Efficient range estimation and material quantification from multispectral Lidar waveforms

Yoann Altmann, Aurora Maccarone, Abderrahim Halimi, Aongus McCarthy, Gerald Buller and Stephen McLaughlin

Heriot-Watt University, Edinburgh, U.K.

Ranging using multispectral Lidar (MSL)

Principle

- Pulsed laser (20 MHz), low power ($\approx \mu$W)
- Detector: single-photon avalanche diode (SPAD)
- Time of flight: for each detected photon (precision $\approx 10^{-12}$s)
Motivations

- Joint extraction of geometric and spectral information
 - Limited data registration issues (fusion Lidar/HSIs)
- Range estimation: robustness
 - Energy spread across wavelengths
- Scene reconstruction with few photons
 - < 10 useful photons per pixel and band
- Robustness: illumination conditions (active imaging)
 - Shadowing effects
Observation model

\[y_{n,\ell,t} \sim \mathcal{P} (r_{n,\ell} g_{0,\ell} (t - t_n) + b_{n,\ell}) \quad t \in \{1, \ldots, T\} \]

- \(y_{n,\ell,t} \): photon count in the \(t \)th bin (\(\ell \)th band)
- \(r_{n,\ell} \): target reflectivity
- \(t_n \): ToF
- \(g_{0,\ell} (\cdot) \): instrumental response
- \(b_{n,\ell} \): background level

Single target model

- Estimation of \(t_n \), \(r_n = \{r_{n,\ell}\} \) (and \(b_{n,\ell} \))
- Here \(b_{n,\ell} << r_{n,\ell} \)
Efficient range estimation and material quantification from MSL data

Single-photon Multispectral Lidar (33 wavelengths / 500 – 820nm)

Clustering/Classification

RGB image (5 × 5 cm) Range profile (mm) Spectral classification

Efficient range estimation and material quantification from MSL data

Multispectral Lidar: spectral unmixing

Single-photon Multispectral Lidar

Proposed Bayesian approach

\[r_n = Ma_n \]

- **M**: known endmember matrix
- **\(a_n \)**: \(n \)th abundance vector
- Observation model: joint likelihood (Poisson noise)
- Standard priors for the unknown parameters
 - smooth abundance maps + sparse mixtures: Total-variation (TV) and \(\ell_1 \) regularizations
 - No abundance sum-to-one constraint
 - Uniform prior for \(t_n \) (regular grid)
- Estimation of \(A = \{a_n\} \) and \(T = \{t_n\} \)
Efficient range estimation and material quantification from MSL data

Single-photon Multispectral Lidar

Previous method

- $f(A, T|Y) \propto f(Y|A, T)f(A, T)$: highly multimodal
 - MCMC method to exploit $f(A, T|Y)$
 - Measures of uncertainty but high computational cost

Proposed method

$(\hat{A}, \hat{T}) = \arg\max_{A, T} f(A, T|Y)$

- Main assumption: pulses not cropped
 - \hat{A} does not depend on T
- Estimation of \hat{A} → convex problem
 - Standard spectral unmixing of hyper/multi-spectral data
- Estimation of $\hat{T}|\hat{A}$: Multi-modal cost function but ...
 - Optimization on a regular grid

\Rightarrow Fast linear unmixing and range estimation by integration of the 4D data cube over the temporal dimension
Efficient range estimation and material quantification from MSL data

Results

Single-photon Multispectral Lidar (33 wavelengths / 500 – 820nm)

Spectral unmixing

- Identifying and quantifying the materials of the scene (range ≈ 1.80m)
- Acquisition time per pixel: 10 ms or 0.1 ms per band
- Here: 14 types of polymer clays + backboard

RGB image

Average photon counts
Efficient range estimation and material quantification from MSL data

Results

Single-photon Multispectral Lidar (33 wavelengths / 500 – 820nm)

Spectral unmixing

Figure: Example of estimated abundance maps
Results

Single-photon Multispectral Lidar (33 wavelengths / 500 – 820nm)

Depth estimation
Single-photon Multispectral Lidar (33 wavelengths / 500 – 820nm)

Depth estimation (≈ 10 photons per pixel and band)

- Posterior measure of uncertainty:

\[p \left(d_n \in [\hat{d}_n - 0.5mm; \hat{d}_n + 0.5mm] \mid Y, \hat{A} \right) \]
Efficient range estimation and material quantification from MSL data

Results

Single-photon Multispectral Lidar (33 wavelengths / 500 – 820nm)

Spectral unmixing (example II)

- Mixtures of natural and man-made objects

RGB image (5 × 5 cm) Range profile (mm)
Single-photon Multispectral Lidar (33 wavelengths / 500 – 820nm)

Spectral unmixing (example II)

Estimated abundances
Conclusion and future work

Conclusions

- Joint extraction of spectral and geometric information
- **Fast unmixing** using convex optimization
- Uncertainty about depth estimation

Future work

- Generalization to actual 3D unmixing → multiple surface detection
- Scanning system: sampling strategies
- Spectral analysis from extremely low photon counts
Thanks for your attention!
Efficient range estimation and material quantification from multispectral Lidar waveforms

Yoann Altmann, Aurora Maccarone, Abderrahim Halimi, Aongus McCarthy, Gerald Buller and Stephen McLaughlin

Heriot-Watt University, Edinburgh, U.K.