximations over iterations and are less sensitive to error

variations and become tighter with decreasing probability. If

we relax our original bound of Theorem II.4 and use Lemma

II.3 to bound the sequence of the proximal residual error {rk},

then our bound coincides with the one in (7), as depicted by

the overlapping dashed and red lines in Figs. 1-3.

Increasing the tolerance bound of the approximate PG from

2.22 × 10−16 to 10−3 improved the algorithm’s running time

by 65 iterations for the 8 bits representation and 66 iterations

for the 16 bits representation without affecting too much the

residuals.

Table I shows that, in general, varying the internal loop

(CVX solver’s) precision does not largely affect the number of

outer iterations of the PG, but leads to substantial bias around

the optimum when increased from 0.01 by a factor of 10.

Reducing the hardware precision from 16 to 8 bits accel-

erated the algorithm by 6 iterations, but slightly increased

the residual in the solution
∥

∥x − x⋆
∥

∥

2
by 8.6861 × 10−2

while added 3.7406 extra bias error to the function value.

Increasing the hardware precision by allocating more bits for

the fractional part in the fixed-point representation of 16 bits

caused the residual error in
∥

∥x−x⋆
∥

∥

2
to drop by 17.46% and

the error in
∥

∥f − f⋆
∥

∥

2
by 33.78% without remarkable effect

on the number of iterations.

V. CONCLUSIONS

We considered the proximal-gradient algorithm in the case

in which the gradient of the differentiable function and the

proximal operator are computed with errors. We obtained new

bounds, tighter than the ones in [9] and demonstrated their va-

lidity on a practical optimization example (LASSO) solved on

a reduced-precision machine combined with reduced-precision

solver. While we established worst-case performance bounds,

we also established probabilistic upper bounds catering for

random computational errors. Interesting directions for future

work include relaxing the assumptions in order to incorporate

more general perturbations into the analysis and consider-

ing accelerated versions (i.e., Nesterov) of the approximate

proximal-gradient algorithm.
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Abstract—Recent work has established that the gradient of
the mutual information (MI) in Gaussian channels with input
noise can be used for projection design in a compressive sensing
(CS) scenario with two independent, Gaussian mixture (GM)-
distributed inputs. The resulting CS projection matrices have
been shown to be capable of controlling the input-output MI
terms for the two inputs. One downside of such information-
theoretic strategies is their reliance on access to a priori knowl-
edge of the input source statistics. In this paper, we assume that
the GM distribution of a primary input is known and that the
GM distribution of a secondary input is unknown. We derive a
methodology for the online training of the distribution of the
secondary input via compressive measurements and illustrate
that once the distribution of this secondary source is known,
we can use projection design to control the input-output MI of
the system. We demonstrate through simulations the various per-
formance trade-offs that exist within the proposed methodology.

I. INTRODUCTION

Dimensionality reduction methods based on linear ran-
dom projections — i.e., compressive sensing [1] (CS) —
have gained significant attention recently; however, random
projections may not be the best choice if we know the
statistical properties of the source signal [2]. By employing
an information-theoretic approach, one can design a linear
projection such that the mutual information (MI) between
the projected signal and the source signal or its class label
is maximised [3], [4]. Intuitively, as the MI increases, the
recovery of the source signal or label information improves;
indeed, the Bayes classification error is bounded by the MI [3].

The distribution of a non-Gaussian signal can be approx-
imated by a mixture of several Gaussians [5]. Importantly,
increasing the number of Gaussians used enables the ap-
proximation of general distributions to an arbitrary level of
accuracy [6]. Such Gaussian mixture models (GMMs) have
been shown to be effective [7] and in some cases superior
to sparse signal models in CS scenarios [5]. Recent work [8]
utilises MI maximisation within a CS framework to optimise
information throughput for a Gaussian mixture (GM) source
signal in the presence of GM input noise. In [9], this frame-
work is extended to complex signal models and applied to real
radar data containing micro-Doppler (m-D) signatures [10];
subsequent results highlight that the methodology is able to
assist in the joint classification of the m-D signatures of
a primary, always-present source and a secondary, fleeting
source. By modelling two independent inputs via GMMs and
treating each as a source of structured input noise for the other,
both [8] and [9] employ an iterative gradient-ascent approach
to design a linear projection matrix capable of controlling the

information throughput for each source. However, these works
rely on a priori knowledge of the source statistics and are
therefore limited to the case of stationary sources.

