









# Efficient joint surface detection and depth estimation of single-photon Lidar data using assumed density filtering

<u>Kristofer Drummond</u><sup>[1,2]</sup>, Dan Yao<sup>[2]</sup>, Agata Pawlikowska<sup>[2]</sup>, Robert Lamb<sup>[2]</sup>, Stephen McLaughlin<sup>[1]</sup>, Yoann Altmann<sup>[1]</sup>

[1] School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK [2] Leonardo UK, Edinburgh, UK kd122 @hw.ac.uk





### Introduction to Single-Photon Lidar (SPL) Uses and advantages of SPL







- High sensitivity: low-power, eyesafe laser sources
- picosecond timing resolution: surface-to-surface resolution at ranges up to 200 km
- Acquisition of data can be achieved at video rates or higher





























 $f(y_k|d,\mathcal{M})$ 

- $y_k$  : Single photon ToF,  $t_{photon}$
- *d* : Target depth
- $\mathcal{M}$  : Other model parameters





## Introduction to Single-Photon Lidar (SPL) Time-Correlated Single-Photon Counting (TCSPC)



$$f(\mathbf{y}|d, \mathcal{M}) = \prod_{k=1}^{K} f(y_k|d, \mathcal{M})$$

- $y_k$  : Single photon ToF,  $t_{photon}$
- *d* : Target depth
- $\mathcal{M}$  : Other model parameters

• 
$$y = \{y_k\}_{k=1}^K$$
: Set of K photon ToFs





### Introduction to Single-Photon Lidar (SPL) Time-Correlated Single-Photon Counting (TCSPC)



$$f(y_k|d,\omega) = \omega h_0 \left( y_k - \frac{2d}{c} \right) + (1-\omega) \mathcal{V}_{[0,T]}$$

- ω : Probability of a target photon
- $h_0$ : Normalised IRF
- $\mathcal{V}$ : Background distribution





$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$
 Bayes  
Theorem

- x, y
   : Events x : what we're interested in (not defined yet)
   y : what we observe
- P(x|y) : Conditional distribution of x given y
- P(y|x) : Conditional distribution of y given x
- P(x), P(y): Marginal distribution of x and y





$$f(d|\mathbf{y},\omega) = \frac{f(\mathbf{y}|d,\omega)f(d)}{f(\mathbf{y}|\omega)}$$

- $f(d|\mathbf{y}, \omega)$  : Posterior distribution of d
- $f(y|d, \omega)$  : Likelihood of y
- f(d) : Prior distribution of d
- $f(\mathbf{y}| \omega)$  : Marginal likelihood of  $\mathbf{y}$





$$f(d|\mathbf{y},\omega) = \frac{f(\mathbf{y}|d,\omega)f(d)}{\int f(\mathbf{y}|d,\omega)f(d) \, \mathrm{d}d}$$

- $f(d|\mathbf{y}, \omega)$ : Posterior distribution of d
- $f(y|d, \omega)$  : Likelihood of y
- f(d) : Prior distribution of d





$$f(d|\mathbf{y},\omega) = \frac{f(\mathbf{y}|d,\omega)f(d)}{\int f(\mathbf{y}|d,\omega)f(d) \, \mathrm{d}d}$$

$$f(d|\mathbf{y}) = \int f(d|\mathbf{y}, \omega) f(\omega|\mathbf{y}) \, \mathrm{d}\omega$$





### **Issues With Prior Art**

Numerical approximation of integral w.r.t.  $\omega$  for any value of *d* 

### INTRACTABLE - COMPUTATIONALLY INTENSIVE!

$$f(d|\mathbf{y}) = \int f(d|\mathbf{y}, \omega) f(\omega|\mathbf{y}) \, \mathrm{d}\omega$$





### **Issues With Prior Art**

#### Numerical approximation of integral w.r.t. $\omega$ for any value of *d*

#### RESOLVED! - SSPD 2021

$$f(d|\mathbf{y}) = \sum_{m=1}^{M} f(d|\mathbf{y}, \omega_m) f(\omega_m |\mathbf{y})$$
$$\omega = \{\omega_1, \dots, \omega_m\}$$





### **Issues With Prior Art**

 Processing large histogram data volumes over long temporal sequences results in undesirable costs in memory requirement and computational time

• Using the whole set  $y = \{y_k\}_{k=1}^K$  at once prevents methods application for real-time depth estimation





Propose a novel, pixel-wise, online processing method for joint surface and depth estimation from single-photon Lidar data, **WITHOUT THE REQUIREMENT OF ToF HISTOGRAMS**, by combining previous work on depth estimation using ensemble estimators and the online estimation strategy of ...

