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ALEATORIC UNCERTAINTY

Physical target
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EPISTEMIC UNCERTAINTY

What are the parameters of the aleatoric model?

Likelihood Conjugate Prior 𝒇(𝜽|𝑿𝟏:𝑵)
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Gaussian Inverse 
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Given observations 𝑋1:𝑁 = 𝑥1, … , 𝑥𝑁 , 

what do we know about the parameters 𝜃?

MAP estimate: ෠𝜃 = argmax𝜃 𝑓(𝜃|𝑋1:𝑁)

Full 

information 

depicts 

parameter 

uncertainty

No expression 

of uncertainty
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UNCERTAINTY FOR AI & ML REASONING

Neuro-Symbolic architecture facilitates:

• Learning complex events from sparse data

• Tellibility – enables a domain expert to inject scientifically grounded reasoning rules

• Explainability – provides a train of reasoning step for a human decision maker

• Adaptability – to adjust to new environments 

Perception

of simple events

Detection of complex 

events with fixed logic

Predicted Complex 

Event

How does uncertainty percolate through the neuro- and symbolic layers?



Approved for Public Release

Approved for Public Release

5

UNCERTAINTY – SYMBOLIC REASONING – SIMPLE EXAMPLE

Ins X Y Likelihood

1 0 1 𝜃𝑦| ҧ𝑥 1 − 𝜃𝑥

2 0 0 1 − 𝜃𝑦| ҧ𝑥 1 − 𝜃𝑥

3 1 1 𝜃𝑦|𝑥𝜃𝑥

4 0 0 1 − 𝜃𝑦| ҧ𝑥 1 − 𝜃𝑥

5 1 1 𝜃𝑦|𝑥𝜃𝑥

6 1 0 1 − 𝜃𝑦|𝑥 𝜃𝑥

7 0 1 𝜃𝑦| ҧ𝑥 1 − 𝜃𝑥

8 1 0 1 − 𝜃𝑦|𝑥 𝜃𝑥

9 0 0 1 − 𝜃𝑦| ҧ𝑥 1 − 𝜃𝑥

⋮ ⋮ ⋮ ⋮

X Y

Parameters

𝜃𝑥 → 𝑝 𝑋 = 1
𝜃𝑦|𝑥 → 𝑝(𝑦 = 1|𝑥 = 1)

𝜃𝑦| ҧ𝑥 → 𝑝(𝑦 = 1|𝑥 = 0)

𝑓 𝜃𝑥, 𝜃𝑦|𝑥, 𝜃𝑦| ҧ𝑥 ∝ 𝜃𝑥
𝑛𝑦𝑥+𝑛ഥ𝑦𝑥 1 − 𝜃𝑥

𝑛𝑦ഥ𝑥+𝑛ഥ𝑦ഥ𝑥𝜃
𝑦|𝑥

𝑛𝑦𝑥 1 − 𝜃𝑦|𝑥
𝑛ഥ𝑦𝑥

𝜃
𝑦| ҧ𝑥

𝑛𝑦ഥ𝑥 1 − 𝜃𝑦| ҧ𝑥
𝑛ഥ𝑦ഥ𝑥

Posterior

𝑝 𝑋, 𝑌 = 𝑝 𝑌 𝑋 𝑝(𝑌)
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UNCERTAINTY – SYMBOLIC REASONING

Nins = 50

Desired Confidence Bound Divergence

w2::burglary.

w3::earthquake.

w4::hears_alarm(john).

alarm :- burglary.

alarm :- earthquake.

calls(john) :- alarm, hears_alarm(john).

evidence(calls(john)).

query(burglary).

Beta ProbLog

C

A

B

E

H

F

L

D

G
Uncertain 

Bayesian Networks

Arithmetic

Circuit

Second-Order 

Learning and

Inferencing via 

the d-method

https://github.com/federicocerutti/CPB
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C

A

B

Generated 1000 Certain Bayesian 

Networks per structure

Trained one uncertain Bayesian 

networks with 𝑁𝑖𝑛𝑠 = 120 for each 

certain network 

C

A

B

E

H

F

L

D

G

Exp. A
𝑓 = 0.5

Exp. B

3-node Chain

9-node DAG

Experiment B: First 20 instantiations are 

complete and only the leaf variables are 

observed for the final 100 instantiations.

During inference, the 

assignment of observed 

variables and their values 

is random.

𝕏 = 3

Experiment A: Each 

variable value is 

observed during training 

with probability of 𝑓.

𝑓

LEARNING WITH INCOMPLETE TRAINING DATA
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SECOND-ORDER LOOPY BELIEF PROPAGATION
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UNCERTAINTY IN MACHINE LEARNING – AN EVIDENTIAL VIEW

A. Low aleatoric and 

Low epistemic uncertainty

B. Low aleatoric and 

Low epistemic uncertainty

C. High aleatoric and 

Low epistemic uncertainty

D. High epistemic uncertainty

Epistemic uncertainty =systematic uncertainty

Aleatoric uncertainty = statistical uncertainty

Shape

P
a
tt

e
rn

𝑓 𝑥; 𝜃 outputs a Dirichlet distribution 

representative of relevant evidence in the 

training data
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GENERATIVE EVIDENTIAL DEEP LEARNING

• Final layer of Neural Network represents evidence

• Noise-Contrastive Estimation (NCE) to learn the 

evidence

• Deep generative models combined with variational

autoencoders to learn the noise distribution

• Leads to efficient quantification of epistemic and 

aleatoric uncertainty for deep classifiers. 