In [11], Yang et al. investigate a scenario in which a desired
source in a CS scenario without input noise has an unknown
GM distribution. They seek to learn the distribution using only
knowledge of the compressive measurements, the projection
matrices involved, and the parameters of the Gaussian mea-
surement noise. Their implementation is iterative and related
to the expectation-maximisation (EM) algorithm [12].

In this paper, we consider the compressive measurement
of two GM-distributed inputs; these perceive each other as
additive noise and experience the same linear projection.
We assume that the GM distribution of the primary input
is known and that the GM distribution of the secondary
input is unknown. We extend the work of [11] and derive
a novel methodology for the training of the GM distribution
of the secondary input from compressive measurements and
illustrate that once the distribution of this secondary source is
known, we can use the projection design techniques of [8],
[9] to control the input-output MI of the system. For this
demonstration, we apply the developed adaptive projection
design algorithm to real radar data containing two coincident
sources of m-D information. Using synthetic data, we also
show the various performance trade-offs that exist within the
proposed distribution learning methodology.

Below, Sec. II establishes the signal model considered in this
paper. In Sec. III, we summarise the optimisation framework
from [8], [9] that we use for projection design. In Sec. IV, we
introduce the theory and algorithm required to learn the GM
distribution of a secondary source from compressive measure-
ments. Sec. V then briefly explains how these projection design
and source learning procedures fit together within an adaptive
algorithm. Sec. VI provides a practical demonstration of the
proposed approach, and conclusions are drawn in Sec. VII.

Notation: Straight bold lowercase and uppercase symbols
denote vectors and matrices, respectively, and In is an n×n
identity matrix. Italicised uppercase letters such as Y and C
denote random vectors and variables; their realisations are
lowercase equivalents, such as y and c. Operators {·}H, {·}∗,
E[·], ‖·‖1, and tr{·} evaluate the Hermitian transpose, complex
conjugate, expectation, `1-norm, and trace, respectively.

II. SIGNAL MODEL

We consider the following complex-valued signal model
with input noise:

Y = Φ(X + N) + W . (1)
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Following the CS protocol, we have measurements Y ∈ Cm
obtained from input signals X ∈ Cn and N ∈ Cn via a
compressive projection matrix Φ ∈ Cm×n, with m � n.
We opt for X and N to have a GM distribution for two
reasons. Firstly, GMs are known to be effective in statistical
CS scenarios [5], [7]. Secondly, a GM-distributed X permits a
natural extension of the work of [11] to the case of estimating
N given knowledge of Y, Φ, and the distributions of X and
the measurement noise W.

The signal N, which is independent of X and — when
attempting to recover the features of X — can be considered
as input noise, is distributed according to a complex GM; i.e.,

N ∼ pn(n) =
∑Jn

g=1
rg
∑K

k=1
sg,k CN (n;µg,k,Γg,k) , (2)

with mean vectors µg,k ∈ Cn, covariance matrices
Γg,k ∈ Cn×n, and weights sg,k such that

∑K
k=1 sg,k = 1.

An instance of N is generated by one of Jn classes, which
are each characterised by a GM with K components. The
classes g = 1, . . . , Jn occur with probability rg such that∑Jn
g=1 rg = 1. The random vector X represents a signal of

interest and is distributed as

X ∼ px(x) =
∑Jx

c=1
zc
∑O

o=1
πc,o CN (x;χc,o,Ωc,o) . (3)

That is, the probability distributions of classes c = 1, . . . , Jx
of X are each characterised by a GM with O components.
The vector W ∼ CN (w;ν,Λ) represents additive complex
Gaussian noise with mean ν∈Cm and covariance Λ∈Cm×m.

