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Overview of the intelligent transport system
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Reviews of the traffic participants state estimation methods
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Filtering based algorithm:

Domain knowledge aided:

Kalman filter and its variances, 

extended, unscented ones

Particle filter and its variances, 

auxiliary, unscented ones

Multiple model based filtering,    

IMM,IMMPF

Filtering with data association, 

MHT, PHD

Physical constraints (road network) Context information

M. Ulmke and W. Koch, “Road-map assisted 

ground moving target tracking,” Aerospace and 

Electronic Systems, IEEE Transactions on,

vol. 42, no. 4, pp. 1264–1274, 2006.

H. Oh, H. Shin, S. Kim, A. Tsourdos, and B. 

White, “Airborne behaviour monitoring using 

Gaussian processes with map information,” 

IET Radar, Sonar and Navigation, vol. 7, no. 4, 

pp. 393–400, 2013.

T. Gindele, S. Brechtel, and R. Dillmann, “A 

probabilistic model for estimation driver behaviors

and vehicle trajectory in traffic environment,” in 

13th International IEEE Annual Conference on 

Intelligent Transportation Systems, Madeira Island, 

Portugal, 2010.

Liu, C. and Chen, B. L. W., “Road network based 

vehicle navigation using an improved IMM particle 

filter,” 2013 IFAC Intelligent Autonomous Vehicles 

Symposium, Gold Coast,

Australia (2013).
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Outline of the proposed algorithm

4
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Non-Markov jump modelling for incorporating context information 

5

𝒙𝑡: 𝑠𝑡𝑎𝑡𝑒 𝑚𝑡: 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑚𝑜𝑑𝑒 𝐶𝑡: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

Multiple models representing vehicle 

manoeuvres are involved

Transition between different models 

is context-dependent   

𝑝(𝑚𝑡|𝑚𝑡−1, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

Context: relationship between the vehicle 

state and the environment 

Scenario1: A vehicle moves close 

to another vehicle, overtaking 

manoeuvring occurs 

General Bayesian network representation

Scenario2: A vehicle moves 

close to a junction, turning 

manoeuvring occurs 

mt-1 mt mt+1

xt-1 xt xt+1

Ct-1 Ct

Environment database

• Goole map

• Geographical information system

…..
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I. Social force:

Originally developed for modelling the human movements

Helbing, D., Farkas, I., Viscek, T.: ‘Simulating dynamic features of 

escape panic’, Nature, 2000, 407, pp. 487–490.

Extended for modelling the traffic participants in a shared space 

(including vehicles):

B. Anvaria, M. Bella, A. Sivakumara, W. Ochienga, “

Modelling Shared Space Users Via Rule-based Social Force 

Model ”, Transportation Research Part C: Emerging 

Technologies, Volume 51, 2015, Pages 83–103

Forces:

Refined model:

II. Constraints:

Road constraint 𝐶

𝑝𝑓
𝐶(𝒙𝑡+1)= 

𝛾−1𝑝𝑓 𝒙𝑡+1 , 𝑖𝑓𝒙𝑡+1 ∈ 𝐶

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛾= 
𝐶
𝑝𝑓 𝒙𝑡+1 𝑑𝒙𝑡+1where

Modified distribution:

𝒙𝑡+1 = 𝐹𝑚𝑡
𝒙𝑡 + 𝐼 𝒇𝑡 + 𝐺𝒘𝑡 → 𝒑𝑓(𝒙𝑡+1|𝒙𝑡, 𝑚𝑡, 𝒀𝑡−1)

X. Li and P. Jilkov, “Survey of maneuvering target tracking. Part I: Dynamic models”, IEEE Trans. on Aerospace and Electronic Systems, 

vol. 39, no. 4, pp. 1333–1364, 2003.

State model refinement

A general state model in the non-Markov jump model system: 𝒙𝑡+1 = 𝐹𝑚𝑡
𝒙𝑡 + 𝐺𝒘𝑡 → 𝑝(𝒙𝑡+1|𝒙𝑡, 𝑚𝑡, 𝒀𝑡−1)

Two-step refinement:

𝒇𝑖,𝑜
𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒

= 𝐴 ∙ exp(
−𝑑𝑖,𝑜

𝐵
)𝒏𝑖𝑜

𝒇𝑖,𝑐
𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐴′ ∙ (1 − exp(

−𝑑𝑖,𝑐

𝐵′
))𝒏𝑖𝑐
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Algorithms development—Bayesian inference

