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1. Introduction Robust nonnegative matrix factorization (RNMF') [1] RCA with mismodelling effects (RCA-ME) [3]
e Observation model: y "M — 27@:1 Qr My + Ty

n e Observation model: y,, = Ma,, + d,, + e, with
. . -~ . . _ . 2
Hyperspectral imagery e Assumptions: e, ~ N (0,X) and a diagonal covariance dlag{a }
o same scene observed at different wavelengths — 1y, Vn denote positive residuals that are spatially sparse e Assumptions:

— Two similarity measures D(Y |M A + R):

squared Euclidean distance (SED) = Gaussian noise
Kullback-Leibler divergence (KLD) = Poisson statistics

e Estimation algorithm for (A, R)

— An optimization approach using the cost function:

e pixel represented by a vector of hundreds of measurements —dy, Vn are spectrally smooth

— The energies of d,,, Vn are spatially correlated

e Estimation algorithm for ®9 = (A>3, D, e, w) where
(€, w) are hyperparameters

— A Bayesian approach using the likelihood f(Y|®9) and the
min { D(YIMA+ R)+ )\|R| ‘2’1} prior distributions f(©5) to build the posterior distribution:
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f(©2]Y) o f(Y|O2)f(©9),

L spectral bands | &=
o

where || R||21 = Y0, /7] rn

— Coordinate descent algorithm (CDA). — An optimization approach using the cost function:
Hyperspectral imaging concept. Hé)l;ﬂ {—log[f (©2]Y)]}
Robust Bayesian linear unmixing (RBLU) [2]
= Analysis of robust algorithms in presence of different effects . | — CDA to approximate the MAP estimator of ©.
(nonlinearity NL, endmember variability EV, outliers, ...) e Observation model: y,, = Ma, + ¢, + ey, with

ey ~ N (0,X) and a diagonal covariance > = diag{aQ}

e Assumptions:

2. Models and algorithms

— @), = zZpn © xp, Vn: where @ 1s a term-wise product Characteristics of the robust models.
— The support z,, is spatially-spectrally sparse and correlated
— The values x,,, Vn are independent Residuals tatistics
General formulation e Estimation algorithm for ® = (A, > X.Z s B) where Positivity Spatial Spectral
e Residual component analysis model (RCA) (82, ﬁ) are hyperparameters SED
— A Bayesian approach using the likelihood f(Y|®;) and the RNMFE v Sparse energies  None
Yn = [ Man+ ¢y, parameter prior distributions f(®1) to build the posterior -KLD
— Posterior distribution: Correlated and | Correlated
| . RBLU X N (0,%)
o M =|my,... ,mR].Tmatrlx of endmembers F(O,]Y) x F(Y|©)F(O1), sparse support | support
eap=[aly,...,aR | : abundance vector Correlated | Correlated
® Pp: residual component — Evaluate the MMSE or MAP estimators using a Markov chain ME X energies values N (0,%)
e f(.): function introducing noise (additive, Gaussian, Poisson, ...) Monte-Carlo (MCMC) algorithm.
Abundance maps . RNMF . RELU o

3. Results on a real image
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Data description and evaluation criteria
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e A real image acquired by the Defence Science and Technology
Laboratory (DSTL) in 2014 over Porton Down, U.K

e [t contains 400 x 200 pixels, L = 140 bands in [415,990] nm,

R =5 components with other man-made outliers.
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e The robust algorithms detect man-made outliers

e Complementary results in terms of the detected physical effects,

n
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% Estimated abundance maps with different algorithms (the gray scale ranges RNMFE LMM + NL T T T -
between 0 and 1). From left to right: grass, tree, soil 1, road, and soil 2. RBLU LMM + NL _ NI RIS 4+
EV + Shadow
LMM + NL
y Quantitative results CDAME EV 4 Shadow LA R ]
% RE SAM | Time Evaluation of the algorithms. (+4+) best results, (-) fair results.
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