III. OPTIMISATION FRAMEWORK

Assume, for now, that — in addition to the distribution
of our primary, always present source X — we have ac-
cess to a predefined GM distribution for N, which repre-
sents a secondary source that may or may not be present
in the system at the time of measurement. As such, in
the distribution for N, the Jnth class is characterised as
pn|g(n|g = Jn) =

∑K
k=1(1/K) CN (0, σIn) for some arbitrar-

ily small σ; i.e., the value of N for this class is close to zero to
represent the scenario in which the secondary source is absent.

We seek the matrix Φ that maximises the objective function

F (Φ,β)=β1I(X;Y)+β2I(C;Y)+β3I(N;Y)+β4I(G;Y), (4)

where β = [β1, β2, β3, β4] ∈ R4 controls the relative im-
portance of the Shannon MI [13] terms and C and G are
random variables that represent the classes of X and N. For
our purposes, we maintain ‖β‖1 = 1.

We use the iterative gradient ascent algorithm of [8], [9]
to identify the matrix Φ that locally maximises F (Φ,β)
by setting Φ←Φ+δ∇ΦF (Φ,β) and normalising such that
tr{ΦΦH}=m at each iteration. The step size δ > 0 controls
the rate of change of Φ. When computing ∇ΦF (Φ,β), we
evaluate the gradient terms given in [8], [9] via Monte Carlo
(MC) integration and utilise the Bayesian inference model
detailed in [9].

IV. LEARNING THE SECONDARY SOURCE DISTRIBUTION

Here, we extend the work of [11] such that we are able to
learn the distribution of N from compressive measurements.

We assume that our compressive measurements have been
captured using a block of data that contains instances of only
one class of N. Therefore, we omit the class parameter g to
simplify notation. We first rewrite (1) as Y = ΦN+ Ŵ, where

Ŵ ∼
∑D

d=1
τd CN (ŵ;νd,Λd) , (5)

τd = zc′πc′,o′ , νd=Φχc′,o′+ν, Λd=ΦΩc′,o′Φ
H+Λ ,

D = JxO , c′ =
⌈
d
O

⌉
, o′=((d−1)modO)+1.

We seek the system parameters θ that maximise the log of
the marginal probability; i.e., the incomplete log-likelihood:

`inco(θ|y) = log py|θ(y|θ) = log
∑
k,d

∫
py,n,k,d|θ(y,n, k, d|θ) dn.

Since the log of a sum is not easily separable for maximisation
purposes, we take a two-stage EM approach [12] and utilise
the complete log-likelihood:

`co(θ|y,n, k, d) = log py,n,k,d|θ(y,n, k, d|θ) . (6)

Specifically, we consider the expected value of `co(θ|y,n, k, d)
under the posterior distribution of the latent variables (n, k, d).
In the first stage of iteration (t + 1), we use the previous
parameters θ(t) to find the posterior distribution of the latent
variables given by pn,k,d|y,θ(n, k, d|y, θ(t)). We then use this
to find the expectation of the complete log-likelihood

`ex−co(θ|y, θ(t)) = E
n,k,d|y,θ(t)

[
log py,n,k,d|θ(y,n, k, d|θ)

]
with respect to this posterior. In the second stage, we determine
the new parameters θ(t+1) by maximizing `ex−co(θ|y, θ(t)):

θ(t+1) = argmax
θ

`ex−co(θ|y, θ(t)) . (7)

Fortunately, we can show that maximising this function actu-
ally maximises the incomplete log-likelihood. We can write

py|θ(y|θ) = py,n,k,d|θ(y,n, k, d|θ)/pn,k,d|y,θ(n, k, d|y, θ) . (8)