7

• 𝑝(𝑚𝑡|𝒀𝑡−1)=  𝑚𝑡−1∈𝑀
𝑝 𝑚𝑡, 𝒙𝑡−1, 𝑚𝑡−1 𝒀𝑡−1 𝑑 𝒙𝑡−1 =

  𝑚𝑡−1∈𝑀
𝑝(𝑚𝑡|𝑪(𝒙𝑡−1, 𝑒𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡), 𝑚𝑡−1)𝑝(𝑚𝑡−1𝒙𝑡−1|𝑌𝑡−1)𝑑 𝒙𝑡−1

𝑪(𝒙𝑡−1, 𝑒𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡) →context information extraction function 

• 𝑝(𝒙𝑡−1|𝑚𝑡, 𝒀𝑡−1)=
 𝑚𝑡−1∈𝑀

𝑝(𝑚𝑡|𝒙𝑡−1,𝑚𝑡−1)𝑝(𝒙𝑡−1,𝑚𝑡−1|𝒀𝑡−1)

𝑝(𝑚𝑡|𝒀𝑡−1)

• 𝑝(𝒙𝑡|𝑚𝑡, 𝒀𝑡−1)= 𝑝 𝒙𝑡−1 𝑚𝑡, 𝒀𝑡−1 𝑝𝑓
𝐶 𝒙𝑡 𝒙𝑡−1, 𝑚𝑡, 𝒀𝑡−1 𝑑𝒙𝑡−1

• 𝑝 𝒙𝑡, 𝑚𝑡 𝒀𝑡 ∝ 𝑝(𝑚𝑡|𝒀𝑡−1)𝑝 𝒚𝑡 𝒙𝑡, 𝑚𝑡 𝑝(𝒙𝑡|𝑚𝑡, 𝒀𝑡−1)

mt-1 mt mt+1

xt-1 xt xt+1

Yt-1 Yt Yt+1

Ct-1 Ct

Environment database

Non-
Markov 

jump 
model

Measurements

𝑝(𝑝(𝒙𝑡−1, 𝑚𝑡−1|𝒀𝑡−1)
𝑝(𝑚𝑡|𝒀𝑡−1)

𝑝(𝒙𝑡−1|𝑚𝑡, 𝒀𝑡−1) 𝑝𝑓
𝐶 𝒙𝑡 𝒙𝑡−1, 𝑚𝑡, 𝒀𝑡−1

𝑝(𝒙𝑡|𝑚𝑡, 𝒀𝑡−1) 𝑝 𝒚𝑡 𝒙𝑡 , 𝑚𝑡

𝑝(𝒙𝑡, 𝑚𝑡|𝒀𝑡)

𝑝(𝑚𝑡|𝑪(𝒙𝑡−1, 𝑒𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡),𝑚𝑡−1)

Mixing

Interacting

Evolution

Correction

Detailed inferences:

Probability inference flowchart:



9

Algorithms development—Generic particle filtering based 

implementation

8

Initially, we have a set of particles {𝐱t−1
r,i , ut

r,i}i−1,…,N to approximate 𝑝 𝑚𝑡−1 = 𝑟, 𝒙𝑡−1 𝑌𝑡−1 for every mode r:

 Mode mixing: 

 Interacting:

N particles { 𝒙𝑡−1
𝑚,𝑖 ,  𝑢𝑡−1

𝑚,𝑖 }𝒊=𝟏,…,𝑵 are resampled to solve the exponential increasing of particles number

 Evolution:

𝑝(𝑚𝑡 = 𝑚|𝒀𝑡−1)≈  𝑟∈𝑀 𝑖=1
𝑁 𝑝 𝑚𝑡 = 𝑚 𝑪(𝒙𝑡−1

𝑟,𝑖 , 𝑒𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡),𝑚𝑡−1 = 𝑟 𝑢𝑡
𝑟,𝑖 ≡ Λ𝑡−1

𝑢

𝑝(𝒙𝑡−1|𝑚𝑡 = 𝑚,𝒀𝑡−1)≈
 𝑟∈𝑀  𝑖=1

𝑁 𝑝 𝑚𝑡 = 𝑚 𝑚𝑡−1 = 𝑟, 𝒙𝑡−1
𝑟,𝑖

𝑢𝑡−1
𝑟,𝑖 𝛿(𝒙𝑡−1−𝒙𝑡−1

𝑟,𝑖 )

Λ𝑡−1
𝑢

Sampling particles {𝒙𝑡
m,𝑖}i=1,…,N from 𝑝𝑓

𝐶(𝒙𝑡|𝑚𝑡 = 𝑚,  𝒙𝑡−1
𝑚,𝑖 , 𝒀𝑡−1) 

