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Presentation Overview

—

. Background, motivation, and signal model.
2. Learning low-rank source distributions from compressed data.

3. Efficiently adapting compression strategies to accommodate new
sources.

4. Adaptive algorithm pairing source learning with optimised
compression.

5. Experimental results using real radar data and conclusions.



University Defence Research Collaboration (UDRC)
Signal Processing in the Information Age

Overview Background Learning Low-Rank Source Alternative Projection Design Adaptive Algorithm Results Conclusions

Background and Motivation

» Designing effective compression strategies is an important
problem for both civilian and defence applications.

» |In general, such strategies must dispose of some information to
reduce complexity and memory requirements down the signal
processing chain.

» In particular, when designing solutions that are constrained by low
size, weight, and power (SWAP) requirements, data reduction is a
primary step.
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Background and Motivation

» Dimensionality reduction methods based on linear random
projections — i.e., compressive sensing (CS) — have gained
significant attention recently.

Y=X+W

mLn

» However, random projections may not be the best choice for ® if
we know the statistical properties of the signal X.
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Background and Motivation
Y=2X+W
» Lower dimensionality brings memory and computational benefits.

» Signal model has various applications in defence:

» Example: X represents transformed high dimensional image data.

» How to find the @ that best facilitates the reconstruction or

classification of X7
[
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Background and Motivation
» Our recent work has focussed on finding the optimal ® in
scenarios with noise IN present on the input signal X:
Y=®X+N)+W

» Example: X represents a source generating radar return data; IV
can be random noise, a secondary source, or clutter.
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Background and Motivation

Y=®X+N)+W
» By employing an information-theoretic approach, we design a
linear projection ® that balances:

» the reconstruction error for X and IN;
» the classification accuracy for X and .

» Naturally, there is a trade off: we cannot increase performance on
all fronts without compromise.

» Model:

» Measurement noise W is Gaussian distributed.
» Inputs X and N are Gaussian Mixture (GM) distributed.
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Background and Motivation

» In general, a single Gaussian does not provide a sufficiently
accurate description of source signals.

pa ()

» Instead, the distribution of a }
non-Gaussian signal can be
approximated by a mixture of
several Gaussians, e.g.,

Jx
X ~ Zc:l ﬂcN(:L'; Xes Qc)

» In CS, such models have been proven to be effective and in some
cases superior to sparse signal models (Yu and Sapiro, 2011).
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Background and Motivation

» With good GM approximations to the distributions of X and IN,
we can therefore design an appropriate ® for a given application.

» In defence applications, we might assume a good understanding of
X, but expect IN to change through the appearance of new —
potentially adversarial — secondary sources.

» Adequately extracting information from or mitigating such
secondary sources could be vital.
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Background and Motivation
» Example scenario: we have a well-characterised primary source X

measured in isolation.

» With a priori knowledge of the distributions, we can design ®
such that we can use Y to accurately reconstruct/classify X.
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Background and Motivation

» Example scenario: we have a well-characterised primary source X
measured in isolation.

» However, the appearance of a new secondary source, IN, will
disrupt the performance of the designed ®.
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Background and Motivation

» Our recent work (Coutts et al., 2021) addressed this issue by
giving specific attention to the learning of secondary information
sources via compressive measurements Y

> i.e., without accessing the source data directly.

» After updating our approximation to the distribution of the
secondary source IN, we can redesign our compression
operator ®.

» In low SWAP applications, we want to efficiently learn a GM
approximation to the distribution of IN, and quickly redesign ®.
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Background and Motivation

» Our recent adaptive projection design approach can deal with new
or changing secondary sources.

» However, its memory and computational complexity requirements
are not ideal for online, low SWAP implementations.

» Here, we explore novel extensions of existing methods to test if
lower complexity options are available for GM-based source
learning and information-theoretic projection design.
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Background and Motivation

» Three main novel contributions:

1. Techniques to learn low-rank GM approximations to secondary
source distributions from compressive measurements.

2. Insight into the complexity reductions possible during projection
design when incorporating low-rank GM distributions.

3. Two alternative projection design strategies, which we test against
our established strategy to determine if cost savings can be
achieved via algorithms with faster convergence.
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Learning a Secondary Source From Compressive Measurements

» Learning the distribution of a GM distributed X from compressive
measurements has been covered by Yang et al. in 2015 for a
signal model without input IV:

Y =X+ W
» Measurement noise W is Gaussian distributed.