By taking the expectation of the log of both sides with respect
to pn,k,d|y,θ(n, k, d|y, θ(t)), we obtain

log py|θ(y|θ) = `ex−co(θ|y, θ(t)) + h(θ|y, θ(t)) , (9)

where h(θ|y, θ(t)) is a conditional entropy term. The above
holds for any θ, including θ = θ(t). That is,

log py|θ(y|θ(t)) = `ex−co(θ
(t)|y, θ(t)) + h(θ(t)|y, θ(t)) . (10)

Subtracting this from (9), we obtain

log py|θ(y|θ)−log py|θ(y|θ(t))=
`ex−co(θ|y,θ(t))+h(θ|y,θ(t))−`ex−co(θ(t)|y,θ(t))−h(θ(t)|y,θ(t)).
By Gibbs’ inequality [13], we know that for two probability
distributions p1(y) and p2(y), we have

−
∫
p1(y) log p1(y) dy ≤ −

∫
p1(y) log p2(y) dy , (11)

with equality only when p1(y) = p2(y). Thus, we have
h(θ|y, θ(t)) ≥ h(θ(t)|y, θ(t)) and

log py|θ(y|θ)− log py|θ(y|θ(t))
≥ `ex−co(θ|y, θ(t))− `ex−co(θ(t)|y, θ(t)) . (12)

That is, choosing θ such that `ex−co(θ|y, θ(t)) improves upon
`ex−co(θ

(t)|y, θ(t)) guarantees that the resulting improvement
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from log py|θ(y|θ(t)) to log py|θ(y|θ) is at least as large.
When evaluating the posterior distribution of the latent

variables, we utilise the following Bayesian inference model,
where we have omitted the reliance on θ(t) for brevity:

pk,d|y(k, d|y) =
sk τd py|k,d(y|k, d)

py(y)
, (13)

py|k,d(y|k, d) = CN (y;Φµk + νd,ΦΓkΦ
H + Λd) , (14)

pn|y,k,d(n|y, k, d) = CN (n; µ̃k,d,Ck,d) , (15)

Ck,d =
(
ΦHΛ−1d Φ + Γ−1k

)−1
, (16)

µ̃k,d = µk + Ck,dΦ
HΛ−1d (y−Φµk − νd) . (17)

In actuality, we learn the distribution using a set of samples

{yi = Φini + ŵi} , i = 1, . . . , Ns . (18)

Here, if we consider each Φi as the ‘window’ through which
we observe ni, having a unique projection matrix for each
sample allows us to more fully observe the characteristics of
the distribution of N. However, we will show later that this is
not always necessary. For our Ns measurements, we have

`ex−co(θ|θ(t))=
Ns∑
i=1

E
n,k,d|yi,θ(t)

[
log py,n,k,d|θ(yi,n, k, d|θ)

]
.

After a number of operations, we are able to expand this
expression to obtain (19). Here, C

(i)
k,d and µ̃

(i)
k,d are the per-

sample equivalents of (16) and (17), respectively, and we have
again omitted the reliance on θ(t). If we set the expressions
for the gradient of (19) with respect to sk, µk, and Γk to zero
— noting that

∑
k sk = 1 — we obtain

s
(t+1)
k =

∑Ns

i=1 pk|y(k|yi)∑Ns

i=1

∑K
k′=1 pk|y(k

′|yi)
=

∑Ns

i=1 pk|y(k|yi)
Ns

, (20)

µ
(t+1)
k =

∑Ns

i=1

∑D
d=1 pk,d|y(k, d|yi)µ̃

(i)
k,d∑Ns

i=1 pk|y(k|yi)
, (21)

Γ
(t+1)
k = (22)∑Ns

i=1

∑D
d=1 pk,d|y(k, d|yi)

[
(µ̃

(i)
k,d−µk)(µ̃

(i)
k,d−µk)H+C

(i)
k,d

]
∑Ns

i=1 pk|y(k|yi)
.

Thus, we are able to iteratively move towards param-
eters for N that better fit our data. The approach
ceases after a pre-determined number of iterations or if
`inco(θ

(t+1)|y)−`inco(θ(t)|y) falls below a specified threshold.