𝑝(𝒙𝑡|𝑚𝑡 = 𝑚, 𝒀𝑡−1) ≈  𝑢𝑡−1
𝑚,𝑖 𝛿(𝒙𝑡−1 − 𝒙𝑡−1

𝑚,𝑖 )

Correction:

𝑝(𝒙𝑡, 𝑚𝑡 = 𝑚|𝒀𝑡−1)∝  𝑖=1
𝑁 𝑝(𝑚𝑡 = 𝑚|𝒀𝑡−1)p 𝒚𝑡 𝒙𝑡

𝑚,𝑖 , 𝑚𝑡 = 𝑚  𝑢𝑡−1
𝑚,𝑖 𝛿(𝒙𝑡 − 𝒙𝑡

𝑚,𝑖)

H. Blom and E. Bloem, “Exact Bayesian and particle filtering of stochastic hybrid systems”, IEEE 

Transaction on Aerospace and Electronic Systems, Vol.43, No.1, Pages 55-70, 2007.



10

Algorithms development—Gaussian particle filtering based implementation

9

Initially, we have a set of particles {𝐱t−1
r,i , ut

r,i}i−1,…,N to approximate 𝑝 𝑚𝑡−1 = 𝑟, 𝒙𝑡−1 𝑌𝑡−1 for every mode r

 Mode mixing: 

 Interacting:

N particles { 𝒙𝑡−1
𝑚,𝑖 ,  𝑢𝑡−1

𝑚,𝑖 }𝒊=𝟏,…,𝑵 are resampled to solve the exponential increasing of particles number

 Evolution and correction:

𝑝(𝑚𝑡 = 𝑚|𝒀𝑡−1)≈  𝑟∈𝑀 𝑖=1
𝑁 𝑝 𝑚𝑡 = 𝑚 𝒙𝑡−1

𝑟,𝑖 ,𝑚𝑡−1 = 𝑟 𝑢𝑡
𝑟,𝑖 ≡ Λ𝑡−1

𝑢

𝑝(𝒙𝑡−1|𝑚𝑡 = 𝑚,𝒀𝑡−1)≈
 𝑟∈𝑀  𝑖=1

𝑁 𝑝 𝑚𝑡 = 𝑚 𝑚𝑡−1 = 𝑟, 𝒙𝑡−1
𝑟,𝑖

𝑢𝑡−1
𝑟,𝑖 𝛿(𝒙𝑡−1−𝒙𝑡−1

𝑟,𝑖 )

Λ𝑡−1
𝑢

Initialization of mean and covariance :  𝒙𝑡−1|𝑡−1 =  𝑖=1
𝑁  𝑢𝑡−1

𝑚,𝑖 ∙  𝒙𝑡−1
𝑚,𝑖  𝑃𝑡−1|𝑡−1 =

 𝑖=1
𝑁  𝑢𝑡−1

𝑚,𝑖 ∙ ( 𝒙𝑡−1
𝑚,𝑖 − 𝒙𝑡−1|𝑡−1) ∙ ( 𝒙𝑡−1

𝑚,𝑖 − 𝒙𝑡−1|𝑡−1)
𝑇

A Gaussian distribution 𝑁𝑐(𝒙𝑡| 𝒙𝑡|𝑡,  𝑃𝑡|𝑡) is obtained using truncated unscented Kalman filter

New particles {𝒙𝑡
m,𝑖}i=1,…,N are sampled from 𝑁𝑐(𝒙𝑡| 𝒙𝑡|𝑡,  𝑃𝑡|𝑡) for approximating 𝑝 𝒙𝑡 𝑚𝑡 = 𝑚, 𝒀𝑡 as: 

𝑝(𝒙𝑡 , 𝑚𝑡 = 𝑚|𝒀𝑡)∝  𝑖=1
𝑁 𝑢𝑡

𝑚,𝑖𝛿 𝒙𝑡 − 𝒙𝑡
𝑚,𝑖 , 𝑤𝑖𝑡ℎ 𝑢𝑡

𝑚,𝑖 =
p 𝒚𝑡 𝒙𝑡 , 𝑚𝑡 = 𝑚 𝑁(𝒙𝑡

𝑚,𝑖| 𝒙𝒕|𝒕−𝟏,  𝑃𝑡|𝑡−1)

𝑁(𝒙𝑡
𝑚,𝑖| 𝒙𝒕|𝒕,𝑃𝒕)
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Truncated unscented Kalman filter
Based on the initial mean  𝒙 and covariance 𝑃 of 𝒙𝑡−1 related to 𝑝(𝒙𝑡−1|𝑚𝑡, 𝒀𝑡−1)

Obtaining 𝝈-points:

