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Physical target

Response of physical propagation medium
(e.g., acoustic, vibration, optical, ...) Random component of

Sensor measurements

Received signature (energy in
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‘ EPISTEMIC UNCERTAINTY DEVCOM

Given observations X;.y = {xq4, ..., Xy}, Eull
what do we know about the parameters 67 information
depicts
parameter

Likelihood Conjugate Prior fO|X1.n)

uncertainty

1 1A 2 ST

Gaussian Gaussian Inverse e A [(S\ T
Gamma fu7) = o\ 2 I'(a)
g 1 i1
Multinomial Dirichlet fp) = @H(Pi) ‘
l
What are the parameters of the aleatoric model? NO expression

/ of uncertainty
MAP estimate: § = argmaxg f(6|X1.x)
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Perception Detection of complex
of simple events events with fixed logic

A—AC C, ' -0

AT — A O Predicted Complex
- r-e - Event

[-+0.C

Neuro-Symbolic architecture facilitates:

Learning complex events from sparse data

Tellibility — enables a domain expert to inject scientifically grounded reasoning rules

Explainability — provides a train of reasoning step for a human decision maker

Adaptability — to adjust to new environments

How does uncertainty percolate through the neuro- and symbolic layers?
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UNCERTAINTY = SYMBOLIC REASONING - SIMPLE EXAMPLE

p(X,Y) =pY|X)p(Y)

X

Parameters

Hx — p(X — 1)
9y|x ->ply=1lx=1)
Oyiz = p(y =1lx = 0)
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p \ Arithmetic
Circuit

o,: :burglary.

®;: :earthquake.
®,::hears alarm(john) .
alarm :- burglary.
alarm :- earthquake.

calls (john) :- alarm, hears alarm(john).
evidence (calls (john)) .
query (burglary) .

J

Beta ProbLog

I
Bosf - Second-Order
- Learning and
N; . =50 Inferencing via
- R R the 6-method
Uncertain

Desired Confidence

Desired Confidence Bound Divergence
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LEARNING WITH INCOMPLETE TRAINING DATA

DeCBoD: 89-node DAG

=X
BMM '
EM-GA 7
EM-Fisher >4
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Generated 1000 Certain Bayesian
Networks per structure

Trained one uncertain Bayesian
networks with N, = 120 for each
certain network

Three Node Chain - Mean Absolute DeCBoD
f 0.1 0.2 0.3 04 0.5 0.e 0.7 0.8 0.8
BMM 0.0498( 0.0270| 0.0194| 0.0083| 0.0025| 0.0045| 0.0025(0.0030| 0.0016
EM-GA 0.0406| 0.0220| 0.0242| 0.0197|0.0119| 0.0117| 0.0138(0.0119| 0.0132
EM-Fisher| 0.0386| 0.0182| 0.0195| 0.0136|0.0048( 0.0046| 0.0060|0.0038| 0.0046
Nine Node DAG - Mean Absolute DeCBoD
BMM 0.0635| 0.0436| 0.0252| 0.0133| 0.0083| 0.0025| 0.0017|0.0019| 0.0017
EM-GA 0.0538( 0.0396| 0.0346| 0.0331| 0.0349] 0.0356| 0.0395(0.0437| 0.0476
EM-Fisher| 0.0487| 0.0302| 0.0202|0.0131|0.0096( 0.0051| 0.0041|0.0037| 0.0036

Experiment B: First 20 instantiations are
complete and only the leaf variables are
observed for the final 100 instantiations.
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During inference, the
assignment of observed
variables and their values
IS random.

IX| =3

Experiment A: Each
variable value is
observed during training
with probability of f.



Jad ‘@ SEC
cm

Mean Value (SOLBP)

Inferred Means: 21-Node BN

o
3
T

o
o
T

o
o
T

o
~
T

o
w
T

o
[N
T

0.1

k= . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Mean Value (SPN Method)

0.8

0.9

Approved for Public Release

Actual Confidence
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Variance Value (SOLBP)
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UNCERTAINTY IN MACHINE LEARNING - AN EVIDENTIAL VIEW

D

Class 2 @
Class 2 @

B. Low aleatoric and
Low epistemic uncertainty

C

A. Low aleatoric and
Low epistemic uncertainty

C. High aleatoric and " Class 1 A

Low epistemic uncertainty

Class 1 &

f(x; 8) outputs a Dirichlet distribution
representative of relevant evidence in the

Epistemic uncertainty =systematic uncertainty
training data

Aleatoric uncertainty = statistical uncertainty
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» Final layer of Neural Network represents evidence

» Noise-Contrastive Estimation (NCE) to learn the
evidence

» Deep generative models combined with variational
autoencoders to learn the noise distribution

(a) Standard Nets (b) Evidential Nets . | gads to efficient quantification of epistemic and
aleatoric uncertainty for deep classifiers.