V. ADAPTIVE INFORMATION-THEORETIC ALGORITHM

We combine the pre-existing projection design methodology
of Sec. III with our proposed distribution learning approach.
A pseudocode representation of the resulting framework is
provided in Algorithm 1. The algorithm initialises with a
trained Φopt ∈Cmopt×n, which has been designed subject to
the objective function of (4) and some prior knowledge of the
system parameters θopt. If there is initially no knowledge of a
secondary source, N is considered absent with only one class
as defined in Sec. III.

The algorithm captures compressive samples at regular
intervals. If the average log-likelihood of the past Navg

compressive samples falls below a predefined threshold ζavg,
the algorithm begins a compressive sampling process using
random matrices ΦiCS

∈ Cm×n with elements drawn from
CN (0, 1). Each matrix ΦiCS

is reused Nrep times. If the num-
ber of consecutive samples with low average log-likelihood
exceeds a predefined minimum Nmin

s , up to Nmax
s of these

samples will be used to learn the GM distribution of a new
class of N. This learning process will occur according to the
iterative approach described in Sec. IV and will cease after
a predefined number of iterations or if the change in log-
likelihood across iterations falls below a predefined threshold.
When updating the current system parameters θ with the new
class of N, the class probabilities for N are updated to match
their likelihoods in the previous NT samples:

rg ←
1

NT

∑i

i′=i−NT+1
pg|y(g|yi′) . (23)

Here, NT is large and defined by the user beforehand. To avoid
the retraining of a class with very low likelihood in the future,
a threshold ξ can be placed on the class probabilities such that
if rg′ < ξ for some g′, we set rg′ = ξ and, for g 6= g′,

rg ← (1− ξ) rg ·
(∑

g 6=g′ rg
)−1

. (24)

Samples with an average log-likelihood above the threshold
are used for classification and signal reconstruction purposes
according to the inference model in [9]. If the number of
samples taken is a multiple of NT and the parameters have
changed since the last execution of the projection design step,
we redesign Φopt subject to the objective function of (4).

Note that, if desired, the random matrices ΦiCS
can be

of a different dimensionality to Φopt; i.e., we can have
mopt 6= m. Using a high m to generate random projections
will provide more information about the statistics of N during
the distribution training step; it might therefore be possible
to decrease the minimum number of random samples Nmin

s

that are required to obtain a good estimate of the distribution.
However, a low mopt might be sufficient for reconstruction
or classification purposes. Using m 6= mopt will, of course,
require an additional (assumed known) distribution for the
measurement noise Wopt ∼ CN (wopt;νopt,Λopt).

VI. EXPERIMENTAL RESULTS

A. Experiments with Synthetic Data

In the following simulations, we use known distributions
to generate instances of X, N, and W. We then attempt to
recover the distribution of N using compressive measurements
under various conditions. Initially, for simplicity, we constrain
the number of classes of X and N to Jx = Jn = 1, and
consider both sources active at all times. The GM distributions
are limited to O = K = 3 components. We use Ns = 1000
random measurements and 500 iterations during the training of
the GM for N. Training ceases if the change in the incomplete
log-likelihood between iterations drops below a value of one.
Our input dimensionality is n = 32 and our compressive
measurements are of dimensionality m ∈ {4, 8, 12}.
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`ex−co(θ|θ(t)) = constant−
Ns∑
i=1

{
E
d|yi

[
log detΛd

]
+ E
k|yi

[
log detΓk

]
+ E
k,d|yi

[
tr
{

Λ−1d ΦiC
(i)
k,dΦ

H
i

}]
− E
k|yi

[
log sk

]
− E
d|yi

[
log τd

]
+ E
k,d|yi

[
(yi−Φiµ̃

(i)
k,d−νd)

HΛ−1d (yi−Φiµ̃
(i)
k,d−νd)

]
+ E
k,d|yi

[
tr
{

Γ−1k C
(i)
k,d

}]
+ E
k,d|yi

[
(µ̃

(i)
k,d−µk)

HΓ−1k (µ̃
(i)
k,d−µk)

]}
(19)

