
As a l1/l2 norms-based estimation method, Huber’s M-estimation [1] has provided an efficient

method to deal with measurement outliers for robust filtering, which has been applied to the cubature

Kalman filter (CKF), namely M-estimation based robust CKF (HCKF) and its square-root version

(HSCKF). In particular, the CKF/SCKF is suitable for high dimensional systems and enjoys better

numerical stability, computational efficiency and accuracy[2-4].

Huber’s M-estimation is based on generalized maximum likelihood estimation that can handle

clutter in both processes and measurements. The robust M-estimation methods however cannot adjust

the noise covariance adaptively when it does not match with the truth. To further handle abnormal

measurement noise, an adaptive method is proposed in this paper to adjust the measurement noise

covariance used in the Huber’s M-estimation approach based on the difference between actual and

theoretical/predicted innovation covariance, to gain adaptivity in addition to the robustness. The

approach is applied within the HCKF and AHCKF, leading to adaptive HCKF (AHCKF) and adaptive

HSCKF (AHSCKF). Simulation results on a typical target tracking model have demonstrated their

advantages over existing approaches in terms of estimate accuracy, outlier-robustness and reliability.

Introduction

Huber’s M-estimation

Simulation

To verify the effectiveness of the proposed adaptive M-estimation method in both AHCKF and

AHSCKF, we use the same target tracking model as given in [2] with the same parameters. The true

target is initialized with 𝑁(𝑥0, 𝑃0|0), where 𝑥0 = 1000m 300ms−1 1000m 0ms−1 − 3°s−1 ,

𝑃0|0 = diag[100m2 10m2s−2 100m2 10m2s−2 100mrad2s−2].

The measurement data generated by the normal measurement model are denoted as ‘data0’ namely

the healthy data. On the other hand, morbid conditions is also simulated based on data0 morbid

measurement data by uding a deviations [75 m 0.2 rad]𝑇on the measurement noise 𝑤𝑘 when 20 < k <

60 and 𝑚𝑜𝑑(𝑘, 8) = 0, where 𝑚𝑜𝑑(𝑎, 𝑏) gives the remainder of 𝑎/𝑏, giving data1. More types of

abnormal measurement situations are simulated and analysed in the paper.

Conclusion

An adaptive M-estimation method has been proposed to adjust the measurement noise covariance

for robust recursive estimation to accommodate abnormal measurement noise, which is quite easy to

realize. It has been implemented in two versions of robust CKFs: HCKF and HSCKF. Simulations on

a typical target tracking model demonstrate the effectiveness of the proposed method.
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As usual, the estimation model can be described as a discrete-time state-space model.

where k is the time, is the state, is the measurement, and are the state transition

and measurement functions, and are the zero-mean Gaussian process noise and zero-mean

Gaussian measurement noise with covariance matrixes Q and R respectively.

Given the cost function (comparing estimate x to truth u), more specifically,

supposing the predicted state and the measurement matrix , the measurement function can be

reformulated in matrix as a linear regression model

where       is the measurement matrix,         is state prediction error with covariance          .  

Huber’s M-estimation minimizes the cost function:

where refers to the ith component of the residual vector , and the function is

known as the “score function”, which can be defined as

where c is a tuning threshold.

The state estimate error covariance matrix can be iteratively computed from                                       

.  Usually, the number of iterations is only one.

†Northwestern Polytechnical University, China ‡University of Salamanca, Spain

Changliang Zhang†, Ruirui Zhi†, Tiancheng Li‡ and Juan M. Corchado‡

Adaptive M-estimation for  Robust Cubature Kalman Filtering

Adaptive M-estimation based CKF/SCKF

1
( )

( )

k k k

k k k

x f x w

y h x v


 

 

n

kx R
yn

ky R  f  h

k
w

k


 1/2( ) ( )J x x   

| 1
ˆ

k kx  kH

| 1 | 1

| 1

ˆ( )

ˆ

k k k k k k kk

k

k k k

k k k k

y h x H x vH
x

x xI
z M x u



 



 
 



    
      

    

k
H

k
x

| 1 k kP 

1

( ) ( ) 
y

n n

k i

i

J x u





 

 iu   k k Ku M x z   

2

2

1
,              | |

2
( )

1
| | ,  | |

2

i i

i

i i

u u c

u

c u c u c







 







1

|
( )

T

k k k k
P M WM




If something occur “unexpectedly”, e.g. (estimated) noise covariance differs significantly from the

truth, the filter will deteriorate or even fail. For this, to render the M-estimation immunized to

abnormal measurements, we propose to online compare the innovation covariance between the

theoretical expectation (prediction) and the truth for abnormal detection.

