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Introduction to the sonobuoy placement problem

• Sonobuoys are portable, 

expendable sonar systems

• Can be passive or active

• Monostatic, bistatic or 

multistatic

• In our scenario, we consider 

fields of passive sonobuoys 

(e.g. DIFAR)

• Can be placed by an 

airborne agent – helicopter, 

aircraft or UAV

https://www.navalnews.com/naval-news/2022/04/ultra-

and-sparton-win-u-s-navy-contract-for-new-

sonobuoys/



Introduction to the sonobuoy placement problem

• Sonobuoys are placed 

sequentially by the agent, 

typically directed by a 

surface vessel

• Sonobuoys consist of a 

flotation device and an 

array of hydrophones that 

unfurls on deployment

https://www.militaryaerospace.com/sensors/article/14

198901/antisubmarine-warfare-asw-sonobuoys-

multistatic



Introduction to the sonobuoy placement problem

• Given limited agent payload and the cost of the 

sonobuoys, we need to use deployment patterns that 

are the most efficient for the mission objectives

• Grid or lattice patterns are common, but other 

patterns such as circles/ovals or chevrons might be 

used for particular mission types

• In our scenario, we seek to minimize localization 

uncertainty at the point when the entire pattern has 

been deployed, so that action can be taken

• We also want to minimize the total placement time

• Potentially conflicting objectives



Modelling

• We model sonobuoy placement as a 

constrained biobjective problem:

– Minimize total placement time

– Minimize localization uncertainty immediately after 

sonobuoy pattern placement is complete

– Constraints ensure solutions adhere to minimum 

and maximum distances between placement 

locations



Modelling

• We assume a single target of interest (TOI)

• Initially, we assume a uniform environment

• Later, we add randomly generated 

simulations of noise/clutter

• Other simplifying assumptions include:

– Accurate placement and no drift of sonobuoy 

positions

– No failure and sonobuoys always detect the TOI

– Static noise/clutter



Modelling

• Environment is 
discretized to a lattice of 
hexes

• To simulate uncertainty 
over the TOI location, 
measurements are 
taken from possible 
contacts in hexes 
surrounding ground 
truth

• Transmission loss and 
noise/clutter calculated 
for each path from 
contact to sonobuoy

Red x = contact

Purple circle = sonobuoy

Black line=path from contact to 

sonobuoy

Noise/clutter in dB/km 



Modelling

• First optimization objective – total placement 

time consists of:

– the time taken for the agent to reach the first 

placement location plus

– The time taken for the placement procedure for 

each sonobuoy plus

– The time taken to travel between successive 

placement locations



Modelling

• Second optimization objective – localization 

uncertainty modelled as a sum of 

uncertainties over all triangulations between 

pairs of sonobuoys

– Transmission loss modelled as spherical for 

simplicity

– For a given sonobuoy pair, uncertainty is at a 

minimum when they are orthogonally placed with 

respect to a contact

– Localization uncertainty at a maximum for a given 

pair when the sonobuoys form a line with the 

contact



Biobjective machine learning algorithm

• Algorithm has two phases:

– Phase 1 - offline multiobjective evolutionary algorithm 

(MOEA)

– Phase 2  - online multiobjective reinforcement learning 

(MORL) algorithm

• Multiobjective optimization produces a Pareto front (PF)  

consisting of a number of nondominated solutions

• The MOEA produces initial solutions in a static 

environment 

• The MORL uses patterns evaluated by the MOEA 

together with updated information to produce new 

solutions



Biobjective machine learning algorithm

• Pareto front examples:

– Left hand figure shows MOEA phase progression over 

100 generations

– Right hand figure shows MORL phase progression 

over 100 episodes



Biobjective machine learning algorithm

• Why the hybrid approach?