Find the Φopt ∈ Cmopt×n that maximises (4)
i← 0, iCS ← 0, θ ← θopt
repeat

i← i+ 1, j ← 0

Store new sample yi ← Φopt(xi + ni) + wopt
i

ζavgi is the average of Navg last ζi ← log py|θ(yi|θ)
if ζavgi < ζthr then j ← 1
if j = 1 and iCS < Nmax

s then
iCS ← iCS + 1
if mod(iCS − 1, Nrep) = 0 then

Generate and store random ΦiCS ∈ Cm×n
else ΦiCS

← ΦiCS−1
Store random sample ỹiCS

← ΦiCS
(xi+ni)+wi

else if iCS > Nmin
s then

Learn distribution of new class of N using
random measurements and projection matrices

Update distribution parameters θ, set iCS ← 0
else

Reconstruct/classify xi and ni, set iCS ← 0

if mod(i− 1, NT ) = 0 and θ 6= θopt then
θopt ← θ, find the Φopt that maximises (4)

Algorithm 1: Adaptive information-theoretic algorithm.

The weights πc,o and sg,k are drawn from the standard
uniform distribution and normalised. The mean vectors χc,o
and µg,k comprise elements drawn from the complex Gaussian
distribution CN (0,

√
2/10), and the covariance matrices Ωc,o

and Γg,k are initially equal to instances of the product QDQH,
where Q ∈ Cn×n is a random unitary matrix and D ∈ Rn×n
is a diagonal matrix with elements drawn from the uniform
distribution U(10−6, 10−2). To vary the signal-to-noise ratio
(SNR), we adjust the values in the diagonal elements of the
matrices D used to generate Ωc,o. Samples of measurement
noise are drawn according to W ∼ CN (w;0, 10−6Im) and
Wopt ∼ CN (wopt;0, 10

−6Imopt). For now, elements of Φopt

are drawn from CN (0, 1). Results are averaged over 100
instances of the simulation scenario. We use the ground truth
parameters for N to generate results for comparison purposes.

Generating and storing a unique random projection matrix
for each sample used for the training of the distribution of
N provides the best possible insight into the source statistics.
However, it may be possible to decrease computational costs
and memory requirements by reusing the same projection
matrix for multiple samples. In Fig. 1, we show that by
decreasing the number of unique projection matrices, we in-
crease the resulting mean-square error of reconstruction for N
obtained via the inference model of [9]; i.e., our estimate of the
distribution of N becomes increasingly inaccurate. However,
it is clear that the reliance of the training process on unique

10 0 10 1 10 2 10 3
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0.01

0.015

0.02

Fig. 1. Mean-square reconstruction error for N versus the number of unique
random projection matrices for m ∈ {4, 8, 12} and mopt = m.
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Fig. 2. Mean-square reconstruction error for N versus SNR from (25) when
training the distribution of N for m ∈ {4, 8, 12} and mopt = 4.

projections depends on m, with smaller m generally requiring
more unique matrices to achieve the best-case results. For a
large number of measurements, e.g., for m = 12, we see that
there are no significant disadvantages to using only 1% of
the available unique matrices. We can also observe that by
increasing the number of measurements mopt that we use for
signal recovery, we decrease the reconstruction error.

The SNR — i.e., the ratio of the power in X to the power
in N — will impact our ability to learn the distribution of N.
For the results of Fig. 2, we have used various values of SNR
during the training of the distribution of N, with

SNR = tr{Ωavg} /tr{Γavg} . (25)

Here, Ωavg and Γavg are the average covariance matrices for
the ground truth GM distributions of X and N, respectively. All
estimated distributions experienced the same test conditions;
i.e., we have attempted to reconstruct N in a scenario with
X and N of equal power and mopt = 4. The resulting
reconstruction error illustrates the quality of each estimate of
the distribution of N. We observe that increasing the number of
random measurements m improves the distribution estimation
in low SNR scenarios. Furthermore, we can see that for very
high or very low SNR, all m perform similarly. Significantly,
we see that we are unable to estimate the distribution for SNRs
of order 103 and above, as the reconstruction error is no longer
increasing; i.e., our estimates cannot become worse.

