SSPD Conference

Compressive Self-Noise Cancellation in Underwater Acoustics

विद्याधनं सर्वधन प्रधानम

(3)

(4)

pawanecom@gmail.com, karan.nathwani@iitjammu.ac.in, abrol@iiitd.ac.in, sureshkumarnpol@yahoo.co.in IIT Jammu, IIT Jammu, IIIT Delhi, NPOL Kochi

Pawan Kumar, Karan Nathwani, Vinayak Abrol, Suresh Kumar

Contribution

- Purpose of sonar \rightarrow detect the stealthy target in shallow water
- Main barrier in target detection \rightarrow sonar's self-noise.
- Goal \rightarrow Suppress the self-noise.
- Conventional subspace-based \rightarrow high computationally complex.
- Proposed compressed sensing based methods for self-noise suppression.

Proposed Method

Figure 2: Compressive self-noise cancellation

• Proposed methods work for both narrowband and broadband targets at very low SINR.

Introduction

- Major problems in target detection \rightarrow selfnoise of sonar.
- Present near the ship \rightarrow amplitude is more than target signal.
- Objective \rightarrow self and ambient noise cancellation, so that targets can be detected.

- Utilizing null-space projection method in compressive domain [1, 2]

$$\mathbf{\bar{S}_w} = \mathbf{\bar{P}_w} \mathbf{\Phi} \mathbf{Y_w}; \ \mathbf{\bar{P}_w} = (\mathbf{I} - \mathbf{\bar{U}_w} \mathbf{\bar{U}_w}^\dagger)$$

- $\Phi \in \mathbb{R}^{l \times L}$ $(l \ll L) \to$ the sensing matrix consisting of 'l' random orthonormal vectors.
- Signal from each sensor $\rightarrow k$ -sparse (as columns of $\mathbf{A}_{\mathbf{w}}$) in a basis Ψ [1].
- Estimation of the signal matrix \rightarrow solve N independent inverse-problem:

$$\operatorname{argmin} \| \bar{\mathbf{S}}_{\mathbf{w}} - \boldsymbol{\Phi} \boldsymbol{\Psi} \mathbf{A}_{\mathbf{w}} \|_{F}^{2} \text{ s.t. } \| \mathbf{a}_{i} \|_{0} \leq k,$$
$$\mathbf{A}_{w} = [\mathbf{a}_{1} \quad \mathbf{a}_{2} \quad \mathbf{a}_{3} \quad \ldots]; \quad \mathbf{\hat{S}}_{\mathbf{w}} = \boldsymbol{\Psi} \mathbf{\hat{A}}_{\mathbf{w}}$$

• Thus, the proposed method reduces time complexity to $\mathcal{O}(L^2N)$ as compared to the highdimensional subspace-based method $(\mathcal{O}(l^2N))$.

Experimental Results : Beampattern

Figure 1: Signal Reception on Towed Array

Array Data Model

• Received signal on n^{th} sensor of ULA is:

 $\mathbf{y}[n] = \mathbf{A}(\theta)\mathbf{s}[n] + \mathbf{a}(\theta_0)s_o[n] + \mathbf{v}[n] \quad (1)$

 $\mathbf{s}[n] \to \text{signal vector}, s_0 \to \text{self-noise}, \mathbf{v}[n] \to \text{additive Gaussian noise}.$

 $\mathbf{A}(\theta) \rightarrow$ the steering matrix for $\mathbf{s}[n]$, $\mathbf{a}(\theta_0)$ is steering vector for s_0

- θ is direction of arrival (DOA) of signal, θ_0 is DOA for self-noise.
- Received noisy signal at ULA is

 $\mathbf{Y} = \left[\left[\mathbf{y}(1) \right], \left[\mathbf{y}(2) \right], \left[\mathbf{y}(3) \right], \cdots \left[\mathbf{y}(N) \right] \right]$ (2)

Figure 3: Beampattern for NB stationary signal at SINR (a,b,c) -20dB and (d,e,f) -25dB, (a,d) top 10, (b,e) top 20 and (c,f) top 30 SOV

Waterfall dispaly

SN-PLR (TPL) at -25 dB

SOV	SVD	QR	CSSVD	CSQR
10	37.69(5.10)	35.26 (5.05)	42.38(7.68)	40.07(7.52)
20	40.58(5.53)	38.40 (5.48)	45.76 (7.69)	43.35(7.71)
30	44.91(5.94)	43.77 (5.92)	49.49 (8.16)	48.77(8.09)

Conclusions

• Novelty \rightarrow combination of the subspace-

- Signal model in matrix form: $\mathbf{Y} = \mathbf{S} + \mathbf{Z}$
- Goal \rightarrow recover the signal component **S** by removing undesired component **Z**.

Conventional Method

- Conventional method \rightarrow null space projection.
- The optimal solution [3]:
 Ŝ = PY; P = (I − UU[†])
 P → projection matrix, † → pseudoinverse, U is sampled orthogonal vectors (SOV) using SVD or QR.

based. noise-cancellation approach with CS-based target localization in the presence of self and ambient noise.

- Low computational complexity than nullspace projection method.
- Future work \rightarrow optimizing the sensing matrix for multiple target localization.

References

- [1] Richard G. Baraniuk, "Compressive sensing," IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 118 121, 2007.
- [2] Emmanuel J. Candes, Michael B. Wakin, and Stephen P. Boyd, "Enhancing sparsity by reweighted l1 minimization," Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 877–905, 2008.
- [3] M Remadevi, N Sureshkumar, R Rajesh, and T Santhanakrishnan, "Cancellation of towing ship interference in passive sonar in a shallow ocean environment," *Defence Science Journal*, vol. 72, no. 1, pp. 122–132, 2022.