Evolutionary 

algorithms

Reinforcement 

learning

Advantages • Avoid local minima

• Good at multiobjective 

problems

• Generates a diverse 

population

• Good for online 

problems

• Well suited to 

learning a sequence 

of optimal actions

Disadvantages • Can be slow to 

converge

• Not good at dealing 

with updated 

information

• More easily stuck in 

local minima

• Not as well proven in 

multiobjective setting



Biobjective machine learning algorithm

• MOEA structure:
1. Initialization – generate all suitable permutations of grid patterns of 

N sonobuoys and add randomly generated patterns 

2. Fitness evaluation – calculate values for each objective and find 

the PF

3. Tournament selection – use 2 permutations of the population to 

generate binary tournaments and pass the winners to genetic 

operators

4. Mutation – with probability µ, move one placement location by one 

hex, chosen at random, subject to constraints

5. Crossover – with probability 1-µ,  use 2 permutations of the new 

population to generate parent pairs and generate valid children 

that  satisfy constraints

Repeat 2-5 for G generations, choose a pattern from the final PF and pass 

archive of all assessed patterns whose first k locations match the chosen 

pattern  to the MORL



Biobjective machine learning algorithm

• This view shows 
uncertainty plotted 
against time elapsed for 
different Pareto-
nondominated patterns 
produced by the MOEA

• An operator could use 
this view to select which 
solution to pass to the 
MORL, depending on 
mission priorities

• In our experiments, we 
assume the solution with 
the minimum modulus 
(i.e. closest to the origin) 
is chosen



Biobjective machine learning algorithm

• MORL modelling:

• State space is too large for a tabular approach

• Instead, we use an approximation function that takes 

an average of the objective values for all assessed 

patterns whose first 𝑛 ∈ 𝑘,𝑁 − 1 placement 

locations match that of the candidate pattern 

• We use complete rollouts and do not discount returns

• Multiobjective approach means there is a set of 

nondominated Q-values for available actions in each 

state, rather than a single best action

• We use a more complex version of the ε-greedy 

approach to decide actions 



Biobjective machine learning algorithm

• MORL structure:

1. Initialization – import archive of assessed patterns from the 

MOEA and recalculate fitness values based on updated 

information about the position of the contacts

2. For each sonobuoy placement, with probability ε choose a next 

location at random, or else:

• if any next states exist with zero Q-values: 

• with probability ε, select at random from the zero states;

• or otherwise with probability 1-ε, selects at random from the 

non-zero states;

• if no next states exist with zero Q-values: 

• select a next placement location at random from patterns on 

the PF

3. Calculate objective values ,add the new pattern to the archive 

and go to 2. for required number of episodes



Results – MOEA with uniform environment

Elite patterns for N=9 Elite patterns for N=12

• For lower values of N, patterns tend to be located at one side of the contacts

• As the number of sonobuoys increases, nondominated solutions with :

• lower placement times tend to be within or close to the zone containing 

the contacts

• lower localization uncertainty increasingly surround the contacts



Results – MOEA+MORL, complex environment

Number 

of 

sensors

MOEA 

mean 

MORL 

mean 

MOEA 

max 

MORL 

max 

MOEA 

% 

MORL 

% 

8 3.0% 1.1% 9.4% 11.3% 83.3% 20.0%

9 3.4% 1.3% 9.5% 11.9% 80.0% 30.0%

10 5.1% 0.8% 15.3% 8.8% 90.0% 20.0%

11 5.5% 0.8% 11.5% 6.2% 96.7% 20.0%

12 4.1% 0.3% 7.7% 3.5% 100.0% 16.7%

• Results averaged over 30 runs of 100 MOEA generations + 100 

MORL episodes 

• Mean figures represent improvement in the modulus of the 

minimum modulus solution

• Max figures represent the mean maximum improvement

• % figures represent the percentage showing some improvement



Results – MOEA vs. MORL

• With  N=8 sonobuoys, both 

MOEA and MORL phases 

show continuous but  

improvement 

• With N=10 sonobuoys, 

improvement is faster for 

the MOEA than with 8 

sonobuoys, but slower and 

less continuous for the 

MORL

• Likely due to higher 

computational complexity of 

the MORL – cubic in N vs 

quadratic for the MOEA



Discussion and conclusions

• MOEA shows good results with the static problem

• MORL has a hard job to do – improving on already 

optimised results from the MOEA and coping with 

updated information – but shows good results with 

smaller numbers of sonobuoys

• MOEA scales well with larger numbers of sonobuoys 

but MORL shows decreased performance

• Approach gives operator a choice as to how to 

prioritize localization uncertainty vs. total placement 

time

• Algorithm may also make it possible to use smaller 

numbers of sonobuoys, lowering costs



Discussion and conclusions

• Computational complexity is higher for the MORL vs 

the MOEA

• Many more MORL episodes required to gain good 

results for higher numbers of sonobuoys

• More sophisticated approximation function may be 

required

• More advanced parallelization techniques also a topic 

for future research



Q&A

• Any questions?
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