B. Experiments with Real Radar Data

Real radar returns from two fixed-location, three-bladed
fans were acquired according to the setup in [9]. The fans
possessed three rotation speeds, which can be seen in Table I.
Acquisitions for each speed were downsampled to 5.5 kHz.
Fans 1 and 2 contribute to the primary and secondary sources,
X and N, respectively. A time series r is the vectorised output
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TABLE I
CLASS DESCRIPTIONS BASED ON FAN SPEEDS IN ROTATIONS PER SECOND

Fan Input Class 1 Class 2 Class 3 Class 4

1 X 2.63 rps 4.10 rps 5.06 rps N/A
2 N 5.68 rps 6.21 rps 6.78 rps Absent

0 2000 4000 6000 8000 10000 12000

1

2

3

4

Fig. 3. Ground truth classes of X and N in the examined radar returns.

of the radar receiver system; r is split into R non-overlapping
‘frames’, which are segmented into B overlapping ‘bursts’.
Each burst is Hamming windowed and transformed to the
frequency domain via the discrete Fourier transform.

We obtain ground truth distributions for the GMMs of
X,N ∈ Cn via the EM algorithm [12]. For this, instances of X
and N are obtained from transformed bursts when r contains
radar returns from either source in isolation. Training data for
this is obtained from 50 frames of data recorded for each fan
speed. For feature extraction purposes, we use a frame length
of 700. As in [9], we limit the number of frequency coefficients
(and therefore the dimensionalities of X,N ∈ Cn) to n = 32.
Each burst overlaps its neighbours by 75%.

We initialise Algorithm 1 by designing the matrix Φopt such
that I(C;Y) is maximised; i.e., we use β = [0, 1, 0, 0] in (4).
Matrix Φopt is designed over 103 iterations using a step size
of δ = 0.01 and 500 MC draws to evaluate ∇ΦF (Φ,β). Our
initial system parameters θopt include W∼CN (0, 10−6Im),
Wopt∼CN (0, 10−6Imopt

), and the GMM for X with class
probabilities zc = 1/3 ∀ c and O = 3 components. We
assign K=3 components to each class of N and begin
with N ∼ pinitn (n)=

∑K
k=1(1/K)CN (0, 10−6In). The algo-

rithm is applied to a sequence of radar return data of length
NT = 12750 in which the ground truth classes of X and N
from Table I are changing according to Fig. 3. Note that Fan
2 is absent for class 4 of N. We use the following parameters:
m∈ {4, 6, 8, 12, 16}, mopt ∈ {4, 6, 8}, Navg =100, Nrep =1,
Nmax
s = 3000, Nmin

s = 1000, and ζthr = 2.5. When learning
GMs for N, we use the parameters of Sec. VI-A.

Fig. 4 shows the burst classification accuracies for X
obtained after applying Algorithm 1 to the examined
radar returns. Note that the retraining of Φopt again used
β = [0, 1, 0, 0]. Clearly, increasing m has improved our ability
to classify X. This indicates that, as in Sec. VI-A, a large m
provides a better estimate of pn(n). With a better estimate, we
are able to obtain a superior Φopt. As in [9], increasing mopt

also improves our classification accuracy. Note that classifying
on a per-frame basis [9] can further increase performance.

VII. CONCLUSIONS

In this paper, we have derived a methodology for the
training of the GM distribution of a secondary input via com-
pressive measurements. We have shown that well-estimated
distributions yield designed projection matrices that are more

4 6 8
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0.65
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Fig. 4. Burst classification accuracy for X versus the number of optimised
measurements mopt for m ∈ {4, 6, 8, 12, 16} random measurements.

able to control the input-output MI of a system. Furthermore,
we have demonstrated that increasing the number of compres-
sive measurements aids the characterisation of weak secondary
sources and can reduce the number of unique projection
matrices required for distribution training purposes.
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