Experimental Analysis of Time Deviation on a Passive Localization System

Hugo Seuté, Cyrille Enderli, Jean-François Grandin

THALES

Ali Khenchaf,

Email: hugo.seute@fr.thalesgroup.com

Clock statistics

A **clock** can be modeled as a device producing a **sine wave**:

 $V(t) = V_0 \sin\left(2\pi f_0 t + \boldsymbol{\phi}(\boldsymbol{t})\right)$

Two parameters can be identified:

Phase fluctuation (noise)

- Time fluctuation: $\mathbf{x}(\mathbf{t}) = \boldsymbol{\phi}(\mathbf{t})/2\pi f_0$
- Frequency fluctuation: $y(t) = \frac{1}{2\pi f_0} \frac{d\phi(t)}{dt}$

is **non-stationary**, these quantities cannot be analyzed through $\phi(t)$ traditional statistics but the **Allan variance** $\sigma_{\nu}^2(\tau)$ can be used. It measures the variance of the difference of two values of y spaced by a time τ . Other versions of the Allan variance were developed, like the **modified** Allan variance, whose estimates converge more quickly and are capable to distinguish between more types of noise. Its expression in terms of time data is:

Experimental setup

Goal: evaluate the overall time synchronization performance of a whole passive system.

The platforms are synchronized via a custom protocol based on the emission and reception of a **RF signal**.

This signal is cross-correlated between platforms to evaluate the delay between their clocks:

$$Mod \ \sigma_y^2(\tau) = \frac{1}{2m^2\tau^2(N-3m+1)} \times \sum_{j=1}^{N-3m+1} \left[\sum_{i=j}^{j+m-1} (x_{i+2m} - 2x_{i+m} + x_i) \right]^2$$

where τ is the time horizon on which the variance is calculated, x_k the k^{th} sample of a dataset containing N values of x(t) sampled every T_s , and $m = \tau/T_s$ the number of samples of x(t) contained in the time horizon τ (m must be an integer such as $m \ge 1$).

Time Variance is a metric characterizing efficiently time fluctuations of a clock. It is based on the modified Allan variance:

 $\sigma_x^2(\tau) = (\tau^2/3) \cdot Mod \ \sigma_y^2(\tau)$

In practice x represents the fluctuation of a clock relative to another reference clock.

Interpretation

 $\sigma_x(\tau)$: standard deviation of the time error between the clocks considering an averaging time of τ .

Computations of $\sigma_x(\tau)$ on simulated scenarios with different types of noise found in oscillators:

This signal is designed to have an correlation function with a narrow and unambiguous primary lobe.

$$s(t) = \sin(2\pi f_1 t) \sin(2\pi f_2 t) e^{j2\pi f_{L0} t}$$

Results

Two experiments have been carried out, each featuring a different type of clock (A or B). The same clock type is mounted on both receivers on an experiment. Clocks type A are TCXO and clocks type B are GPSDO (GPS Disciplined Oscillator).

The minimum time deviation will be achieved by using clock A when $\tau < 350$ s and clock B when $\tau > 350$ s. So if the system is in a hostile zone and has a poor (high) synchronization period or no sync signal exchanged, because of jamming or for stealth purposes, a GPSDO appears to be the best choice. If a short period synchronization signal is available, a standard TCXO seems to be a better option.

Thales Airborne Systems 2 Avenue Gay Lussac, 78990 Elancourt, FRANCE

SSPD CONFERENCE, SEPTEMBER 2016 EDINBURGH

Lab-STICC, UMR CNRS 6285, ENSTA Bretagne 2 Rue François Verny, 29806 Brest, FRANCE