Optimizing sonobuoy placement using multiobjective machine learning

Dr. Christopher Taylor

Agenda

- Introduction to the sonobuoy placement problem
- Modelling the problem
- The hybrid multiobjective machine learning algorithm
- Results
- Discussion and conclusions
- Q&A

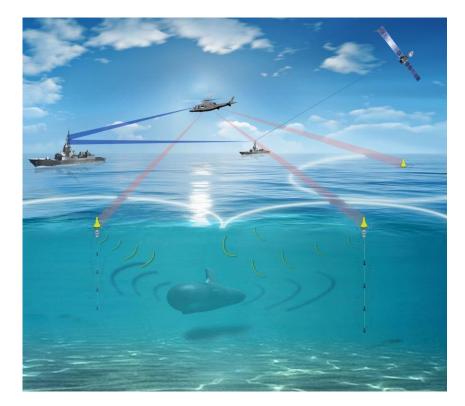
Introduction to the sonobuoy placement problem

- Sonobuoys are portable, expendable sonar systems
- Can be passive or active
- Monostatic, bistatic or multistatic
- In our scenario, we consider fields of passive sonobuoys (e.g. DIFAR)
- Can be placed by an airborne agent – helicopter, aircraft or UAV

https://www.navalnews.com/naval-news/2022/04/ultraand-sparton-win-u-s-navy-contract-for-newsonobuoys/

Introduction to the sonobuoy placement problem

- Sonobuoys are placed sequentially by the agent, typically directed by a surface vessel
- Sonobuoys consist of a flotation device and an array of hydrophones that unfurls on deployment



https://www.militaryaerospace.com/sensors/article/14 198901/antisubmarine-warfare-asw-sonobuoysmultistatic

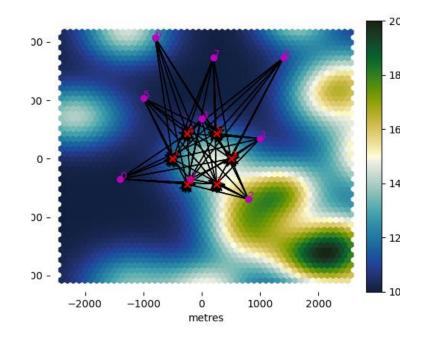
Introduction to the sonobuoy placement problem

- Given limited agent payload and the cost of the sonobuoys, we need to use deployment patterns that are the most efficient for the mission objectives
- Grid or lattice patterns are common, but other patterns such as circles/ovals or chevrons might be used for particular mission types
- In our scenario, we seek to minimize localization uncertainty at the point when the entire pattern has been deployed, so that action can be taken
- We also want to minimize the total placement time
- Potentially conflicting objectives

- We model sonobuoy placement as a constrained biobjective problem:
 - Minimize total placement time
 - Minimize localization uncertainty immediately after sonobuoy pattern placement is complete
 - Constraints ensure solutions adhere to minimum and maximum distances between placement locations

- We assume a single target of interest (TOI)
- Initially, we assume a uniform environment
- Later, we add randomly generated simulations of noise/clutter
- Other simplifying assumptions include:
 - Accurate placement and no drift of sonobuoy positions
 - No failure and sonobuoys always detect the TOI
 - Static noise/clutter

- Environment is discretized to a lattice of hexes
- To simulate uncertainty over the TOI location, measurements are taken from possible contacts in hexes surrounding ground truth
- Transmission loss and noise/clutter calculated for each path from contact to sonobuoy

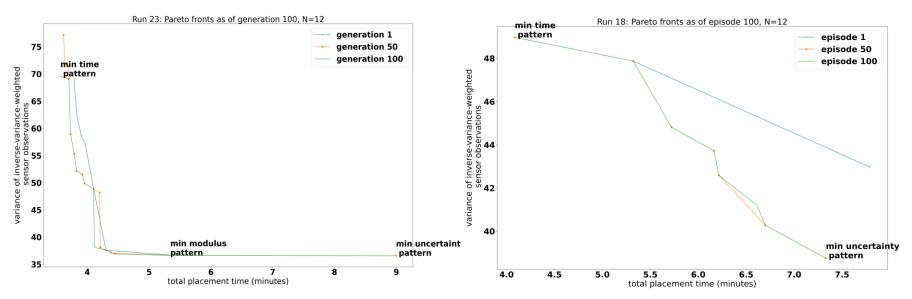


Red x = contact Purple circle = sonobuoy Black line=path from contact to sonobuoy Noise/clutter in dB/km