» We extended this approach to our chosen signal model last year
(Coutts et al., 2021) to learn an unknown GM-distributed N with
known GM-distributed X:

v V4 ? v
Y:‘I>(X+N)+W
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Learning a Secondary Source From Compressive Measurements

>

\4

To learn the GM distribution of a secondary source IN, we used
an expectation-maximisation (EM) approach.

We obtain the parameters 6 = {sy, u, I} of IN that best fit our
data, with

N ~ Z sk CN (n; uy,, T

sk: weight of kth Gaussian (likelihood of this component).
u,: mean vector of kth Gaussian.

T'y: covariance matrix of kth Gaussian.
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Learning a Secondary Source From Compressive Measurements

» The computational complexity and memory requirements of this
approach increase with the signal dimension n, due to the
required manipulation of the GM covariance matrices.

» We therefore impose a near-low-rank structure on the covariance
matrices of the learned secondary source IV, such that we have

T, =FFl+9I,, k=1,... K,

where F, € C"*", r, < n, and 0 < < 1.

» By manipulating the ‘tall’ matrix F, instead of I';, we reduce our
memory footprint and computational costs.
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Learning a Secondary Source From Compressive Measurements

» We capture Ny compressive measurements using randomly
generated projection matrices ®;:

yzszz(ml—kn,)—k’wz, i=1,...,Ng

and seek to obtain the parameters 6 = {sy, u;, Fr} of IN that
best fit our data.
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Learning a Secondary Source From Compressive Measurements

» We capture Ny compressive measurements using randomly
generated projection matrices ®;:

yZ:fI>Z(ml+n,)+’wZ, i=1,...,Ng

and seek to obtain the parameters 6 = {sy, u;, Fr} of IN that
best fit our data.

» We seek the 0 that maximises the marginal log-likelihood

N
Oy, .- 7yNs) = Z 10%Py|0(yi|9)

=1
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Learning a Secondary Source From Compressive Measurements

» Since the marginal log-likelihood is difficult to maximise directly,
we take an iterative expectation-maximisation approach.

> At iteration (¢t + 1):

1. Find the likelihood of the unobserved variables given access to
compressive measurements ¥, and previous system parameters 6(*).

2. Update the system parameters such that the expected value of the
complete log-likelihood is maximised.
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Learning a Secondary Source From Compressive Measurements

» For the maximisation in step 2, we have identified closed-form
solutions for the update of the GM parameters for IN.

» The new parameters are guaranteed to satisfy
f( (H—l ‘ylv tee ’yNS) Z Z(H(t)‘yl’ e ?yNs) )

i.e., the likelihood is always increasing (until a local maximum is
reached).
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Alternative Projection Design Algorithms

» We can now efficiently learn low-rank GM approximations to the
distribution of IN via compressive measurements.

» Low-rank optimisations can also result in reduced computational
complexity during projection design.

» However, it would still be worthwhile to explore alternative
projection design strategies to determine if faster convergence can
be attained.

» Algorithms that converge more quickly than existing methods
(Coutts et al., 2020) may yield a lower system complexity.
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Alternative Projection Design Algorithms

» Applying the singular value decomposition and eigenvalue
decomposition to the projection matrix and measurement noise
covariance matrix, respectively, yields

® = UsDa VY, A =TU,DAUY.
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Alternative Projection Design Algorithms

» Applying the singular value decomposition and eigenvalue
decomposition to the projection matrix and measurement noise
covariance matrix, respectively, yields

® = UsDa VY, A =TU,DAUY.

» If Ug = Up, we can redefine our signal model:

Y =D,’UNY =HDs®(X + N) + W,

with H=D,"? and © = Vi,
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Alternative Projection Design Algorithms

» Via expressions provided in the paper, we establish two alternative
projection design strategies that rely on the iterative update of
D4 and O such that our objective function is maximised.

» Both approaches update Dg via gradient ascent.

» For the update of ®, we have two options:

1. Use gradient ascent and project to the set of orthonormal matrices.
2. Use a Given's rotation-based approach that optimises the discrete
rotation operations that exist within ©.
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Adaptive Algorithm

Y =@ (X + N)+ W

» We now have access to:

P Three algorithms that can seek the optimal projection matrix ®qp¢
given accurate estimations of the source distributions.

» Techniques to update a low-rank estimate of the GM distribution
for N if the current distribution is found to be innaccurate (via a
likelihood test).

