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Clustering

@ K-means, EM & GMM

e Uses compactness in the data to cluster than connectivity.
e Literature: [Predd 2006, Yin 2014, Qin 2017, Zhou 2015, Forero 2012]

Figure: K-means type algorithm is effective for mixtures of Gaussian's but fails for arbitrary shapes such as,
concentric circles, half-moons and spiral dataset.
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Clustering

@ Centralized Spectral Clustering
o Effective on datasets with connectivity as well as compactness.
e Projects the input data to Eigenspace to cluster.
o Key works: [Ng 2001, Luxburg 2007, Shi 2000]

@ Distributed Spectral Clustering 77
e Euclidean distance matrix completion + Gradient descent [Scardapane 2016]
e With minimal data exchange and avoid matrix completion ?

Figure: Spectral clustering works well for compact dataset like mixture od Gaussian’s and also for datasets
with connectivity structure, such as double-moons and concentric circles.
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Motivation

@ Motivation

o Gathering data at a fusion center creates data congestion.
e Vulnerable to cyber attacks and sensitive information loss.
e WSN's is a source for a large set of unlabeled data.

e Thus, appropriate labeling mechanism is required.

o Clustering with minimal information exchange.
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Source: Baran, Paul. "On distributed communications networks.” |EEE transactions on Communications Systems 12, no. 1, 1964
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Applications

@ Potential Applications

Clustering and data labeling.

Learn the connectivity structure of the sensor deployment.
Selection of anchor nodes and cluster heads.

Limits data transmission, network traffic & contention for channel.
Information flow in the network.

Detect the change in sensors position.

@ Proposed Solution
o Fully Distributed processing.
e Minimal information exchange.
e Utilize the communication topology.
o Correlation between sensors location and measurements for data labeling.
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System Model

@ Graph representation of distributed network

e Distributed network with N nodes.
e Undirected graph G = (V,E), communications among neighbors.
e Degree matrix D : Diagonal matrix with the degrees of the nodes.
e Adjacency matrix A : a; = 1if {i,j} € E and a; = 0, otherwise.
e Laplacian matrix L = D — A used to characterize network.
e Connectivity of sensor network, A2(L) and Fiedler vector u,(D)
Labeled graph Degree matrix Adjacency matrix Laplacian matrix
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Source: http://kuanbutts.com/2017/10/21 /spectral-cluster-berkeley/
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Problem Statement

Problem Statement

@ No fusion center or sink node.

@ Goal : cluster the sensors in a distributed way, based on their position
without sharing the location information in the network.

@ DSC over K-means, EM or GMM, due to its effectiveness (as in Fig)

@ Extended to clustering on data measurements assuming high correlation
between sensor’s location and data measurements
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Figure: Sensors deployed in arbitrary shapes
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Centralized Spectral Clustering

@ SC : Approximation of a graph partitioning problem

@ Prob : Find a partition of a graph such that the edges between different
groups have a very low weight and edges within a group have high weight.

(a) f € {+1,-1} (b) fER

Figure: NP hard optimization problem and its relaxed version.
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Centralized Spectral Clustering

Relaxed Minimization Problem

@ The relaxed optimization problem is,
min f7LFf
feR
subject to f L 1,f #0.

By Rayleigh-Ritz theorem : choose the f as the eigenvector corresponding
to the smallest non-zero eigenvalue of L, i.e Fiedler vector.

o Algorithm

o Define the similarity graph
o Compute the eigenvectors of K smallest eigenvalues
o Cluster the eigenvectors

Gowtham Muniraju (ASU) SSPD 2017 10 / 21



Distributed Spectral Clustering

Distributed Spectral Clustering

@ Assumptions

e 1-connected component graph

e Sensor can communicate with other sensors within a radius of €
e Absence of communication noise.

@ Tasks to be computed in a distributed way !!
o Define the similarity graph

e Use power iteration to compute the Fiedler vector
o Cluster the Fiedler vector

o Similarity Graph
e ¢ - neighborhood method : nodes pairwise Euclidean distance less than ¢ are
assumed connected.

e Does not require an explicit construction, induced naturally by the € and the
location of the nodes.
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Distributed Fiedler vector computation

@ Matrix transformations and the power iteration method
@ Compute the eigenvector corresponding to the second smallest eigenvalue,
ua(L). [Lorenzo 2014]
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where u(® is an initial random vector from a continuous distribution and
0 < a<1/An(L).

o Distributed computation of Fiedler vector

U, = avgeonsensus(u®)
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Distributed K-means

Every node is associated with an element of the Fiedler vector. So, use a
clustering algorithm on the Fiedler vector.

@ Distributed K-means algorithm
e Input: Fiedler vector uy = [u}, u3,... u}'], K
e Every node generates p = [ua, ... uk] from rand(—1,1)
e Repeat until convergence
> pri = |uj —
> Cluster assignment : clusterindex = argmin(py;)
> Update centroid : Uy = {uj|(i € clusterindex = k}
> uy, = avgeonsensus(Uy)
> centroid information exchange
> Flood : (O,...,uk,...,0)
> Update : (0,..., fky---50) = (H1, - vy fhkye s HK)
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Simulations

Simulations

@ Parameters

e N =600
e K=3
e ¢c=03

e a=0.02as \y'(L) = 0.024
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Figu re: Synthetic data of 2-D sensor locations & similarity graph
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Simulations
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Figure: Convergence of nodes to the Fiedler vector by distributed power iteration
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Simulations

Simulations

® Cluster 1 ® Cluster 1

Y co-ordinate
Y co-ordinate

-1 -08 -06 -04 -02 0 02 04 06 08 1

i -1 -08 -06 -04 -02 0 0.2 04 06 08 1
X co-ordinate

X co-ordinate

Figure: Distributed Spectral clustering vs K-means algorithm for K = 3
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Extensions

Extensions - Local Gaussian Kernel

@ Convergence of the Fiedler vector is improved by using a local Gaussian
kernel. Let z represent the location co-ordinate (x, y)
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Figure: Scaling the edges by using a local Gaussian kernel is observed to improve the convergence
characteristics of Fiedler vector
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Extensions - DBSCAN

e DBSCAN [Ester 1996] instead of K-means
e |nput parameter to the algorithm are ¢ and MinPts
o Criteria : to form a cluster a node has to have MinPts of nodes within € radius.
e ¢ can be a value less than communication radius.
e Advantages
> eliminates the input parameter K.
> recognizes outliers.
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Figure: Using DBSCAN on Fiedler vector has very similar results as kmeans
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Conclusion

Conclusion

Designed and implemented SC in a distributed way without any fusion center
in the network.

Distributed eigenvector computation + Distributed K-means clustering, to
cluster the input dataset into K groups.

All nodes converge to a value in the Fiedler vector of the L

@ The location information is only used to establish the network topology and
this information is not exchanged in the network.

DSC usually performs better than the K-means algorithm as the eigenvector
of L is a better feature space to cluster than the input dataset.
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Conclusion
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Conclusion
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