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: : Figure 2: Compressive self-noise cancellation
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Proposed methods work for both narrow- e Utilizing null-space projection method in compressive domain |1, 2|

band and broadband targets at very low
SINR.

Sw = Pw®Y,,; Py, = (I-U,U!) (3)

o & c R'™*L(]l << L) — the sensing matrix consisting of ‘I’ random orthonormal vectors.

Introduction e Signal from each sensor — k-sparse (as columns of A, ) in a basis ¥ [1].

e Major problems in target detection — selt-

noise of sonar e Listimation of the signal matrix — solve N independent inverse-problem:

e Present near the ship — amplitude is more argmin||Sy, — (I)\IJAWH% st Jlaillo < , (4)

than target signal. A,=la; as as ...; Sw=TA,

e Objective — self and ambient noise can-
cellation, so that targets can be detected. e Thus, the proposed method reduces time complexity to O(L°N) as compared to the high-

dimensional subspace-based method (O(I°N)).
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Figure 3: Beampattern for NB stationary signal at SINR (a,b,c) -20dB and (d,e,f) -25dB, (a,d) top 10,

s\n| — signal vector, sg — self-noise, v|n|
(b,e) top 20 and (c,f) top 30 SOV

— additive (Gaussian noise.

A () — the steering matrix for s|n| , a(f)

is steering vector for s Watertall dlSpaly SN-PLR (TPL) at -25 dB

.. . . . ) 40 1 SVD QR CSSVD | CSQR
0 is direction of arrival (DOA) of signal, 37.69 (5.10) | 35.26 (5.05) | 42.38 (7.68) | 40.07 (7.52)

0y is DOA for self-noise. 10.58 (5.53) | 38.40 (5.48) | 45.76 (7.69) | 43.35 (7.71)
@ g . | 14.91 (5.94) | 43.77 (5.92) | 49.49 (3.16) | 48.77 (8.09)

Received noisy signal at ULA is
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e Novelty — combination of the subspace-

based. mnoise-cancellation approach with
CS-based target localization in the pres-

Signal model in matrix form: Y =S + Z
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Goal — recover the signal component S by . @ ence of selt and ambient noise.

removing undesired component Z. , ,
Steering Angle Steering Angle e Low computational complexity than null-

PR O e space projection method
Figure 4: Waterfall Display at SINR -20 dB, top b PIO] ‘

Conventional Method
20 SOV e Future work — optimizing the sensing ma-

e Conventional method — null space projec- trix for multiple target localization.
tion.

e The optimal solution [3]: References
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