

Efficient joint surface detection and depth estimation of single-photon Lidar data using assumed density filtering

<u>Kristofer Drummond</u>^[1,2], Dan Yao^[2], Agata Pawlikowska^[2], Robert Lamb^[2], Stephen McLaughlin^[1], Yoann Altmann^[1]

[1] School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK [2] Leonardo UK, Edinburgh, UK kd122 @hw.ac.uk

Introduction to Single-Photon Lidar (SPL) Uses and advantages of SPL

- High sensitivity: low-power, eyesafe laser sources
- picosecond timing resolution: surface-to-surface resolution at ranges up to 200 km
- Acquisition of data can be achieved at video rates or higher

 $f(y_k|d,\mathcal{M})$

- y_k : Single photon ToF, t_{photon}
- *d* : Target depth
- \mathcal{M} : Other model parameters

Introduction to Single-Photon Lidar (SPL) Time-Correlated Single-Photon Counting (TCSPC)

$$f(\mathbf{y}|d, \mathcal{M}) = \prod_{k=1}^{K} f(y_k|d, \mathcal{M})$$

- y_k : Single photon ToF, t_{photon}
- *d* : Target depth
- \mathcal{M} : Other model parameters

•
$$y = \{y_k\}_{k=1}^K$$
: Set of K photon ToFs

Introduction to Single-Photon Lidar (SPL) Time-Correlated Single-Photon Counting (TCSPC)

$$f(y_k|d,\omega) = \omega h_0 \left(y_k - \frac{2d}{c} \right) + (1-\omega) \mathcal{V}_{[0,T]}$$

- ω : Probability of a target photon
- h_0 : Normalised IRF
- \mathcal{V} : Background distribution

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$
 Bayes
Theorem

- x, y
 : Events x : what we're interested in (not defined yet)
 y : what we observe
- P(x|y) : Conditional distribution of x given y
- P(y|x) : Conditional distribution of y given x
- P(x), P(y): Marginal distribution of x and y

$$f(d|\mathbf{y},\omega) = \frac{f(\mathbf{y}|d,\omega)f(d)}{f(\mathbf{y}|\omega)}$$

- $f(d|\mathbf{y}, \omega)$: Posterior distribution of d
- $f(y|d, \omega)$: Likelihood of y
- f(d) : Prior distribution of d
- $f(\mathbf{y}| \omega)$: Marginal likelihood of \mathbf{y}

$$f(d|\mathbf{y},\omega) = \frac{f(\mathbf{y}|d,\omega)f(d)}{\int f(\mathbf{y}|d,\omega)f(d) \, \mathrm{d}d}$$

- $f(d|\mathbf{y}, \omega)$: Posterior distribution of d
- $f(y|d, \omega)$: Likelihood of y
- f(d) : Prior distribution of d

$$f(d|\mathbf{y},\omega) = \frac{f(\mathbf{y}|d,\omega)f(d)}{\int f(\mathbf{y}|d,\omega)f(d) \, \mathrm{d}d}$$

$$f(d|\mathbf{y}) = \int f(d|\mathbf{y}, \omega) f(\omega|\mathbf{y}) \, \mathrm{d}\omega$$

Issues With Prior Art

Numerical approximation of integral w.r.t. ω for any value of *d*

INTRACTABLE - COMPUTATIONALLY INTENSIVE!

$$f(d|\mathbf{y}) = \int f(d|\mathbf{y}, \omega) f(\omega|\mathbf{y}) \, \mathrm{d}\omega$$

Issues With Prior Art

Numerical approximation of integral w.r.t. ω for any value of *d*

RESOLVED! - SSPD 2021

$$f(d|\mathbf{y}) = \sum_{m=1}^{M} f(d|\mathbf{y}, \omega_m) f(\omega_m |\mathbf{y})$$
$$\omega = \{\omega_1, \dots, \omega_m\}$$

Issues With Prior Art

 Processing large histogram data volumes over long temporal sequences results in undesirable costs in memory requirement and computational time

• Using the whole set $y = \{y_k\}_{k=1}^K$ at once prevents methods application for real-time depth estimation

Propose a novel, pixel-wise, online processing method for joint surface and depth estimation from single-photon Lidar data, **WITHOUT THE REQUIREMENT OF ToF HISTOGRAMS**, by combining previous work on depth estimation using ensemble estimators and the online estimation strategy of ...

