Cramer-Rao Bounds for Distributed System Size Estimation Using Consensus Algorithms Sai Zhang, Cihan Tepedelenliglu, Jongmin, Lee, Henry Braun and Andreas Spanias

SenSIP Center, School of ECEE, Arizona State University

INTRODUCTION AND MOTIVATION

- Wireless sensor networks (WSNs) with no fusion center
- **Estimate the system size (total number of sensors) of WSNs**
- **Applications:** network maintenance, detect nodes join or leave the network

PROBLEM STATEMENT

- **Count number of nodes using consensus**
- **Random initial values,** *x_i* generated at nodes
- **Different consensus algorithms:**
 - Max consensus

$$x_i(t+1) = \max\left\{x_i(t), \max_{j \in \mathbb{N}_i} x_j(t)\right\}$$

Average consensus

$$_{i}(t+1) = W_{ii}x_{i}(t) + \sum_{j \in \mathbb{N}_{i}} W_{ij}x_{j}(t)$$

- **System size inferred from the consensus results**
- **Problem:** performance is affected by:
 - Types of consensus algorithm
 - Initial values, x_i
- Performance analysis: Fisher information (FI) and Cramer-Rao bounds (CRBs)

ARIZONA STATE UNIVERSITY

Poster Template Designed by Genigraphics ©201 1.800.790.4001 www.genigraphics.com

Max Consensus in the Absence of Noise

Theorem

Assume the initial values at nodes x_i are i.i.d. with PDF f(x) and CDF F(x), and f(x) is differentiable. When max consensus is used, the Fisher information for estimate of system size N is,

The CRB is the inverse of the Fisher information, and a lower bound on the estimation variance can be expressed as

The distribution of the initial values at nodes does not affect the Fisher information and CRB.

Average Consensus in the Absence of Noise

Theorem

Assume the initial values at nodes x_i are i.i.d. with mean μ and variance σ^2 . Also assume that N is large. When average consensus is used, the Fisher information for estimate of system size N is

The CRB is the inverse of the Fisher information, and an lower bound on the estimation variance can be expressed as

Max Consensus with Noise

Theorem

by

The CRB is the inverse of the Fisher information, and a lower bound on the estimation variance can be expressed as

RESULTS: FI AND CRBS UNDER DIFFERENT CASES

$$\mathcal{I}_{\max} = \frac{1}{N^2}$$

 $\operatorname{Var}\left[\hat{N}\right] \geq N^2.$

$$\mathcal{I}_{\rm avg} = \frac{1}{2N^2}.$$

$$\operatorname{Var}\left[\hat{N}\right] \geq 2N^2.$$

Assume the initial values at nodes x_i have exponential tail and its tail PDF $\lambda e^{-\lambda x}$. The distribution of the max of the initial values can be approximated using Gumbel distribution. Assume that the final error at nodes is Gaussian distributed $e \sim \mathcal{N}(\mu_e, \sigma_e^2)$. The Fisher information for estimate of system size N is bounded

$$\mathcal{I}_{\mathrm{nmax}} \leq \left(\frac{1}{\mathsf{N}^2}\right) \left(\frac{\lambda^{-2}}{\sigma_e^2 + \lambda^{-2}}\right)$$

$$\operatorname{Var}\left[\hat{N}
ight] \geq N^2 \left(\sigma_e^2 \lambda^2 + 1
ight).$$

Sensor Signal and Information Processing Center http://sensip.asu.edu

Theorem

Assume the initial values at nodes x_i are i.i.d. with mean μ and variance σ^2 , the final error at nodes is Gaussian distributed $e \sim \mathcal{N}(0, \sigma_e^2)$. Also assume that N is large. When average consensus is used, the Fisher information for estimate of system size N is

variance can be expressed as

CONCLUSIONS

- **For max consensus** without noise, x_i does not affect Fisher information and **Cramer-Rao Bound**
- Max consensus has lower CRB (noiseless case)
- **CRB** is presented

REFERENCES

[1] D. Varagnolo, G. Pillonetto, and L. Schenato, "Distributed cardinality estimation in anonymous networks," IEEE Transaction on Automatic Control, vol. 59, no. 3, pp. 645 -659, March 2014.

[2] S. Zhang, C. Tepedelenlioglu, M. Banavar, and A. Spanias, "Distributed node counting in wireless sensor networks," in 49th Asilomar Conference on Signals Systems and Computers, Nov. 2015.

ACKNOWLEDGMENT

This work is funded in part NSF award ECCS – 13079282 and the SenSIP Center, School of ECEE, Arizona State University

Average Consensus with Noise

$$\mathcal{I}_{\text{avg}} = \frac{1}{2N^4} \left(\frac{\sigma^4}{\left(\frac{\sigma^2}{N} + \sigma_e^2\right)^2} \right)$$

When N is large, $\mathcal{I}_{avg} \approx \frac{1}{2N^4} \left(\frac{\sigma^2}{\sigma_{\rho}^2}\right)^2 = \frac{1}{2N^4} (SNR)^2$, where SNR is defined as $SNR = \frac{\sigma^2}{\sigma_{\rho}^2}$. The CRB is the inverse of the Fisher information, and an lower bound on the estimation

