Robust Unmixing Algorithms for Hyperspectral Imagery

<u>Abderrahim Halimi⁽¹⁾</u>, Yoann Altmann⁽¹⁾, Gerald S. Buller⁽¹⁾, Steve McLaughlin⁽¹⁾, William Oxford⁽²⁾, Damien Clarke⁽²⁾, and Jonathan Piper⁽²⁾

> ¹ School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, U.K. ² Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire U.K. Corresponding author: a.halimi@hw.ac.uk

dstl

This work was supported by the EPSRC Grants EP/J015180/1, EP/N003446/1, and EP/K015338/1

1. Introduction

Hyperspectral imagery

- same scene observed at different wavelengths
- pixel represented by a vector of hundreds of measurements

Robust nonnegative matrix factorization (RNMF) [1]

- Observation model: $\boldsymbol{y}_n^{\text{RNMF}} = \sum_{r=1}^R a_{r,n} \boldsymbol{m}_r + \boldsymbol{r}_n$
- Assumptions:
- $-\boldsymbol{r}_n, \forall n$ denote positive residuals that are spatially sparse
- Two similarity measures D(Y|MA+R):
- squared Euclidean distance (SED) \implies Gaussian noise Kullback-Leibler divergence (KLD) \implies Poisson statistics

RCA with mismodelling effects (RCA-ME) [3]

• Observation model: $y_n = Ma_n + d_n + e_n$, with $e_n \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ and a diagonal covariance $\mathbf{\Sigma} = \text{diag}\{\boldsymbol{\sigma}^2\}$

• Assumptions:

- $-\mathbf{d}_n, \forall n$ are spectrally smooth
- The energies of $d_n, \forall n$ are spatially correlated

Hyperspectral imaging concept.

 \Rightarrow Analysis of robust algorithms in presence of different effects (nonlinearity NL, endmember variability EV, outliers, ...)

2. Models and algorithms

General formulation

• Residual component analysis model (RCA)

 $\boldsymbol{y}_n = f\left[\boldsymbol{M}\boldsymbol{a}_n + \boldsymbol{\phi}_n\right],$

- $M = [m_1, \ldots, m_R]$: matrix of endmembers • $\boldsymbol{a}_n = [a_{1,n}, \dots, a_{R,n}]^T$: abundance vector
- ϕ_n : residual component
- f(.): function introducing noise (additive, Gaussian, Poisson, ...)

• Estimation algorithm for $(\boldsymbol{A}, \boldsymbol{R})$ - An optimization approach using the cost function:

 $\min_{\boldsymbol{A},\boldsymbol{B}} \left\{ D(\boldsymbol{Y}|\boldsymbol{M}\boldsymbol{A} + \boldsymbol{R}) + \lambda ||\boldsymbol{R}||_{2,1} \right\}$

where $||\boldsymbol{R}||_{2,1} = \sum_{n=1}^{N} \sqrt{\boldsymbol{r}_n^{\top} \boldsymbol{r}_n}$ - Coordinate descent algorithm (CDA).

Robust Bayesian linear unmixing (RBLU) [2]

- Observation model: $\boldsymbol{y}_n = \boldsymbol{M}\boldsymbol{a}_n + \boldsymbol{\phi}_n + \boldsymbol{e}_n$, with $e_n \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ and a diagonal covariance $\mathbf{\Sigma} = \text{diag}\{\boldsymbol{\sigma}^2\}$
- Assumptions:
- $-\phi_n = z_n \odot x_n, \forall n$: where \odot is a term-wise product
- The support \boldsymbol{z}_n is spatially-spectrally sparse and correlated
- The values $\boldsymbol{x}_n, \forall n$ are independent
- Estimation algorithm for $\Theta_1 = (A, \Sigma, X, Z, s^2, \beta)$ where (s^2, β) are hyperparameters
- A Bayesian approach using the likelihood $f(\mathbf{Y}|\Theta_1)$ and the parameter prior distributions $f(\Theta_1)$ to build the posterior – Posterior distribution:

$f(\boldsymbol{\Theta}_1|\boldsymbol{Y}) \propto f(\boldsymbol{Y}|\boldsymbol{\Theta}_1)f(\boldsymbol{\Theta}_1),$

- Evaluate the MMSE or MAP estimators using a Markov chain Monte-Carlo (MCMC) algorithm.