ASSUMED DENSITY FILTERING

Assumed Density Filtering (ADF)

Assumed Density Filtering (ADF)

Assumed Density Filtering (ADF)

Assumed Density Filtering (ADF)

Assumed Density Filtering (ADF)

$$\arg\min_{q^{(k)}(d)} KL(p^{(k)}(d|y_k,\omega) \mid q^{(k)}(d))$$

Kullback-Leibler (KL) divergences

MOMENT MATCHING

$$E_q[d] = E_p[d]$$

$$E_q[d^2] = E_p[d^2]$$

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d)dd}$$

Assumed Density Filtering (ADF)

$$\arg\min_{q^{(k)}(d)} KL(p^{(k)}(d|y_k,\omega) \mid q^{(k)}(d))$$

Kullback-Leibler (KL) divergences

MOMENT MATCHING

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d) dd}$$

$$\mu_{d}^{(k)} = E_{p^{(k)}}[d]$$
$$\left(\sigma_{d}^{(k)}\right)^{2} = E_{p^{(k)}}[d^{2}] - \left(E_{p^{(k)}}[d]\right)^{2}$$

Assumed Density Filtering (ADF)

$$\underset{q^{(k)}(d){\text{Kullback-Leibler (KL)}}{\operatorname{divergences}}$$

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d) dd}$$

$$\sum_{k=1}^{K} Z_k \approx \int f(y|d, \omega)f(d) dd$$

Assumed Density Filtering (ADF)

$$\arg\min_{q^{(k)}(d)} KL(p^{(k)}(d|y_k,\omega) | q^{(k)}(d))$$

Kullback-Leibler (KL) divergences

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d)dd}$$

$$Z_{k} = \int f(y_{k}|d,\omega)q^{(k-1)}(d)dd$$
$$\prod_{k=1}^{K} Z_{k} \approx f(y|\omega)$$

Assumed Density Filtering (ADF)

$$\arg\min_{q^{(k)}(d)} KL(p^{(k)}(d|y_k,\omega) \mid q^{(k)}(d))$$

Kullback-Leibler (KL) divergences

$$p^{(k)}(d|y_k,\omega) = \frac{f(y_k \mid d, \omega)q^{(k-1)}(d)}{\int f(y_k \mid d, \omega)q^{(k-1)}(d)dd}$$

$$Z_k = \int f(y_k | d, \omega) q^{(k-1)}(d) \mathrm{d} d$$

$$\prod_{k=1}^{K} Z_k = s(\omega)$$

$$f(\omega_m | \mathbf{y}) = \frac{f(\mathbf{y} | \omega_m) f(\omega_m)}{\sum_{m=1}^{M} f(\mathbf{y} | \omega_m) f(\omega_m)}$$
Bayes
Theorem

$$\boldsymbol{\omega} = \{\omega_1, \dots, \omega_m\}$$

$$f(\omega_m | \mathbf{y}) \approx \frac{s(\omega_m) f(\omega_m)}{\sum_{m=1}^M s(\omega_m) f(\omega_m)}$$

$$\omega = \{\omega_1, \dots, \omega_m\}$$

$$f(d|\mathbf{y}) = \sum_{m=1}^{M} f(d|\mathbf{y}, \omega_m) f(\omega_m | \mathbf{y})$$
 Mixture of M
Distributions

$$\boldsymbol{\omega} = \{\omega_1, \dots, \omega_m\}$$

$$\bar{\mu} = \sum_{m=1}^{M} f(\boldsymbol{\omega}_m | \boldsymbol{y}) \, \mu_d(\boldsymbol{\omega}_m)$$

$$\bar{\sigma}^2 = \left(\sum_{m=1}^{M} f(\boldsymbol{\omega}_m | \boldsymbol{y}) \left(\sigma_d(\boldsymbol{\omega}_m)^2 + \mu_d(\boldsymbol{\omega}_m)^2\right)\right) - \bar{\mu}^2$$

