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Introduction

A Polynomial Subspace Projection Approach for the Detecti f Weak Voice Activit:




What is Voice Activity Detection (VAD) Imperial College
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https://vwn09.github.io/research/audio/sspd22/destroyer10dB/mic_signal_ch1.wav

What is Voice Activity Detection (VAD) Imperial College
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https://vwn09.github.io/research/audio/sspd22/destroyer10dB/r7_sohn_output.wav

What is Voice Activity Detection (VAD) Imperial College
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https://vwn09.github.io/research/audio/sspd22/destroyer10dB/r7_sohn_residue.wav
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Motivation for VAD London ¢

Detection of voice activity is important for many applications:
e Speech enhancement in hearing aids, telecommunications
* Automatic speech recognition (ASR) systems

e Robot audition
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. . | jal Coll
Motivation for VAD London ¢

Detection of voice activity is important for many applications:
e Speech enhancement in hearing aids, telecommunications
* Automatic speech recognition (ASR) systems

e Robot audition

Main challenges:
e Background noise
* Interfering sources

e Reverberation
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Existing Approaches to VAD Imperial College

Statistical-based single channel methods [Sohn1999; ITU-T 2012; Gazor2003]

e Exploit differences in noise and speech distributions
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Existing Approaches to VAD Imperial College

Statistical-based single channel methods [Sohn1999; ITU-T 2012; Gazor2003]
e Exploit differences in noise and speech distributions

= Challenging to measure signal statistics in very noisy environments

Machine learning-based methods [Google 2021; Zhang2016; Ivry2019]
e Speech feature extraction for classification

= Feature extraction becomes difficult in adverse acoustic environments

e Weak Transient Signal Detection Using PEVD  [Weiss2021]
Exploits multichannel signal processing to amplify weak transient signals

This Talk: PEVD-based Multichannel Preprocessing for VAD
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Background

A Polynomial Subspace Projection Approach for the Detecti f Weak Voice Activit:
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Multichannel Signal Model London

The received signal at the g-th sensor with time index n is
T
Qj‘](n) = Z hp,q(n)sp(n)
p=1

where

e h,,(n) is the room impulse response from pth source to gth microphone
modelled as a Jth order FIR filter,

* s,(n) is the pth localized source signal.

The data vector collected from () microphones:

x(n) = [z1(n), za(n), ..., 20(n)]" € RY.
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Space-time Covariance Polynomial Matrix Landn

Assuming stationarity, the space-time covariance matrix is
R(7) = E[x(n)x"(n — 7)] € RY*9 |
where (i, j)'® element is the correlation function r;;(7) = E[x;(n)z;(n — 7)] and 7 is the time-shift.

Z-transform of R(7) is a para-Hermitian polynomial matrix
W
R(z)= > R(r)z7,

T=—W

where R(7) ~ 0 for |7| > W, calligraphic R for polynomial matrices and regular R for matrices.
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Polynomial Matrix Eigenvalue Decomposition T

The PEVD of R(z) is [Weiss2018a; Weiss2018b]
R(z) = U)A()U"(2) , (1)
where A(z), U(z) contain the eigenvalues and eigenvectors and R (z) = R (1/2%).

Subspace decomposition using PEVD:

e -[we we ][\ e @

associated with signal, {-}, and orthogonal complement, {-} subspaces.
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Example: Polynomial Matrix from ST-Covariance

Imperial College
London
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Received signals x(n).

Space-time polynomial matrix, R(z).
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Example: PEVD Algorithm Imperial College

London

Algorithm converges when |g| < 1.68 x 1072
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Example: PEVD Algorithm Outputs imperial College

London
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Space-time polynomial matrix, R(z). Eigenvalue polynomial matrix, A(z).
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PEVD Algorithms Imperial Collee

London

lterative PEVD algorithms approximating (1) include:
e Second-order Sequential Best Rotation (SBR2) [McWhirter2007]
e Sequential Matrix Diagonalization (SMD) [Redif2015]
® Householder PEVD [Neo2019]
® Fixed-order approximate PEVD [Tkacenko 2010]
e Multiple-shift SBR2/SMD [Wang2015; Corr2014b]
e Causality-constrained Multiple-shift SMD [Corr2014a]
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PEVD Preprocessor for VAD




Ambient Acoustics Subspace Characterization imperial College
30 ms
r(n) —  ————+—+—
va(n)H—  H———+—+—+—
ro(n)—  —————+—

[N —

15 noise-only frames

|

R(z) —PEVD— U(z) — U ()

A(z) U,(2)
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Syndrome Signal Generation London

For L estimated signal components, U, (z) € C?*F and U, () € CO*@-1),
U (2)UL (2) + UL (2)UL(2) =T
The component associated with U, (z) ¢~ U(n) can be recovered using

ZZUL YU (k —m)x(n —m) .