Given that the received measurements are normal, the true innovation covariance equals

approximately to the calculated one . (the calculation is given in the paper)

Two strategies to compute the true innovation covariance:

 Sliding window strategy to compute is based on the former m>1 innovation estimator.

 Use the current innovation vector only for computing the innovation covariance.

When an abnormal measurement occurs, we can get an equation about the variant scalar factor 𝑎𝑘 .

where tr() denotes the trace of the related matrix.

The adaptive factor 𝒂𝒌 will be close to 1 when and only when the measurement is normal.

This provides a measure to detect the measurement abnormality: once abnormal measurements occur,

a larger factor 𝑎𝑘 shall be (calculated and) used for adjusting.

In general, given 𝑦𝑘~𝑁(  𝑦𝑘|𝑘−1, 𝑃𝑦𝑦,𝑘|𝑘−1), 𝑒𝑘~𝑁 0,𝑃𝑦𝑦,𝑘|𝑘−1 we have

where the column vector of 𝑉𝑘 is standardized feature vector, satisfying 𝑉𝑘
𝑇 = 𝑉𝑘

−1 and 𝑃𝑦𝑦,𝑘|𝑘−1 =

𝑉𝑘𝛬𝑘𝑉𝑘
𝑇 , so we have  𝑒𝑘~𝑁(0, 𝛬𝑘) which can be used for normality test as it only holds for the

normal measurement [5], which treats 𝑒𝑘 as a whole unit without distinguishing its dimensions.
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In contrast, we propose to treat each dimension separately for finer (also more sensitive) test. This

is easy to implement and feasible because 𝛬𝑘 is a diagonal matrix for which the elements of vector  𝑒𝑘

are independent with each other (we assume conditional independence between dimensions).

The measurement data is identified to be abnormal when and only when at least one dimension does

not meet the normality test. The adaptive factor 𝑎𝑘 is then given as follows

The probability of abnormal 𝑃 |  𝑒𝑖,𝑘| > 𝑁𝑖 ,𝛼𝑖
= 1 −𝛼𝑖 , 0 < 1 − 𝛼𝑖 < 1, a smaller test threshold

𝑁𝑖,𝛼𝑖
implies more sensitive detection, depending on the user’s preference. We recommend 𝑁𝑖 ,𝛼𝑖

∈

𝛬𝑖,𝑘 , 5𝛬𝑖,𝑘 , in which 𝑁𝑖 ,𝛼𝑖
= 3𝛬𝑖,𝑘 corresponds to a confidence coefficient 99.74%.

Once abnormal is confirmed, the gained adaptive factor 𝑎𝑘 will be used to replace the measurement

noise covariance R by 𝑎𝑘R in the KF, such as the HCKF or HSCKF. This will enable the filter to detect

abnormal measurement and to apply adjusting by 𝑎𝑘 when abnormal is detected. This leads to the so-

called adaptive HCKF (AHCKF) and adaptive HSCKF (AHCKF) respectively in our paper.

However, when the innovation sequence is large, adaptive and robust methods turn out to be two

opposite strategies [6]. Therefore, our approach is exposed to the risk of over-reaction to the sensor data,

We will further consider this in the future work. One potential solution is to fit sensor data over time [7]
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In Fig.1, on ‘data0’, the performances of all

CKFs are almost the same, indicating that

robust filtering design is not necessary in this

case while it will not cause side effects

(except slightly additional computation).
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Fig.1 RMSE of position, velocity and turn rate when using ‘data0’

Fig.2 RMSE of position, velocity and turn rate when using ‘data1’

In Fig. 2 on ‘data1’, the estimation errors given

by HCKF and AHCKF have significant “peaks”

(indicating very worse accuracy as compared to

the proposed adaptive filter) when abnormal

measurements occur. In these cases, HCKF does

not work well, because the score function rescales

the measurement covariance weakly. In contrast,

AHCKF benefits much from the use of the

adaptive factor 𝑎𝑘 to adapt according to abnormal

noises.


