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1. Introduction

Hyperspectral imagery

• same scene observed at different wavelengths

• pixel represented by a vector of hundreds of measurements

Hyperspectral imaging concept.

⇒ Analysis of robust algorithms in presence of different effects
(nonlinearity NL, endmember variability EV, outliers, ...)

2. Models and algorithms

General formulation

•Residual component analysis model (RCA)

yn = f [Man + φn] ,

•M = [m1, . . . ,mR]: matrix of endmembers

• an = [a1,n, . . . , aR,n]
T : abundance vector

•φn: residual component

• f (.): function introducing noise (additive, Gaussian, Poisson, ...)

Robust nonnegative matrix factorization (RNMF) [1]

•Observation model: yRNMF
n =

∑R
r=1 ar,nmr + rn

•Assumptions:

– rn, ∀n denote positive residuals that are spatially sparse

– Two similarity measures D(Y |MA +R):

squared Euclidean distance (SED) =⇒ Gaussian noise

Kullback-Leibler divergence (KLD) =⇒ Poisson statistics

•Estimation algorithm for (A,R)

–An optimization approach using the cost function:

min
A,R

{

D(Y |MA +R) + λ||R||2,1
}

where ||R||2,1 =
∑N

n=1

√

r⊤n rn
– Coordinate descent algorithm (CDA).

Robust Bayesian linear unmixing (RBLU) [2]

•Observation model: yn = Man + φn + en, with
en ∼ N (0,Σ) and a diagonal covariance Σ = diag

{

σ2
}

•Assumptions:

–φn = zn ⊙ xn, ∀n: where ⊙ is a term-wise product

– The support zn is spatially-spectrally sparse and correlated

– The values xn, ∀n are independent

•Estimation algorithm for Θ1 =
(

A,Σ,X,Z, s2,β
)

where
(

s2,β
)

are hyperparameters

–A Bayesian approach using the likelihood f (Y |Θ1) and the
parameter prior distributions f (Θ1) to build the posterior

– Posterior distribution:

f (Θ1|Y ) ∝ f (Y |Θ1)f (Θ1),

– Evaluate the MMSE or MAP estimators using a Markov chain
Monte-Carlo (MCMC) algorithm.

RCA with mismodelling effects (RCA-ME) [3]

•Observation model: yn = Man + dn + en, with
en ∼ N (0,Σ) and a diagonal covariance Σ = diag

{

σ2
}

•Assumptions:

– dn, ∀n are spectrally smooth

– The energies of dn, ∀n are spatially correlated

•Estimation algorithm for Θ2 = (A,Σ,D, ǫ,w) where
(ǫ,w) are hyperparameters

–A Bayesian approach using the likelihood f (Y |Θ2) and the
prior distributions f (Θ2) to build the posterior distribution:

f (Θ2|Y ) ∝ f (Y |Θ2)f (Θ2),

–An optimization approach using the cost function:

min
Θ2

{− log [f (Θ2|Y )]}

– CDA to approximate the MAP estimator of Θ2.

Characteristics of the robust models.

Residuals
Statistics

Positivity Spatial Spectral

RNMF X Sparse energies None
-SED

-KLD

RBLU X
Correlated and Correlated

N (0,Σ)
sparse support support

ME X
Correlated Correlated

N (0,Σ)
energies values

3. Results on a real image

Data description and evaluation criteria

•A real image acquired by the Defence Science and Technology
Laboratory (DSTL) in 2014 over Porton Down, U.K

• It contains 400× 200 pixels, L = 140 bands in [415, 990] nm,

R = 5 components with other man-made outliers.
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Real Porton Down image. (Left) square root of the ener-
gies of the residuals obtained
with ||φ̂n||. (Right) recon-
struction error obtained with
REn =

1√
L
||ŷn − yn||.

Abundance maps

Estimated abundance maps with different algorithms (the gray scale ranges

between 0 and 1). From left to right: grass, tree, soil 1, road, and soil 2.

Quantitative results

RE SAM Time

(×10−3) (×10−2) (min)
SUNSAL [4] 9.32 3.34 0.03

RNMF 7.17 2.05 23.92
RBLU 4.28 2.32 1440

CDA-ME 3.87 2.21 6.98

Unmixing performance on a real images (400× 200 pixels).

Example of outlier spectra.

4. Discussion

• The robust algorithms detect man-made outliers

• Complementary results in terms of the detected physical effects,
computational time and estimation quality

Effects Time RE Noise
Endmember
estimation

SUNSAL [4] LMM +++ - - -
RNMF LMM + NL + + ++ +

RBLU
LMM + NL

- ++ ++ +
EV + Shadow

CDAME
LMM + NL

++ +++ ++ -
EV + Shadow

Evaluation of the algorithms. (+++) best results, (-) fair results.
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