EDL lossCross-entropy loss

https://github.com/muratsensoy/muratsensoy.github.io
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OUT OF DISTRIBUTION SAMPLES

notMNIST

dataset
Last 5 categories from CIFAR10

Updated Generative EDL Method
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EPISTEMIC UNCERTAINTY IN HYPOTHESIS TESTING
D

is
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d
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n

𝜃∗

⋯

Classification

Decision

Objective
Develop a distributed fusion framework that identifies the best hypothesis 

𝜃∗when the corresponding likelihood parameters 𝜙𝑖𝑘 are uncertain

∼ 𝑓𝑖 (⋅ |𝜙𝑖1)

∼ 𝑓𝑖 (⋅ |𝜙𝑖2)

∼ 𝑓𝑖 (⋅ |𝜙𝑖3)

∼ 𝑓𝑖 (⋅ |𝜙𝑖𝑚)

𝜃1

𝜃2

𝜃3

𝜃𝑚
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EXPRESSIONS OF BELIEF IN HYPOTHESES

Inference with Likelihood Ratio Test

ULRT – Admissible HypothesesULR – Best Hypothesis

Traditional Approaches

 The likelihood ratio test

Λ𝜃 =
𝑃 𝑋1:𝑡 ො𝜋𝜃

σ𝜃 𝑃 𝑋1:𝑡 ො𝜋𝜃

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃Λ𝜃

Uncertain Models

 The Uncertain Likelihood Ratio test (ULRT)

Λ𝜃 =
∫ 𝑃 𝑋1:𝑡 𝜋 𝑓 𝜋 𝑟𝜃 𝑑𝜋

∫ 𝑃 𝑋1:𝑡 𝜋 𝑓0(𝜋)𝑑𝜋

 Interpretation:

 Λ𝜃 ≫ 1: Class 𝜃 is consistent w/ the 

ground truth 

 Λ𝜃 ≪ 1: Class 𝜃 is inconsistent w/ the 

ground truth

 Λ𝜃 ≈ 1: Cannot make a determination

10 observations
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EXPRESSIONS OF BELIEF IN HYPOTHESES

Inference with Likelihood Ratio Test

ULRT – Admissible HypothesesULR – Best Hypothesis

Traditional Approaches

 The likelihood ratio test

Λ𝜃 =
𝑃 𝑋1:𝑡 ො𝜋𝜃

σ𝜃 𝑃 𝑋1:𝑡 ො𝜋𝜃

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃Λ𝜃

Uncertain Models

 The Uncertain Likelihood Ratio test (ULRT)

Λ𝜃 =
∫ 𝑃 𝑋1:𝑡 𝜋 𝑓 𝜋 𝑟𝜃 𝑑𝜋

∫ 𝑃 𝑋1:𝑡 𝜋 𝑓0(𝜋)𝑑𝜋

 Interpretation:

 Λ𝜃 ≫ 1: Class 𝜃 is consistent w/ the 

ground truth 

 Λ𝜃 ≪ 1: Class 𝜃 is inconsistent w/ the 

ground truth

 Λ𝜃 ≈ 1: Cannot make a determination

100 observations
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EXPRESSIONS OF BELIEF IN HYPOTHESES

Traditional Approaches

 The likelihood ratio test

Λ𝜃 =
𝑃 𝑋1:𝑡 ො𝜋𝜃

σ𝜃 𝑃 𝑋1:𝑡 ො𝜋𝜃

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃Λ𝜃

Uncertain Models

 The Uncertain Likelihood Ratio test (ULRT)

Λ𝜃 =
∫ 𝑃 𝑋1:𝑡 𝜋 𝑓 𝜋 𝑟𝜃 𝑑𝜋

∫ 𝑃 𝑋1:𝑡 𝜋 𝑓0(𝜋)𝑑𝜋

 Interpretation:

 Λ𝜃 ≫ 1: Class 𝜃 is consistent w/ the 

ground truth 

 Λ𝜃 ≪ 1: Class 𝜃 is inconsistent w/ the 

ground truth

 Λ𝜃 ≈ 1: Cannot make a determination

Inference with Likelihood Ratio Test

ULRT – Admissible HypothesesULR – Best Hypothesis

1000 observations
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GENERAL RESULTS WITH UNCERTAIN MODELS

𝜃 = 𝜃∗

𝜃 ≠ 𝜃∗, DKL = 2.7 × 10−4

 Beliefs converge to:

lim
𝑡→∞

𝜇𝑖𝑡(𝜃) = ෑ

𝑖=1

𝑚

෩Λ𝑖𝜃

1
𝑚

 With a precise prior evidence (i.e., 𝑅𝑖𝜃 = ∞):

 lim
𝑡→∞

𝜇𝑖𝑡(𝜃) = ∞ when 𝜃 = 𝜃∗ for all agents, and

 lim
𝑡→∞

𝜇𝑖𝑡(𝜃) = 0 when 𝜃 ≠ 𝜃∗ for at least one agent

 Results hold for:

 Static Undirected Graphs w/ Doubly Stochastic 𝐴 Matrix

 B-connected Time-Varying Directed Graphs 

 Communication Constrained learning

 Misspecified Distributions

 Non-parametric distributions translated to Multinomial uncertain 

models via binning

 Adversarial attacks

 Active Learning
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QUICKEST CHANGE DETECTION
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QUICKEST CHANGE DETECTION
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CONCLUSION

Summary

• Learning: Extraction of epistemic uncertainty during learning

• Inference: Approximate methods to determine epistemic uncertainty of query answers

• Hypothesis Testing: Beliefs that capture epistemic uncertainty

• Tradeoff of higher computational complexity to capture epistemic uncertainty

Ways Forward

• Theory: Performance (e.g., DeCBoD) guarantees for the approximations

• Understand when epistemic uncertainty is required

• End to end computation of epistemic uncertainty through neuro-symbolic architectures

• Uncertain hypothesis testing over larger dimensional observations possibly using deep 

learning likelihood model

• Epistemic uncertainty for multiple target tracking
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