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Introduction
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Anomaly Detection/ OoD Detection in Images

● Anomaly detection

○ Example: Pedestrians; Van

● Out-of-Distribution (OoD) detection

● Identification of samples that are

different from normal data

● Aim: Provide decision mechanisms

to decide normal vs abnormal

● Anomalies and abnormal data:

○ Are rare

○ Might not be known during training

● Application areas: Important critical systems

○ Security; Safety; Autonomous systems

○ Defence; Medical imaging; Healthcare
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OMASGAN - Main Contributions

● Problem: 

○ Models may set high likelihood and low reconstruction loss to OoD samples

■ Leads to failures to detect anomalies

● Aim: Accurate and robust anomaly detection

● Main contributions: 

○ Improved OoD detection performance

○ Generation of the boundary of the

support of the normal class distribution: 

● OoD minimum-anomaly score samples

● Include in training

○ Devise a discriminator for anomaly detection

● Approach: 

○ Generative Adversarial Networks (GAN); Generate abnormal samples

○ Training with positive and negative data; Address: Learning-OoD-samples problem
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Related Work
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https://openai.com/blog/generative-models/

Related Work and Main Challenges

● Generative models: Learn the underlying distribution of the normal class data

● Problem: Models know what they do not know

○ Set high likelihood and low reconstruction loss to OoD data

○ This decreases the anomaly detection performance
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● Need to improve the anomaly detection performance

○ Eliminate false negative errors

■ Failures to detect anomalies

● Reduce false positives

■ False alarms of anomalies

“OMASGAN: Out-of-distribution Minimum Anomaly Score GAN for Anomaly Detection,” 

Nikolaos Dionelis, Sotirios A. Tsaftaris, and Mehrdad Yaghoobi, SSPD 2022

https://openai.com/blog/generative-models/


8

Related Research on Active Negative Training

● Old is Gold (OGNet) [1]: Uses a pseudo-anomaly module to produce OoD samples

○ Restrictive definition of anomaly

○ Blurry reconstructions before convergence

■ Single-epoch reconstructed images

● Active negative training but not active negative sampling

○ Does not cover the OoD part of the data space

● Discriminator for AD: Separates good from bad quality reconstructions

● Deterministic: No sampling

is performed

● AE: Latent space is learned

by the model
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[1] M. Zaheer, et al. Old is Gold: Redefining the Adversarially Learned One-Class Classifier Training Paradigm. CVPR 2020
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Related Work on Anomaly Detection

[3] P. Cuong Ngo, A. A. Winarto, C. K. Li Kou, S. Park, F. Akram, H. K. Lee. “Fence GAN: Towards Better Anomaly 

Detection”, In Proc. 31st International Conference on Tools with Artificial Intelligence (ICTAI), 2019

[4] C. Wang, Y. Zhang, and C. Liu, “Anomaly Detection via Minimum Likelihood Generative Adversarial Networks”. In 

Proc. 24th International Conference on Pattern Recognition (ICPR), 2018

[5] N. Dionelis, M. Yaghoobi, and S. A. Tsaftaris, “Boundary of Distribution Support Generator (BDSG): Sample 

Generation on the Boundary,” in Proc. IEEE International Conference on Image Processing (ICIP), 2020

● Anomaly detection using the reconstruction error

○ Unsupervised training for OoD detection: No class labels

○ GAN for Anomaly detection (GANomaly) [2]: Encoder-Decoder-Encoder
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● Fence GAN [3], Minimum Likelihood GAN [4]:

○ Inference: Discriminator

● Boundary of Data Distribution Support

Generator (BDSG) [5]:

○ Flow-based invertible generative models

■ Invertible Residual Networks

[2] S. Akcay, et al., “GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training,” in Proc. ACCV, 2018
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OoD Minimum Anomaly Score GAN (OMASGAN)
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OoD Minimum Anomaly Score GAN Model

● Main problem:

○ Models may set high likelihood and low reconstruction loss to OoD samples

■ Overall decreases Anomaly Detection (AD) performance

● AD models underperform due to the rarity of anomalies

● We develop: The proposed OoD Minimum Anomaly Score GAN (OMASGAN) model

○ Self-generate abnormal/ OoD samples

■ On the boundary of the support of 

the normal class data distribution

○ Invertibility or probability density: Not needed

○ Impose low likelihood on this learned data 

distribution boundary

■ Include the proposed OoD minimum-

anomaly score samples in training

○ Devise a discriminator for AD trained on both 

negative and positive data
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Contributions: OMASGAN Methodology

● Focus on: GANs to improve anomaly detection performance

● GANs: Able to learn complex data

○ Achieve convergence in distribution metrics
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● Our proposed methodology: Use only samples from the normal class

○ Generate the OoD boundary of the support of the data distribution

● Find the OoD minimum-anomaly-score samples on the distribution boundary

○ With lp-norm and dispersion regularisation

○ Perform self-supervised learning

● Integrate with

any f-divergence GAN

generative model
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OMASGAN Flowchart

● Train a f-divergence GAN: Obtain the generator, G(z)

● Train a boundary data generator, B(z), to obtain OoD distribution boundary samples

○ Active negative sampling

● OMASGAN generates OoD data, B(z)

