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Problem Statement

For many broadband array processing problems, estimate of space-
time covariance matrix (STCM) is required. It is usually estimated
via an un-biased estimator from sensor’s data directly. However under
some conditions, we may have control over the sources to permit
system identification for a better STCM estimate. Hence, we present
simulation results that quantify the accuracy of both estimates for
comparison.

Source Model and STCM

Fig.1 shows broadband signal received at an array of M sensors in
form of vector X[n] € CM from L uncorrelated sources u;[n],l =

1, ..., L convolutively mixed via channel matrix H[n] € C"¥*! which
can be given as
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Fig. 1. Source model for STCM estimation

Assuming

E{u[n]ull[n — 7]} = I,6[7]
E(w[n]v™[n — 1]} = o715[1]

where E{-} represents the expectation operator, STCM can either be
represented as an expectation of sensors data vector x[n] € CM as:
R[t] = Ex[n]x"[n — ]}

or tied to stable and causal matrix H[n] as
R[z] = ¥, H[n]H"[n

Each element of R[t] € C¥*M is a cross-correlation sequence i.e.
rmltl = Elxn]xy,In — i} (1)
[T = B Sy hy e[l [ — 7] + 026[7]5[L — m] (2)

For (1), we use unbiased estimator and for (2), the system
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Unbiased Estimator

If N snapshots of data are available i.e. x[n],n =0, ...,N — 1, the un-

biased estimator for (1) can be given as |1]

N-|t|-1
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Unbiased estimator treats the measurement noise as part of data and
so its variance is independent of the SNR. For finite data, above
assumption of un-correlated sources does not hold.
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System Identification

If we have control over the source signals and known u;[n],l=
1,...,L, channel matrix H[n] can be identified using SI via adaptive
filter theory. Using Wiener solution [2|, we identify M separate L-
channel adaptive filters of length Ls as

Wm,opt — R pm»
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where Wy, opr = . The input sample covariance matrix R and

A
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vector P, estimates E{y[n]y"

In]} and E{y|n]x,,|n]} respectively over
u,[n]
with  y[n] = : and
u[n]

[ul [n], .., w|n—Lf + 1” After SI, R[7] can be estimated via (2).

N-snapshots of data w[n] =

Estimate of 5, is obtained via minimum mean squared error
A2
— PmR P,
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where @?m denotes x,,|n] power estimated over N-snapshots.

Results

We compare results for unbiased estimator with SI via metric
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Fiq.2. Estimation comparison for ensemble of R[t] € C?*?%, showing the theoretical and
measured error via unbiased estimator, $gstn and (ogen, TESpectively, as well as the
measured error for SI, (s p

SI performs significantly better than unbiased estimator at
reasonable to high SNR (see Fig. 2) because with finite data at
high SNR, channel matrix can be accurately identified.

¢y increases with decrease in SNR and eventually SI performance
drops below the unbiased estimator at low SNR

Research Impact
Accurate STCM leads to

lower perturbation of subspaces [3]

accurate subspaces provide benefits for subspace-based techniques,
such as broadband MUSIC for angle of arrival estimation [4]
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