» We can now create an adaptive algorithm that updates ®,,; to
account for a changing secondary source distribution.
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Adaptive Algorithm
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Adaptive Algorithm
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Adaptive Algorithm
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Results Using Synthetic Data — Quality of Low-Rank Approximations

» Objectives: estimate distribution of N given 10 measurements;
investigate impact of under/overestimating true rank, r:
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Results Using Synthetic Data — Quality of Low-Rank Approximations

» Objectives: estimate distribution of N given 10 measurements;
investigate impact of under/overestimating true rank, r:

4
2 x10

(a)

Log-likelihood after EM

Assumed rank

Figure: (a) Log-likelihood of compressive measurements after source learning via EM versus
assumed rank of covariance matrices I'y, for actual ranks r € {2,3,4,5}. Source data has
dimensionality n = 16.
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Results Using Synthetic Data — Quality of Low-Rank Approximations

» Objectives: estimate distribution of N given 10 measurements;
investigate impact of under/overestimating true rank, r:

%104

o
N

0.01
(a) (b) ro2
0.008 r=3
0 r=4
r=25
0.006 O  Ground truth

Log-likelihood after EM
N

Reconstruction error for

0.004
..................................... )
4
0.002 @R

.................... H )

6 0
1 2 3 4 5 1 2 3 4 5

Assumed rank Assumed rank

Figure: (a) Log-likelihood of compressive measurements after source learning via EM and
(b) reconstruction error for IN versus assumed rank of covariance matrices I'y, for actual
ranks r € {2,3,4,5}. Source data has dimensionality n = 16.
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Results Using Synthetic Data — Quality of Low-Rank Approximations
» Objectives: estimate distribution of N given 10 measurements;
investigate impact of under/overestimating true rank, r:

» Increasing the assumed rank improves performance until true rank
exceeded.

» What is the impact of assumed rank on source learning

complexity?

Table: Source learning run time versus assumed rank
Rank 1 2 3 4 5
Time || 61.6s | 69.6s | 76.0s | 82.4s | 90.3 s
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Results Using Synthetic Data — Projection Design Complexity

» Objective: evaluate projection design complexity for different
covariance matrix ranks and compressive measurement
dimensions, m:

—+&— Original, m =2 — & — Original, m=4
i —&— Reduced rank, m =2 — & — Reduced rank, m = 4
© 7 T T T
g B —-———— 8- ———— e H——— — — — il
‘= 6.5 F —
i = = — =
g T T 1
QL 55 L 1 |
54 6 8 10 12

Covariance matrix rank

Figure: GM rank versus required projection design execution times. Our original method is
compared with a low-rank-optimised version. Source data has dimensionality n = 16.
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Results Using Real Radar Data

Y=®X+N)+W
» Example: X & NN represent 2 sources of radar return data.

» 3 fan speeds represent 3 classes.
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Results Using Real Radar Data

Sccondary,
Fan 2,
Primary, N 2
Fan 1, ~ o Rotating fans generate characteristic '
X micro-Doppler signatures 08

AL

—

Frequency

Compressed * Time

. = 2
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% “ Fan 1, speed 2
Classification &
Fan 2, speed 3

» Initial scenario: X well characterised, N absent (unknown).

£

» Simulation: N is fleeting & has single class.

» Objective: learn low-rank estimate of distribution of IN then
update optimal ®,,; — e.g., to prioritise classification of X.
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Results Using Real Radar Data

» Objective: learn low-rank estimate of distribution of IN then
update optimal ®,,; — e.g., to prioritise classification of X.

» Increasing rank improves our estimation of the distribution of IV,
which has dimensionality n = 32.

> With a good estimate, we can obtain a better ®.

Table: Classification accuracy (CA) for X versus assumed rank
[Rank | 8 [ 10 | 12 | 14 [ 16 |
| ca [ 603% | 65.8% | 70.6% | 71.1% [ 71.2% |

P The classification accuracy when using the original ®,p; —
without accounting for the presence of N — was 29.7%.
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Results Using Synthetic Data — Projection Design Performance

» Objective: evaluate projection design performance for original and
proposed update schemes:

0.1 '\\\ ——— Original E
0.09 £~ R — — — Two-stage (i)
0.08 AT S = Two-stage (ii)
0.07 s A Upper 95% interval |
0.06 v Lower 95% interval

ez X7

10° 10" 102
Algorithm iteration

Reconstruction error for X

Figure: Reconstruction error for X versus algorithm iteration for the original gradient
ascent approach and the developed (i) dual gradient ascent and (ii) Given's rotation-based
two-stage implementations.
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Conclusions

» Low-rank GM approximations reduce complexity and memory
requirements during source learning and projection design.