• Estimation algorithm for $\Theta_2 = (\mathbf{A}, \boldsymbol{\Sigma}, \mathbf{D}, \boldsymbol{\epsilon}, \boldsymbol{w})$ where $(\boldsymbol{\epsilon}, \boldsymbol{w})$ are hyperparameters

- A Bayesian approach using the likelihood $f(\mathbf{Y}|\Theta_2)$ and the prior distributions $f(\Theta_2)$ to build the posterior distribution:

 $f(\boldsymbol{\Theta}_2|\boldsymbol{Y}) \propto f(\boldsymbol{Y}|\boldsymbol{\Theta}_2)f(\boldsymbol{\Theta}_2),$

- An optimization approach using the cost function:

 $\min_{\boldsymbol{\Theta}_{2}} \left\{ -\log \left[f\left(\boldsymbol{\Theta}_{2} | \boldsymbol{Y} \right) \right] \right\}$

-CDA to approximate the MAP estimator of Θ_2 .

Characteristics of the robust models.

			Statistics			
		Positivity	Spatial	Spectral	DIAUSUICS	
	RNMF	\checkmark	Sparse energies	None	-SED	
					-KLD	
	RBLU	Х	Correlated and	Correlated	$\mathcal{N}(0, \mathbf{\Sigma})$	
			sparse support	support		
	ME	Х	Correlated	Correlated	$\mathcal{N}(0 \mathbf{\Sigma})$	
			energies	values		

3. Results on a real image

Data description and evaluation criteria

- A real image acquired by the Defence Science and Technology Laboratory (DSTL) in 2014 over Porton Down, U.K
- It contains 400×200 pixels, L = 140 bands in [415, 990] nm, R = 5 components with other man-made outliers.

Abundance maps RNMF RB

Estimated abundance maps with different algorithms (the gray scale ranges

• Complementary results in terms of the detected physical effects, computational time and estimation quality

		Fffooto	Time	DF	Noico	Endmember
		Effects	1 me	ΠĽ	noise	estimation
	SUNSAL [4]	LMM	+++	-	-	-
	RNMF	LMM + NL	+	+	++	+
	RBLU	LMM + NL	_	++	++	+
		EV + Shadow				
	CDAME	LMM + NL	++	+++	++	_
		EV + Shadow				

R $\times 10^{-3}$ CDAN

(Left) square root of the energies of the residuals obtained with $||\phi_n||$. (Right) reconstruction error obtained with $\operatorname{RE}_n = \frac{1}{\sqrt{L}} || \hat{\boldsymbol{y}}_n - \boldsymbol{y}_n ||.$

between 0 and 1). From left to right: grass, tree, soil 1, road, and soil 2.

Quantitative results

	RE	SAM	Time
	$(\times 10^{-3})$	$(\times 10^{-2})$	(\min)
SUNSAL [4]	9.32	3.34	0.03
RNMF	7.17	2.05	23.92
RBLU	4.28	2.32	1440
CDA-ME	3.87	2.21	6.98

Unmixing performance on a real images $(400 \times 200 \text{ pixels})$.

Evaluation of the algorithms. (+++) best results, (-) fair results.

References

- [1] C. Févotte and N. Dobigeon, "Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization," IEEE Trans. Image Process., vol. 24, no. 12, pp. 4810–4819, June 2015.
- [2] Y. Altmann, S. McLaughlin, and A. Hero, "Robust linear spectral unmixing using anomaly detection," IEEE Trans. Comput. Imaging, vol. 1, no. 2, pp. 74–85, June 2015.
- [3] A. Halimi, P. Honeine, and J. M. Bioucas-Dias, "Hyperspectral unmixing in presence of endmember variability, nonlinearity or mismodelling effects," IEEE Trans. Image Process., vol. 25, no. 10, pp. 4565-4579, Oct 2016.
- [4] J. Bioucas-Dias and M. Figueiredo, "Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing," in Proc. IEEE GRSS WHISPERS, June 2010, pp. 1–4.