# ASSUMED DENSITY FILTERING





### Assumed Density Filtering (ADF)







### Assumed Density Filtering (ADF)







### Assumed Density Filtering (ADF)









### Assumed Density Filtering (ADF)









#### Assumed Density Filtering (ADF)

$$\arg\min_{q^{(k)}(d)} KL(p^{(k)}(d|y_k,\omega) \mid q^{(k)}(d))$$

#### Kullback-Leibler (KL) divergences

#### MOMENT MATCHING

$$E_q[d] = E_p[d]$$

$$E_q[d^2] = E_p[d^2]$$

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d)dd}$$





### Assumed Density Filtering (ADF)

$$\arg\min_{q^{(k)}(d)} KL(p^{(k)}(d|y_k,\omega) \mid q^{(k)}(d))$$

#### Kullback-Leibler (KL) divergences

#### MOMENT MATCHING

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d) dd}$$

$$\mu_{d}^{(k)} = E_{p^{(k)}}[d]$$
$$\left(\sigma_{d}^{(k)}\right)^{2} = E_{p^{(k)}}[d^{2}] - \left(E_{p^{(k)}}[d]\right)^{2}$$





Assumed Density Filtering (ADF)

$$\underset{q^{(k)}(d){\text{Kullback-Leibler (KL)}}{\operatorname{divergences}}$$

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d) dd}$$

$$\sum_{k=1}^{K} Z_k \approx \int f(y|d, \omega)f(d) dd$$





### Assumed Density Filtering (ADF)

$$\arg\min_{q^{(k)}(d)} KL(p^{(k)}(d|y_k,\omega) | q^{(k)}(d))$$

#### Kullback-Leibler (KL) divergences

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d)dd}$$

$$Z_{k} = \int f(y_{k}|d,\omega)q^{(k-1)}(d)dd$$
$$\prod_{k=1}^{K} Z_{k} \approx f(y|\omega)$$





Assumed Density Filtering (ADF)

$$\arg\min_{q^{(k)}(d)} KL(p^{(k)}(d|y_k,\omega) \mid q^{(k)}(d))$$

Kullback-Leibler (KL) divergences

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d)dd}$$

$$Z_k = \int f(y_k | d, \omega) q^{(k-1)}(d) \mathrm{d} d$$

$$\prod_{k=1}^{K} Z_k = s(\omega)$$





$$f(\omega_m | \mathbf{y}) = \frac{f(\mathbf{y} | \omega_m) f(\omega_m)}{\sum_{m=1}^{M} f(\mathbf{y} | \omega_m) f(\omega_m)}$$
Bayes  
Theorem

$$\boldsymbol{\omega} = \{\omega_1, \dots, \omega_m\}$$





$$f(\omega_m | \mathbf{y}) \approx \frac{s(\omega_m) f(\omega_m)}{\sum_{m=1}^M s(\omega_m) f(\omega_m)}$$

$$\omega = \{\omega_1, \dots, \omega_m\}$$





$$f(d|\mathbf{y}) = \sum_{m=1}^{M} f(d|\mathbf{y}, \omega_m) f(\omega_m | \mathbf{y})$$
 Mixture of M  
Distributions

$$\boldsymbol{\omega} = \{\omega_1, \dots, \omega_m\}$$





$$\bar{\mu} = \sum_{m=1}^{M} f(\boldsymbol{\omega}_m | \boldsymbol{y}) \, \mu_d(\boldsymbol{\omega}_m)$$

$$\bar{\sigma}^2 = \left(\sum_{m=1}^{M} f(\boldsymbol{\omega}_m | \boldsymbol{y}) \left(\sigma_d(\boldsymbol{\omega}_m)^2 + \mu_d(\boldsymbol{\omega}_m)^2\right)\right) - \bar{\mu}^2$$





#### Applying ADF to previous work

$$\bar{\mu} = \sum_{m=1}^{M} f(\omega_m | \mathbf{y}) \, \mu_d(\omega_m)$$

 $(\mu_d, \sigma_d^2)$ Obtained from final Normal distribution estimation from ADF for  $\omega = \omega_m$ 

$$\bar{\sigma}^2 = \left(\sum_{m=1}^{M} f(\boldsymbol{\omega}_m | \boldsymbol{y}) \left(\sigma_d(\boldsymbol{\omega}_m)^2 + \mu_d(\boldsymbol{\omega}_m)^2\right)\right) - \bar{\mu}^2$$





#### Applying ADF to previous work

Can also determine if a surface is present in pixel!