𝒙0 =  𝒙 𝑢0=
𝜅

𝑛𝜒+𝜅
𝒚0 = ℎ( 𝒙, 𝒆0 )

𝒙𝑖 =  𝒙 + ( (𝑛𝜒+𝜅)𝑃)𝑖 𝑢𝑖=
1

2(𝑛𝜒+𝜅)
𝒚𝑖 = ℎ(𝒙𝑖 , 𝒆𝑖 )

𝒙𝑛𝜒+𝑖 =  𝒙 − ( (𝑛𝜒+𝜅)𝑃 )𝑖 𝑢𝑛𝜒+𝑖= 𝑢𝑖 𝒚𝑛𝜒+𝑖 = ℎ(𝒙𝑛𝜒+𝑖 , 𝒆𝑛𝜒+𝑖 )

Mean and covariance updating:                                       Constraint information incorporation:   

𝑃𝒚𝑡|𝒚𝑡=  

𝑗=0

2𝑛𝜒

𝑢𝑗 𝒚𝑗 −  𝒚 𝒚𝑗 −  𝒚
𝑇

where  𝒚 =  

𝑗=0

2𝑛𝜒

𝑢𝑗𝒚𝑗

𝑃𝒙𝑡|𝒚𝑡=  
𝑗=0

2𝑛𝜒 𝑢𝑗(𝒙𝑗 −  𝒘)(𝒚𝑗 −  𝒚)𝑇

𝐾 = 𝑃𝒙𝑡|𝒚𝑡𝑃𝒚𝑡|𝒚𝑡
−1

 𝒙′=  𝒙+ 𝐾(𝒚𝑡- 𝒚)

𝑃’=𝑃 − 𝐾𝑃𝒚𝑡|𝒚𝑡𝐾
𝑇

M samples {𝒙𝑖}𝑖=1,…,𝑀 are obtained from 

𝑁 𝐱t  𝒙′, 𝑃’ , new mean and covariance are 

obtained after considering the constraint:

 𝒙′𝐶 =
1

𝑁
 

𝑗=1

𝑀′

𝒙𝑗

𝑃′𝐶 =
1

𝑁
 𝑗=1
𝑀′ (𝒙𝑗 − 𝒙′𝐶 )(𝒙𝑗 −  𝒙′𝐶 )

𝑇

where {𝒙𝑗}𝑖=1,…,𝑀∈ 𝐶

Samples are obtained from 𝑵 𝐱𝒕  𝒙′𝑪 , 𝑷′𝑪 incorporating the measurement and constraint information 

O. Straka, J. Dunik and M. SimandI, “Truncated nonlinear filters for state estimation with nonlieanr

inequality constraints”, Automatica, Vol.48, No.2, Pages 273-286, 2012.
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Simulation studies--scenario

11

The first vehicle: 

moving with a constant velocity of 10 (m/s) for 27.5 (s) 

turning with an angular velocity of 0.2 (rad/s) for 2.5 (s). 

The second vehicle: 

moving with a constant velocity of 12.5 (m/s) for 8s 

overtaking vehicle 1 

moving again with 2.5 (m/s) for 7s along the straight segment. 

moving along the bend road segment with an angular velocity of 0.2 (rad/s).

Simulated vehicles moving scenario and trajectories:

Vehicles manoeuvring behaviours:
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Simulation studies--models

12

Constant velocity model:

Constant turning (CT) model:

Model transition probabilities are defined in a context dependent way, e.g.

𝑝 𝑚𝑡 = 𝐻𝐼𝐶𝑉 𝑚𝑡 = 𝐿𝐼𝐶𝑉 = 𝑒𝑥𝑝 −𝑎 ∙ 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ,
𝑝 𝑚𝑡 = 𝐶𝑇 𝑚𝑡 = 𝐿𝐼𝐶𝑉 = 𝑒𝑥𝑝 −𝑎′ ∙ 𝑑𝑡𝑢𝑟𝑛 ,
𝑎 = 0.1, 𝑎′ = 0.15: empirical set parameters

𝑥𝑘
 𝑥𝑘
𝑦𝑘
 𝑦𝑘
𝑤𝑘

=

1
sin 𝑤𝑇

𝑤
0 −

1−cos 𝑤𝑇

𝑤
0

0 cos𝑤𝑇 0 − sin𝑤𝑇 0

0
1−cos 𝑤𝑇

𝑤
1

sin 𝑤𝑇

𝑤
0

0 sin𝑤𝑇 0 cos𝑤𝑇 0
0 0 0 0 1

𝑥𝑘
𝑦𝑘
 𝑥𝑘
 𝑦𝑘
𝑤𝑘

+

 𝑇2 2 0 0
𝑇 0 0
0  𝑇2 2 0
0 𝑇 0
0 0 1

𝑛𝑥
𝑛𝑦
𝑛𝑤

)

