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What is Voice Activity Detection (VAD)
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Motivation for VAD

Detection of voice activity is important for many applications:
Speech enhancement in hearing aids, telecommunications
Automatic speech recognition (ASR) systems
Robot audition

Main challenges:
Background noise
Interfering sources
Reverberation
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Existing Approaches to VAD

Statistical-based single channel methods [Sohn1999; ITU-T 2012; Gazor2003]

Exploit differences in noise and speech distributions

⇒ Challenging to measure signal statistics in very noisy environments

Machine learning-based methods [Google 2021; Zhang2016; Ivry2019]

Speech feature extraction for classification
⇒ Feature extraction becomes difficult in adverse acoustic environments

Weak Transient Signal Detection Using PEVD [Weiss2021]
Exploits multichannel signal processing to amplify weak transient signals

This Talk: PEVD-based Multichannel Preprocessing for VAD
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Multichannel Signal Model

The received signal at the q-th sensor with time index n is

xq(n) =
p∑

p=1
hT

p,q(n)sp(n)

where
hp,q(n) is the room impulse response from pth source to qth microphone
modelled as a Jth order FIR filter,
sp(n) is the pth localized source signal.

The data vector collected from Q microphones:

x(n) = [x1(n), x2(n), . . . , xQ(n)]T ∈ RQ .
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Space-time Covariance Polynomial Matrix

Assuming stationarity, the space-time covariance matrix is

R(τ) = E[x(n)xT (n − τ)] ∈ RQ×Q ,

where (i, j)th element is the correlation function rij(τ) = E[xi(n)xj(n − τ)] and τ is the time-shift.

Z-transform of R(τ) is a para-Hermitian polynomial matrix

R(z) =
W∑

τ=−W

R(τ)z−τ ,

where R(τ) ≈ 0 for |τ | > W , calligraphic R for polynomial matrices and regular R for matrices.
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Polynomial Matrix Eigenvalue Decomposition

The PEVD of R(z) is [Weiss2018a; Weiss2018b]

R(z) = U(z)Λ(z)UP (z) , (1)

where Λ(z),U(z) contain the eigenvalues and eigenvectors and RP (z) = RH(1/z∗).

Subspace decomposition using PEVD:

R(z) =
[
Us(z) U⊥(z)

] [
Λs(z) 0

0 Λs̄(z)

] [
UP

s (z)
UP

⊥(z)

]
, (2)

associated with signal, {·}s and orthogonal complement, {·}⊥ subspaces.
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Example: Polynomial Matrix from ST-Covariance
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Example: PEVD Algorithm

Algorithm converges when |g| < 1.68 × 10−2
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Example: PEVD Algorithm Outputs
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Space-time polynomial matrix, R(z). Eigenvalue polynomial matrix, Λ(z).
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PEVD Algorithms

Iterative PEVD algorithms approximating (1) include:
Second-order Sequential Best Rotation (SBR2) [McWhirter2007]

Sequential Matrix Diagonalization (SMD) [Redif2015]

Householder PEVD [Neo2019]

Fixed-order approximate PEVD [Tkacenko 2010]

Multiple-shift SBR2/SMD [Wang2015; Corr2014b]

Causality-constrained Multiple-shift SMD [Corr2014a]
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PEVD Preprocessor for VAD
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Ambient Acoustics Subspace Characterization

xQ(n)

...
x2(n)
x1(n)

30 ms

. . .. . .

15 noise-only frames

R(z) PEVD U(z)

Λ(z) Us(z)

U⊥(z)
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Syndrome Signal Generation

For L estimated signal components, Us(z) ∈ CQ×L and U⊥(z) ∈ CQ×(Q−L),

Us(z)UP
s (z) + U⊥(z)UP

⊥(z) = I .

The component associated with U⊥(z)� U(n) can be recovered using

y(n) =
∑

k

∑
m

U⊥(k) UH
⊥ (k − m) x(n − m) .

This is equivalent to x(n) with the Us(z) component removed.
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Syndrome Signal Generation
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Syndrome Signal Generation
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Experiment and Results
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Setup: Male Speaker in a Measured Room [Kayser2009]

D1.62 m

- 20 dB SIR F16 Cockpit Noise [Varga1993]

A

1.02 m

Male Speaker [Veaux2013]
1.05 m

1.49 m

Q = 8 mics

T60 = 1.25 s
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VAD Evaluation

Comparative algorithms:
1. Sohn [Sohn1999]

2. WebRTC [Google 2021] : G0, G3 (Least to most aggressive)
3. Proposed (PEVD+Sohn): R1, R2, R5, R7 (different rank estimates)

Evaluation measures [Tharwat 2018] :
Label evaluation metrics

Correct labels: True Positive (TP), True Negative (TN)
Wrong labels: False Positive (FP), False Negative (FN)

Overall scores: F1, Balanced Accuracy (BACC)
=⇒ Focus on first microphone in the results.
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VAD Performance for -20 dB SIR F16 Cockpit Noise
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VAD Performance for -20 dB SIR F16 Cockpit Noise

Method TP TN FP FN F1 BACC
Sohn 130 241 38 185 0.538 0.638
R1 136 249 30 179 0.565 0.662
R2 158 244 35 157 0.622 0.688
R5 148 247 32 167 0.598 0.678
R7 136 224 55 179 0.538 0.617
G0 315 0 279 0 0.693 0.500
G3 315 0 279 0 0.693 0.500

Other results in the paper:
Since G0, G3 always predict the presence of speech, F1 scores significantly
decrease when the speech segment is short.
Tested on destroyer noise at various SIR from -30 dB to 20 dB.
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Conclusion
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Conclusion

PEVD-based multi-microphone preprocessing for VAD
Characterize the ambient acoustics using PEVD to generate multichannel
syndrome signals, which are microphone signals without ambient acoustics
Apply single channel VAD to each microphone

Performance of proposed PEVD-based approach
Almost always improves F1 and BACC scores over the single channel
method even in adverse environments, i.e. -30 dB SIR
Consistent performance unaffected by length of speech segments
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Thank you
Listening Examples: https://vwn09.github.io/research/pevd-vad
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