Define  $\omega_0, \delta$  such that  $\forall \omega_m > \omega_0$ , where  $\omega_m \in \omega$ 

$$\sum_{\omega_m > \omega_0} f(\omega_m | \mathbf{y}) \ge \delta$$





Applying ADF to previous work

Can also determine if a surface is present in pixel!

Define  $\omega_0, \delta$  such that  $\forall \omega_m > \omega_0$ , where  $\omega_m \in \omega$ 

$$\sum_{\omega_m > \omega_0} f(\omega_m | \mathbf{y}) < \delta$$





#### Reduction of discrete $\omega$ parameter list







#### Reduction of discrete $\omega$ parameter list







#### Reduction of discrete $\omega$ parameter list







### **Results**

### Synthetic Data

|                      |                                                              | Depth              |                       | w                        | Time  |
|----------------------|--------------------------------------------------------------|--------------------|-----------------------|--------------------------|-------|
|                      |                                                              | $ar{\mu}(m)$       | $\bar{\sigma^2}(m^2)$ |                          | (s)   |
| ADF<br>Methods       | $\begin{array}{c} \text{ADF basic} \\ (M = 20) \end{array}$  | 17.99<br>(7.67e-3) | 5.18e-5<br>(4.71e-6)  | 0.22<br>(0.02)           | 0.034 |
|                      | $\begin{array}{c} \text{ADF basic} \\ (M = 100) \end{array}$ | 17.99<br>(7.20e-3) | 5.18e-5<br>(4.96e-6)  | 0.22<br>(0.02)           | 0.133 |
|                      | ADF *<br>warm-start                                          | 17.99<br>(7.20e-3) | 5.18e-5<br>(7.83e-3)  | 0.20<br>(0.01)           | 0.194 |
|                      | Reduction<br>mthd. 1 **                                      | 17.99<br>(7.67e-3) | 5.18e-5<br>(7.70e-3)  | 0.20<br>(0.01)           | 0.141 |
|                      | Reduction<br>mthd. 2 **                                      | 17.99<br>(7.20e-3) | 5.18e-5<br>(7.87e-3)  | 0.20<br>(0.01)           | 0.100 |
| Histogram<br>Methods | Drummond [18]<br>(M = 20)                                    | 17.99<br>(6.24e-3) | 4.03e-5<br>(4.60e-5)  | 0.20<br>(0.01)           | 0.012 |
|                      | Drummond [18]<br>(M = 100)                                   | 17.99<br>(6.24e-3) | 4.03e-5<br>(4.03e-5)  | 0.20<br>(0.01)           | 0.059 |
|                      | cross<br>correlation                                         | 17.99<br>(7.67e-3) | N/A<br>(no std.)      | 0.2<br>( <i>w</i> known) | 0.001 |

Times shown are the times for processing the histogram data and do not include histogram acquisition times.

TABLE I: Comparison of the different depth and w estimates for different methods. Values in brackets represent standard deviations over 1000 results. The actual value of (d, w) is (17.99m, 0.2).<sup>(\*)</sup>: this method uses M = 100. <sup>(\*\*)</sup>: these methods start with M = 100 and warm-start.





### **Results**

### Real College Tower Data





### Data Provided by Leonardo UK

Range ~ 3 km





### **Results**

### Real College Tower Data



(a) Sheehan [19]



 $w_0 = 0.02$  [18]

(b) Drummond (c

(c) Proposed:  $w_0 = 0.02$ 

0.8

0.6

0.4

0.2



intensity

2000

1500

1000

500

background







# Conclusion

- Proposed an extension to ensemble estimator method and produced satisfactory results using ADF to obtain posterior distribution profiles for final:
  - surface detection,
  - depth estimation and
  - uncertainty estimates.
- Able to further improve efficiency by eliminating values from discrete variables depending on corresponding posterior distribution profile value.





### Future Work

- GPU implementation to enable reliable depth estimation and uncertainty quantification at real-time speeds.
- Plan to adapt framework to richer approximations of the posterior distributions of d, allowing for multiple surface detections per pixel.













# Thanks for your attention !

kd122@hw.ac.uk