𝑥𝑘
𝑦𝑘
 𝑥𝑘
 𝑦𝑘

=

1 0 𝑇 0
0 1 0 𝑇
0 0 1 0
0 0 0 1

𝑥𝑘−1
𝑦𝑘−1
 𝑥𝑘−1
 𝑦𝑘−1

+

 𝑇2 2 0

 0 𝑇2 2
𝑇 0
0 𝑇

𝑛𝑥
𝑛𝑦

)

Each model is refined by both force (from the road boundaries and another vehicle) and constraint (road)

𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒: distance to the front vehicle

𝑑𝑡𝑢𝑟𝑛:distance to the turn

State models:

Model transitions:

A sensor positioned at [200,30] (m) is applied to measure the range 𝑟𝑡 and bearing angle 𝜃𝑡 of 

a particular vehicle with:

𝑟𝑡
𝜃𝑡

=
(𝑥𝑠−𝑥𝑡)

2 + (𝑦𝑠−𝑦𝑡)
2

tan−1
𝑦𝑠 − 𝑦𝑡
𝑥𝑠 − 𝑥𝑡

+
𝑛𝑟
𝑛𝜃

,
𝑛𝑟
𝑛𝜃

~𝑁(
0
0

,
52 𝑚2 , 0

0, 0.022(𝑟𝑎𝑑2)
)

Measurements:

𝑁(
0
0

,
0.12(𝑚/𝑠2)2, 0

0, 0.12(𝑚/𝑠2)2

𝑁(
0
0

,
22(𝑚/𝑠2)2, 0

0, 12(𝑚/𝑠2)2



14

Simulation studies—manoeuvring type determination  

13
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Simulation studies—modelling comparisons

14

 Comparisons between different modelling approaches are made from 100 Monte-Carlo simulations

 Gaussian particle filtering based approach (with the same particle number) is applied for every model

Markov 

jump model

(T.Kirubaraja

n，2003)

Non-Markov 

jump model 

(context 
information)

Non-Markov jump 
model+constraint

Non-Markov jump 

model+constraint+
force

Vehicle 1 2.52 2.43 2.17 1.51

Vehicle 2 3.45 3.25 2.42 2.10

Ave_RMSEs (m) for different modeling approaches 

5 10 15 20 25 30 5 10 15 20 25 30

Time (s) Time (s)
𝐴𝑣𝑒_𝑅𝑀𝑆𝐸

=
1

𝑀
 

𝑖=1

𝑀 1

𝐿
 

𝑡=1

𝐿

 (𝑥𝑡
𝑔
− 𝑥𝑡

𝑖,𝑒 2
+  (𝑦

𝑡
𝑔
− 𝑦𝑡

𝑖,𝑒 2

𝑹𝑴𝑺𝑬𝒕

=
𝟏

𝑴
 

𝒊=𝟏

𝑴

 (𝒙𝒕
𝒈
− 𝒙𝒕

𝒊,𝒆 𝟐
+  (𝒚

𝒕
𝒈
− 𝒚𝒕

𝒊,𝒆 𝟐

(𝒙𝒕
𝒈
, 𝒚𝒕

𝒈
): ground truth position at time 𝑡

(𝒙𝒕
𝒊,𝒆, 𝒚𝒕

𝒊,𝒆
): estimated position for the 𝑖 − 𝑡ℎ

MC at 𝑡
𝑀: number of MCs 𝐿: length of the trajectory
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Simulation studies—algorithms comparison

15

 Under the same model, comparisons have been made with the generic particle filtering based 

and Gaussian particle based approaches

Generic particle filtering Gaussian particle filtering

Vehicle 1 2.77 1.51

Vehicle 2 2.65 2.10

AVE_RMSEs (s) for different implementation algorithms

Computational costs for trajectories 

tracking (per sample):

 Generic particle filtering: 0.12 (s)

 Gaussian particle filtering: 0.03 (s)

5 10 15 20 25 30 5 10 15 20 25 30
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Conclusions and future works

16

 In this work, we have developed a new traffic participants state estimation method:

Model aspect:

• Non-Markov jump model is applied to model the transition probabilities based on the context 

information

• For a particular model, both the force and constraint are applied for refining the model 

Algorithm aspect:

• Bayesian inference algorithm is developed for the model

• Gaussian particle filtering based algorithm is applied for implementation 

 Future work:

• Data associations (miss detection/false alarms)

• System parameters calibration (machine learning)
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