○ Incorporate OoD Minimum Anomaly Score (OMAS) samples in training

● Active negative training of our proposed generator, G’(z)

● Devise a discriminator for anomaly detection
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Our Proposed OMASGAN Algorithm
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OMASGAN - Our Proposed Algorithm

● Train a f-divergence GAN to establish a distribution metric

○ minG maxD Ex log(D(x)) + Ez log(1 - D(G(z)))

■ where z ~ pz(z), G(z) ~ pg(x), x ~ px(x)

● Train the proposed distribution boundary model, B(z)

○ Perform active negative sampling

○ minB -m(B(z), G(z)) + λ d(B(z), G(z)) + μ s(B(z), z) 

■ where m is a f-divergence metric

● Active negative training: More accurately learn the underlying data distribution

○ Train G’(z) to address the learning-OoD-samples problem of G(z)

○ minG’ maxC α Ex log(C(x)) + β Ez log(1-C(G’(z))) + (1-β) Ez log(1-C(B(z))) +

(1-α) Ez log(C(G(z)))

■ where C is a discriminator

● Train a discriminator, J, to perform active negative learning for AD

○ maxJ γ Ex log(1 - J(x)) + (1-γ) Ez log(1 - J(G’(z))) + Ez log(J(B(z)))

■ J learns to separate B(z) from G’(z) and x
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Generation of OMAS Samples

● Generate OoD minimum-anomaly-score samples, B(z)

○ On the boundary of the normal class data distribution

○ arg minB -m(B(z), G(z)) + λ d(B(z), G(z)) + μ s(B(z), z)

● Train our proposed GAN-based boundary 

formation model, B(z), for AD:

○ Propose a loss with three terms

● B(z; θ); Run Gradient Descent on                                                                                                      

the proposed loss; Obtain θ

○ Batch size, N

○ Inference sample size, Q, for G(z)

● Force the samples to the boundary 

of the data distribution

● Effectively address mode collapse

● First term: Decreasing function of a 

distribution divergence metric

● Second term: lp-norm distance

● Third term: Scattering, dispersion

○ Capture all the modes
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OMASGAN Inference Mechanism

● Anomaly score/ OoD score based on the Anomaly Discriminator, J, and                                                         

the f-divergence distribution metric

○ The discriminator, J, is trained to:

■ Separate the normal class distribution from its complement

● f-divergence distribution metric: Used for training and during inference

● f-divergence for probability distributions P and Q: fD(P, Q)

● For a queried test sample, x*:

○ Calculate fD(G’, δx*)

■ where δx* is a Dirac function centered at x*

● Our proposed anomaly/ OoD score: AS(x*; J, G’) = J(x*) + λ fD(G’, δx*)

● Classification decision: x* is from the normal class if AS(x*; J, G’) < τ

○ where τ is a threshold

○ x* is abnormal otherwise
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Evaluation of OMASGAN
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AD Evaluation of the Proposed Model

● Evaluation methods for anomaly/ OoD 

detection:

○ Leave-one-out (LOO) evaluation

■ Normal class: 9 classes from a 

benchmark dataset with 10 classes

■ Abnormal class: Left-out class

● Evaluation metrics: Algorithm convergence 

criteria; Area Under the Receiver Operating 

Characteristics Curve (AUROC)

● Baselines: GANomaly [2]; VAE

EGBAD; AnoGAN; FenceGAN [3]; MinLGAN [4]

BDSG [5]; TailGAN

● Examined datasets:

○ Synthetic; MNIST; CIFAR-10
Our proposed model:

● OMASGAN

○ KLWGAN-based OMASGAN

○ f-GAN-based OMASGAN
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Evaluation of the OMASGAN Model on MNIST

● Performance of OMASGAN on MNIST data in AUROC

○ Compared to GAN and AE baselines using LOO evaluation
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Evaluation of OMASGAN on CIFAR-10 Data

● Performance of OMASGAN in AUROC on the CIFAR-10 dataset

○ Comparison with GAN and AE baselines using LOO evaluation
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Evaluation of OMASGAN - Ablation Study
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● Ablation study of OMASGAN in 

AUROC on MNIST (left) and on

CIFAR-10 (bottom)

● We examine the impact of our 

loss functions

○ Using LOO evaluation

● OMASGAN outperforms:

○ Our chosen base model, 

KLWGAN 

○ Ablation study: G’(z) 
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Conclusion
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Conclusion

● OMASGAN: GANs to improve the anomaly detection/ OoD detection performance

● Use only data from the normal class

○ Perform active negative sampling

■ Generate abnormal distribution boundary samples

○ Perform active negative training for anomaly detection
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● Address the learning-OoD-samples problem of generators

○ Contrastive negative training to alleviate the problem of deep generative

models knowing what they do not know (setting high likelihood to OoD data)

● Effectively tackle the rarity of anomalies problem

● Propose a discriminator-based anomaly score/ OoD score

● OMASGAN outperforms the examined baselines

○ Using the LOO evaluation methodology

○ In AUROC, on the MNIST and CIFAR-10 datasets
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Thank you very much for your attention!

Contact email: Nikolaos.Dionelis@ed.ac.uk
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