This is equivalent to x(n) with the U,(z) component removed.
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Syndrome Signal Generation London

ro(n)—  +———+

E P —

15 noise-only frames

|

R(z) —PEVD— U(z) — U, (z)

l

A(2) Us(2)
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Syndrome Signal Generation

London

30 ms _
i (n)—  ———— 'I\D/lll'thhanne' yi(n) —  —=VAD]P m(n)
ro(n)— +——+—+— reprocessor VAD
: = U (DU () >
ro(n)—  F——+—+— yo(n) mg(n)
15 noise-only frames Syndrome Binary
Vector Mask

l

R(z) —PEVD— U(z) —U (2)

XS i

A(z) U,(2)
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Setup: Male Speaker in a Measured Room  kayser2009] e

Teo=1.25s
1.05m

" A1 Male Speaker [Veaux2013]
i
|
|

1.02m

) = 8 mics .
<> 162m
1.49m o

-
-20dB SIR F16 Cockpit Noise [Varga1993]
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Comparative algorithms:
1. Sohn [Sohn1999]
2. WebRTC [Google 2021] : GO, G3 (Least to most aggressive)
3. Proposed (PEVD+Sohn): R1, R2, R5, R7 (different rank estimates)
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Comparative algorithms:
1. Sohn [Sohn1999]
2. WebRTC [Google 2021] : GO, G3 (Least to most aggressive)
3. Proposed (PEVD+Sohn): R1, R2, R5, R7 (different rank estimates)

Evaluation measures [Tharwat 2018] :

e Label evaluation metrics

Correct labels: True Positive (TP), True Negative (TN)
Wrong labels: False Positive (FP), False Negative (FN)

e Overall scores: F1, Balanced Accuracy (BACC)
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i Imperial Coll
VAD Evaluation Imperial College

Comparative algorithms:
1. Sohn [Sohn1999]
2. WebRTC [Google 2021] : GO, G3 (Least to most aggressive)
3. Proposed (PEVD+Sohn): R1, R2, R5, R7 (different rank estimates)

Evaluation measures [Tharwat 2018] :

e Label evaluation metrics

Correct labels: True Positive (TP), True Negative (TN)
Wrong labels: False Positive (FP), False Negative (FN)

e Overall scores: F1, Balanced Accuracy (BACC)

= Focus on first microphone in the results.
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VAD Performance for -20dB SIR F16 Cockpit Noise  [oheial College

time (s)
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VAD Performance for -20dB SIR F16 Cockpit Noise  [oheial College

| Method | TP | TN | FP [ FN | F1 | BACC |
Sohn [| 130 | 241 | 38 | 185 | 0.538 | 0.638
Rl || 136|249 | 30 | 179 | 0.565 | 0.662
R2 [ 158|244 | 35 | 157 | 0.622 | 0.688
R5 [ 148247 | 32 | 167 | 0.598 | 0.678
R7 [ 136|224 55 | 179 | 0.538 | 0.617
GO [[315] 0 [279] 0 [0.693 | 0.500
G3 [|315] 0 [279] 0 |0.693 | 0.500
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| Method | TP | TN | FP [ FN | F1 | BACC |
Sohn [| 130 | 241 | 38 | 185 | 0.538 | 0.638
Rl || 136|249 | 30 | 179 | 0.565 | 0.662
R2 [ 158|244 | 35 | 157 | 0.622 | 0.688
R5 [ 148247 | 32 | 167 | 0.598 | 0.678
R7 [ 136|224 55 | 179 | 0.538 | 0.617
GO [[315] 0 [279] 0 [0.693 | 0.500
G3 [|315] 0 [279] 0 |0.693 | 0.500

Other results in the paper:
e Since GO, G3 always predict the presence of speech, F1 scores significantly
decrease when the speech segment is short.
e Tested on destroyer noise at various SIR from -30dB to 20dB.
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ConCIUSion London

e PEVD-based multi-microphone preprocessing for VAD
Characterize the ambient acoustics using PEVD to generate multichannel
syndrome signals, which are microphone signals without ambient acoustics
Apply single channel VAD to each microphone

e Performance of proposed PEVD-based approach
Almost always improves F1 and BACC scores over the single channel
method even in adverse environments, i.e. -30dB SIR
Consistent performance unaffected by length of speech segments
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Thank you

Listening Examples: https://vwn09.github.io/research/pevd-vad
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