Cross-entropy loss EDL loss
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Lo(0z) = BKL|D(p—i|a—r) || D(p-k|1)] https://github.com/muratsensoy/muratsensoy.github.io .
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‘ OUT OF DISTRIBUTION SAMPLES
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11
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‘ @ EPISTEMIC UNCERTAINTY IN HYPOTHESIS TESTING DEVCOM
m

(
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Pre-defined Hypotheses

N
uoisn4
paInguIsiq

A 4

Classification
Decision
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Objective
Develop a distributed fusion framework that identifies the best hypothesis
6*when the corresponding likelihood parameters ¢;;, are uncertain
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‘ EXPRESSIONS OF BELIEF IN HYPOTHESES
m

Traditional Approaches
» The likelihood ratio test
_ P(Xy.lfte)

O S P(X1lfte)

0" = argmaxglg
Uncertain Models
» The Uncertain Likelihood Ratio test (ULRT)
B [ PXy. ) f(mlrg)dm
[Py foy(m)dm
» [nterpretation:

= Ag >» 1: Class 0 is consistent w/ the
ground truth

0

» Ag < 1: Class 60 is inconsistent w/ the
ground truth

= Ag = 1: Cannot make a determination

10 observations

<« 06F

.-

fl

e .
-H2 with 100 samples
|:|(93 with 500 samples
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Inference with Likelihood Ratio Test
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103 -91 = 6* T
-t'i2 with 100 samples
1

N @Q \QQ
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v
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ULR - Best Hypothesis
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‘ EXPRESSIONS OF BELIEF IN HYPOTHESES
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Traditional Approaches
» The likelihood ratio test

. P(Xlztlﬁ-e)
77 Xg P(Kpilfie)
0" = argmaxglg

Uncertain Models
» The Uncertain Likelihood Ratio test (ULRT)

B [ PXy. ) f(mlrg)dm
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» [nterpretation:
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‘ EXPRESSIONS OF BELIEF IN HYPOTHESES
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Traditional Approaches
» The likelihood ratio test
P(X1.t|ftp)
29 P(Xlztlﬁ'e)
0" = argmaxglg
Uncertain Models
» The Uncertain Likelihood Ratio test (ULRT)
[ PXy. ) f(mlrg)dm
[ P(Xy. |m) fy (m)dm

9=

0:

» [nterpretation:

= Ag >» 1: Class 0 is consistent w/ the
ground truth

» Ag < 1: Class 60 is inconsistent w/ the
ground truth

= Ag = 1: Cannot make a determination

1000 observations
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. ‘ ' GENERAL RESULTS WITH UNCERTAIN MODELS DEVCOM
[ ;Rw =0, 10]”| - 9 _9*' - v Beliefs converge to:
- | Ry = [100, 200] o - 1
20 Ry = [2200, 2400] m -
105 | Ry, = [15000, 15500] _ ~
© | Ry = [40000,45000] limp;:(0) = HAie
> Rig = 00 t—oo .
~— =1
E L g ]
) % v With a precise prior evidence (i.e., R;g = ):
. - g ' . tlim ui:(8) = o when 8 = 6* for all agents, and
100 102 104 108 . L]imuit(e) = 0 when 8 = 6" for at least one agent
t
es v" Results hold for:

= Static Undirected Graphs w/ Doubly Stochastic A Matrix
» B-connected Time-Varying Directed Graphs
= Communication Constrained learning

= Misspecified Distributions

» Non-parametric distributions translated to Multinomial uncertain
models via binning

pit(0)

= Adversarial attacks

1 00 1 02 1 04 1 06 =  Active Learning

t Approved for Public Release 16
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Uncertain Prechange Known Prechange
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Uncertain Prechange Known Prechange
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Summary

Learning: Extraction of epistemic uncertainty during learning

Inference: Approximate methods to determine epistemic uncertainty of query answers
Hypothesis Testing: Beliefs that capture epistemic uncertainty

Tradeoff of higher computational complexity to capture epistemic uncertainty

Ways Forward Uy

Theory: Performance (e.g., DeCBoD) guarantees for the approximations

Understand when epistemic uncertainty is required

End to end computation of epistemic uncertainty through neuro-symbolic architectures
Uncertain hypothesis testing over larger dimensional observations possibly using deep
learning likelihood model

Epistemic uncertainty for multiple target tracking
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