Second-order Statistics for Threat Assessment with the PHD Filter
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Introduction Mean and variance of the cumulative threat level

The aggregated threat of a population of objects with states x1., is described by its cumulative threat level
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Refinement )

— Threat assessment is a high-level data fusion process (Level 2/3).
— |t concerns estimation and prediction of threats in the environment.
— Human operator is heavily involved in this process.

— Advances needed to aid operators and enable autonomous systems.

Theorem 1 (Mean cumulative threat level [2]).
Under the assumptions of the PHD filter and considering cumulative threat as in (3), the first-order raw
moment or mean of the cumulative threat level of the updated process, cf. (2), at time step k is given by
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Theorem 2 (Variance in cumulative threat level — Estimate’s quality measure [main result]).
Under the assumptions of the PHD filter and considering cumulative threat as in (3), the second-order central
moment or variance in the cumulative threat level of the updated process, cf. (2), at time step k is given by
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Description of the problem

Regional variance [1]. When interest lies in a specific region B C X the function 7 can be selected to be
the indicator function 15 defined such that 15(x) = 1 if x € B, 15(x) = 0 otherwise. The cumulative threat
level statistics then reduce to the regional statistics describing the number of objects in B.

Simulated example
— Multi-object scenarios can be particularly stressful for an operator.

— Describing a population automatically may improve the situation: The threat level of x is evaluated w.r.t. to a point of interest x, € X and a region of interest B C X" by
(a) what is the aggregated threat level of a population of objects? 5
: . s B d(x,x,) b(x,z,)
(b) what is the expected number of threatening objects?, etc. T(z) = 1p(x)exp| — — — | (6)
— Existing solutions: a point estimate without a quality indicator [2]. @ 20
— Problem: reliability of an estimate cannot be established. where 15(x) evaluates whether an object with state z = [x, v,%, v|’ belongs to the region B; the distance
— Objective: to obtain a measure of quality for an estimate. d(z,7,) = \/(x —x0)2+ (v — y,)? between the object = and the origin z, is related to the object’s

capability to inflict negative effect; the object’s direction b(z, z,) = |atan2(y,%) — atan2(x, — X, y, — y)|
w.r.t. the point is related to object’s intention to act hostile, where atan2(y, x) is the four-quadrant inverse
tangent function; o and (3 are positive-valued scaling parameters, here & = 2000m and 5 = 0.5.
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I; k= 7 (in blue) are projected on the subspace of position variables. (square root of the variance, which is the sought after
'uk( > - pd?’“( ) <'Z‘x>'uk|k_1<ZC>’ Regions of interest are depicted with red dashed lines and quality measure) in regions from 1 to 4. The ground truth

where b 1() and Nk() are, respectively, the predicted and updated numbered counter-clockwise with the first region plotted with value of the threat level is plotted with plain red line. The results

intensity functions;
12(+) and p?(+) are, respectively, the intensity functions of newborn
objects and false alarms;

Z1.. is the sequence of multi-object observations collected by time £,
where Z}. is a set of single-object measurements collected at time k; Conclusions
gi(+|*) is the single-object measurement likelihood;

psx(+) and pq i (-) are, respectively, the probability of an object survival
and its probability of detection;
My ,—1(-|-) is the single-object Markov transition kernel, describing
the time evolution of an object.

a thicker line. The sensor with state x, is located at the origin. are averages over 60 Monte Carlo runs.

= This work explores the problem of estimating a population’s aggregated threat level from sensed data.

= |t provides explicit expressions for the threat level statistics using quantities available from the PHD filter.

= The future work will be concerned with obtaining expressions for the second-order PHD filter [3], exploring
alternative aggregations (e.g. multiplication) and exploiting second-order statistics for sensor management.
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