
Abstract
Unsupervised classification of spectral libraries provides groups of spectra which may 
be of use in material detection or identification processes for hyperspectral imagery.  
It can also be used to discover associations between materials’ spectra that can help 
analysts to interpret spectral data.  We use the assumption of a Gaussian Mixture 
Model, combined with a Bayesian Information Criterion (BIC) for determination of the 
number of mixture components, to model a spectral library and assign its members 
to clusters.  This process provides a natural method to include spectra within multiple 
classes where this is appropriate.  The process is demonstrated for a library of mineral 
spectra.  Results are compared with the minerals’ geological classifications and with the 
results of other published clustering processes.
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Why do unsupervised clustering of 
spectral libraries?
Clusters of library spectra can assist algorithms for 
target detection, making it possible to detect materials 
that have not been measured in the laboratory but are 
related to others that have, as illustrated in Figure 1.

Clusters can be defined manually or with the aid of 
supervised clustering algorithms.  However, this is 
labour-intensive; requires trained analysts; may be 
difficult in libraries with poor metadata; and limits 
the cluster analysis to groups that have already been 
identified by the analyst.

Our process is unsupervised and also allows for spectra 
to be allocated to more than one cluster – valuable for 
mechanical mixtures of different compounds, or spectra 
showing features from more than one ion, bond or 
functional group.

Figure 1 – left: aerial photograph showing targets deployed for a field trial, including coloured Perspex panels in the bottom-left of the image. 
Top-right: detection image of the same scene from a visible and short-wave infrared (SWIR) hyperspectral imager.  Lighter tones indicate 
higher likelihood that a pixel contains the target as opposed to the background.  The image was searched for a target made of red Perspex.  
Only one of the Perspex targets is detected. Bottom-right: Hyperspectral detection image searched for a subspace including many different 
colours of Perspex.  Note that all the square targets in the bottom-left are detected.  Crucially, this includes targets that were not represented 
in the library used to define the target subspace.  The target subspace is an example of a cluster of spectra.

Technical approach
Our process employs several established techniques for 
unsupervised learning:

Spectral libraries typically record reflectance for 
hundreds or thousands of wavebands.  To avoid solving 
a grossly under-determined problem we reduced the 
dimensionality of the spectral signals using principal 
components analysis.  In our example, spectra with 
420 wavebands were summarised using 9 principal 
components.

Expectation maximization is used to fit a Gaussian 
mixture model to the data.  This process requires that 
the number of clusters is specified in advance, so it is 
performed for a range of numbers of clusters.  During 
the process spectra may be associated with clusters in 
one of two ways: either they are assigned to the single 
cluster with the highest estimated probability (single 
membership), or they can be assigned to any cluster 
for which the probability exceeds a threshold (multiple 
membership).

The Bayesian information criterion (BIC) is evaluated 
for each model; the model with the smallest value is 
selected as the best fit for the data.

𝐵𝐼𝐶=−2∙ln(𝑀)+𝑘∙ln(𝑛)

Here M is the maximised likelihood function for the 
model, n is the number of spectra in the library and k is 
the number of free parameters in the model.
The covariance matrices of each cluster may be 
constrained in various ways to improve estimation of the 
matrices’ elements with the limited data available. We 
use four different approaches. In three the parameters 
are estimated individually for each cluster: “spherical”, 
in which covariances are zero and all variances equal; 
“diagonal”, in which covariances are zero but variances 
can be unequal; and “full”, in which variances and 
covariances can take any value. We also employ the 
“tied” covariance matrix type: a full covariance matrix 
that is the same for each component.  Since the BIC 
penalises models with more free parameters in order 
to avoid over-fitting, less constraint on the covariance 
matrix usually results in models with fewer clusters.

Figure 2 – example outputs of the clustering process.  Both were generated assuming a diagonal cluster covariance matrix and disallowing 
multiple membership (so each spectrum is a member of only one cluster).  The cluster on the left is a good match for the Olivine group (Jaccard 
Index of 0.85) but the cluster on the right cannot be clearly identified with any truth class.  

Performance assessment
The clustering process was tested using data from the 
U.S. Geological Survey Digital Spectral Library.  This 
library is accompanied by metadata that can be used to 
generate a hierarchy of truth clusters.  In our analysis 
the three tiers of the hierarchy are described as “Type”, 
“Group” and “Mineral”. For example, a spectrum for the 
rock chert is labelled as mineral – chert; group – silicate; 
type – tectosilicate.
Results from the algorithm are compared with  the truth 
clusters using the Jaccard Index (JI): 

𝐽𝐼=       |𝑡𝑟𝑢𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟∩𝑡𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟|
	 |𝑡𝑟𝑢𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟∪𝑡𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟| 

This concept can be extended to analysing the quality 
of the entire clustering result (as opposed to measuring 
the similarity of two clusters) by assigning an identity 
to each cluster produced by the algorithm (based 
on comparison with all truth classes) and counting 
numbers of true positives (TPs), false positives (FPs) 
and false negatives (FNs).  Then 			 
Results are shown in Table 1.

Further work
Various adaptations of the clustering process could be 
tested: for example, use of different distance measures 
and different criteria for determining the optimal 
cluster number (in addition to the BIC). More detailed 
consideration should also be given to setting the 
probability threshold used when assigning spectra to 
multiple clusters.
Of equal importance to developing the clustering 
algorithm is developing methods for testing it. More 
work on analysing clustering quality is needed, as 
is a set of truth classes known to accurately reflect 
relationships between spectra. Figure 3 shows a subset 
of the members of one of the truth clusters used in 
this analysis cluster.  It can be seen that they display 
considerable diversity.

Figure 3 – a subset of spectra from the Pyroxene Group, one of 
the truth classes used in this analysis.

Conclusion
We have shown that a set of standard 
techniques for unsupervised learning, 
whilst producing some good results, 
were not well adapted to the specific 
task of clustering spectral libraries.  
More sophisticated methods are 
required to produce tools that 
would be of use to assist operational 
exploitation of HSI.
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Covariance type and 
multiple membership Type Group Mineral

Spherical, single 0.12 0.21 0.22

Diagonal, single 0.21 0.28 0.22

Full, single 0.25 0.25 0.19

Spherical, multiple 0.10 0.15 0.16

Diagonal, multiple 0.15 0.18 0.14

Full, multiple 0.20 0.18 0.13

Table 1 – Jaccard indices comparing clustering results for 
different algorithm settings (covaraince type and whether multiple 
membership is allowed) with different sets of truth clusters, 
corresponding to different levels of the truth cluster hierarchy.  
Results lie in the range 0..1, where 1 is a perfect match with the 
truth.  Although the scores are reasonably poor, some good clusters 
were produced, as illustrated in Figure 2.