» Reducing the rank can decrease computational complexity for low
SWAP applications while only slightly lowering performance.

» The proposed techniques can be extended to applications in which
unseen secondary sources of information might appear.
» Two novel projection design strategies introduced.

» Results indicate that the simple gradient ascent approach from our
earlier work is the best choice.

» Learning Low-Rank Models From Compressive Measurements for
Efficient Projection Design, fraser.coutts@ed.ac.uk.
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Future Work

» Additional techniques to identify changes in source distributions.

» Fully online training of source parameters and compression
strategies for reconfigurable signal processing.

» Defence applications: e.g., tail rotor blades classification via

micro-Doppler recognition.
JJ Main rotor blade:

Large micro-Doppler signature

N\

Rear rotor blade: J Fuselage:
Small micro-Doppler signature Main Doppler shift
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Background and Motivation

Y=®X+N)+W
» By employing an information-theoretic approach, one can design a
linear projection ® that maximises the mutual information (MI):
> between Y and the source signal X —i.e, I(X;Y);
> between Y and the discrete classes C' of X —i.e., I(C;Y);

» between Y and the source signal IV or its discrete classes.

» Intuitively, as the respective MI terms increase, the recovery of
the source signal or class information improves.
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Background and Motivation

» By optimising the MI, we design a ® that balances signal recovery
and classification accuracy for two sources (Coutts et al., 2020).

» Goal: with Y = ®(X + IN) + W, design ® that maximises
F(®,B) = 5I(X5Y) + 5ol (C;Y) + B3I(N;Y) + Bul (G Y)

» (' and G represent classes of X and IN, respectively.
» Large /3 and/or [33: prioritise reconstruction.

» Large 2 and/or (3,: prioritise classification.
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Background and Motivation

» By optimising the MI, we design a ® that balances signal recovery
and classification accuracy for two sources (Coutts et al., 2020).

» Goal: with Y = ®(X + IN) + W, design ® that maximises
F(®,B) = 5I(X5Y) + 5ol (C;Y) + B3I(N;Y) + Bul (G Y)

» Method: iterative update of ® via gradient ascent.

» Model:

» Measurement noise W is Gaussian distributed.

» Inputs X and N are Gaussian Mixture (GM) distributed.
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Learning a Secondary Source From Compressive Measurements

» Each class ¢ of X is described by a weighted sum of O Gaussian
distributions and W is Gaussian:

Jx
X ~ 2021 Zcpw|c(m|c)

o]
paz|c($’6> = Zo:l Te,0 CN($§XC,O’ Qc,o)
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Learning a Secondary Source From Compressive Measurements

» Each class ¢ of X is described by a weighted sum of O Gaussian
distributions and W is Gaussian:

Jx
X ~ Zc:l Zcpmlc(m|c)
o
paz|c(x|c) = Zo:l Te,0 CN(%;XC’O, Qc,o)
> With W ~ CN(w;Vv,A), we rearrange to obtain
Y=®X+N)+W=8N+W

3 D
W~ maCN(@;va, Ag)
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Learning a Secondary Source From Compressive Measurements

yl:@,n,—i—ﬁz,, i=1,...,N;

» Important considerations when estimating the distribution of IV:

> Unique {®;}7°, will improve estimation but add cost.
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Learning a Secondary Source From Compressive Measurements

ylz'I)mz—i—ﬁzl, i=1,...,N;

» Important considerations when estimating the distribution of IV:

> Unique {®;}7°, will improve estimation but add cost.

» Increasing m (the number of rows in ®; € C™*"™) will improve
estimation.
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Learning a Secondary Source From Compressive Measurements

ylz'I)mz—i—ﬁzl, i=1,...,N;

» Important considerations when estimating the distribution of IV:

> Unique {®;}7°, will improve estimation but add cost.

» Increasing m (the number of rows in ®; € C™*"™) will improve
estimation.

» Increasing the number of samples N, will improve estimation.
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yl:@,n,—i—fv,, i=1,...,N;

» Important considerations when estimating the distribution of IV:

> Unique {®;}7°, will improve estimation but add cost.

» Increasing m (the number of rows in ®; € C™*"™) will improve
estimation.

» Increasing the number of samples N, will improve estimation.

» Increasing the power of IN relative to X will improve estimation.
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