Applying ADF to previous work

$$\bar{\mu} = \sum_{m=1}^{M} f(\omega_m | \mathbf{y}) \, \mu_d(\omega_m)$$

 (μ_d, σ_d^2) Obtained from final Normal distribution estimation from ADF for $\omega = \omega_m$

$$\bar{\sigma}^2 = \left(\sum_{m=1}^{M} f(\boldsymbol{\omega}_m | \boldsymbol{y}) \left(\sigma_d(\boldsymbol{\omega}_m)^2 + \mu_d(\boldsymbol{\omega}_m)^2\right)\right) - \bar{\mu}^2$$

Applying ADF to previous work

Can also determine if a surface is present in pixel!

Define ω_0, δ such that $\forall \omega_m > \omega_0$, where $\omega_m \in \omega$

$$\sum_{\omega_m > \omega_0} f(\omega_m | \mathbf{y}) \ge \delta$$

Applying ADF to previous work

Can also determine if a surface is present in pixel!

Define ω_0, δ such that $\forall \omega_m > \omega_0$, where $\omega_m \in \omega$

$$\sum_{\omega_m > \omega_0} f(\omega_m | \mathbf{y}) < \delta$$

Reduction of discrete ω parameter list

Reduction of discrete ω parameter list

Reduction of discrete ω parameter list

Results

Synthetic Data

		Depth		w	Time
		$ar{\mu}(m)$	$\bar{\sigma^2}(m^2)$		(s)
ADF Methods	$\begin{array}{c} \text{ADF basic} \\ (M = 20) \end{array}$	17.99 (7.67e-3)	5.18e-5 (4.71e-6)	0.22 (0.02)	0.034
	$\begin{array}{c} \text{ADF basic} \\ (M = 100) \end{array}$	17.99 (7.20e-3)	5.18e-5 (4.96e-6)	0.22 (0.02)	0.133
	ADF * warm-start	17.99 (7.20e-3)	5.18e-5 (7.83e-3)	0.20 (0.01)	0.194
	Reduction mthd. 1 **	17.99 (7.67e-3)	5.18e-5 (7.70e-3)	0.20 (0.01)	0.141
	Reduction mthd. 2 **	17.99 (7.20e-3)	5.18e-5 (7.87e-3)	0.20 (0.01)	0.100
Histogram Methods	Drummond [18] (M = 20)	17.99 (6.24e-3)	4.03e-5 (4.60e-5)	0.20 (0.01)	0.012
	Drummond [18] (M = 100)	17.99 (6.24e-3)	4.03e-5 (4.03e-5)	0.20 (0.01)	0.059
	cross correlation	17.99 (7.67e-3)	N/A (no std.)	0.2 (<i>w</i> known)	0.001

Times shown are the times for processing the histogram data and do not include histogram acquisition times.

TABLE I: Comparison of the different depth and w estimates for different methods. Values in brackets represent standard deviations over 1000 results. The actual value of (d, w) is (17.99m, 0.2).^(*): this method uses M = 100. ^(**): these methods start with M = 100 and warm-start.

Results

Real College Tower Data

Data Provided by Leonardo UK

Range ~ 3 km

Results

Real College Tower Data

(a) Sheehan [19]

 $w_0 = 0.02$ [18]

(b) Drummond (c

(c) Proposed: $w_0 = 0.02$

0.8

0.6

0.4

0.2

intensity

2000

1500

1000

500

background

Conclusion

- Proposed an extension to ensemble estimator method and produced satisfactory results using ADF to obtain posterior distribution profiles for final:
 - surface detection,
 - depth estimation and
 - uncertainty estimates.
- Able to further improve efficiency by eliminating values from discrete variables depending on corresponding posterior distribution profile value.

Future Work

- GPU implementation to enable reliable depth estimation and uncertainty quantification at real-time speeds.
- Plan to adapt framework to richer approximations of the posterior distributions of d, allowing for multiple surface detections per pixel.

Thanks for your attention !

kd122@hw.ac.uk