- First optimization objective total placement time consists of:
 - the time taken for the agent to reach the first placement location plus
 - The time taken for the placement procedure for each sonobuoy plus
 - The time taken to travel between successive placement locations

- Second optimization objective localization uncertainty modelled as a sum of uncertainties over all triangulations between pairs of sonobuoys
 - Transmission loss modelled as spherical for simplicity
 - For a given sonobuoy pair, uncertainty is at a minimum when they are orthogonally placed with respect to a contact
 - Localization uncertainty at a maximum for a given pair when the sonobuoys form a line with the contact

- Algorithm has two phases:
 - Phase 1 offline multiobjective evolutionary algorithm (MOEA)
 - Phase 2 online multiobjective reinforcement learning (MORL) algorithm
- Multiobjective optimization produces a Pareto front (PF) consisting of a number of nondominated solutions
- The MOEA produces initial solutions in a static environment
- The MORL uses patterns evaluated by the MOEA together with updated information to produce new solutions



- Pareto front examples:
 - Left hand figure shows MOEA phase progression over 100 generations
 - Right hand figure shows MORL phase progression over 100 episodes

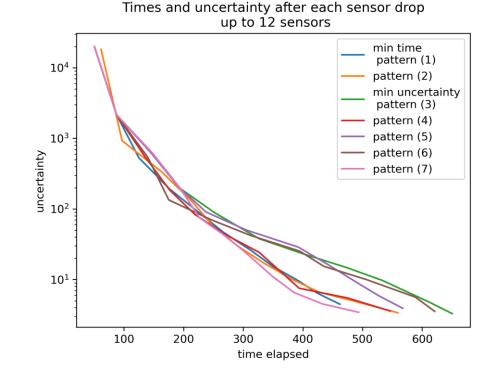
• Why the hybrid approach?

	Evolutionary algorithms	Reinforcement learning
Advantages	 Avoid local minima Good at multiobjective problems Generates a diverse population 	 Good for online problems Well suited to learning a sequence of optimal actions
Disadvantages	 Can be slow to converge Not good at dealing with updated information 	 More easily stuck in local minima Not as well proven in multiobjective setting

- MOEA structure:
 - 1. Initialization generate all suitable permutations of grid patterns of *N* sonobuoys and add randomly generated patterns
 - 2. Fitness evaluation calculate values for each objective and find the PF
 - 3. Tournament selection use 2 permutations of the population to generate binary tournaments and pass the winners to genetic operators
 - 4. Mutation with probability μ , move one placement location by one hex, chosen at random, subject to constraints
 - 5. Crossover with probability $1-\mu$, use 2 permutations of the new population to generate parent pairs and generate valid children that satisfy constraints

Repeat 2-5 for G generations, choose a pattern from the final PF and pass archive of all assessed patterns whose first k locations match the chosen pattern to the MORL

- This view shows uncertainty plotted against time elapsed for different Paretonondominated patterns produced by the MOEA
- An operator could use this view to select which solution to pass to the MORL, depending on mission priorities
- In our experiments, we assume the solution with the minimum modulus (i.e. closest to the origin) is chosen



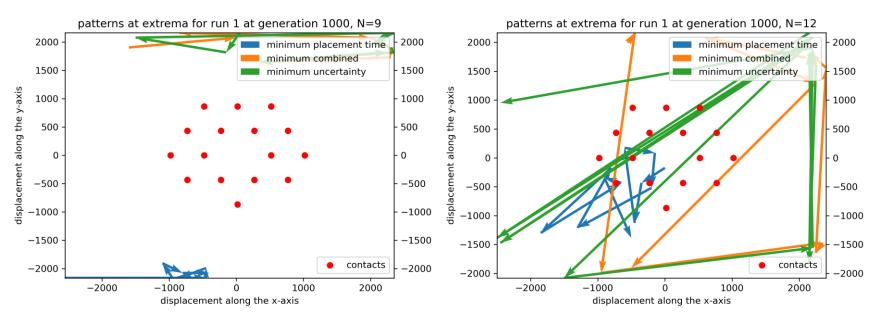
- MORL modelling:
- State space is too large for a tabular approach
- Instead, we use an approximation function that takes an average of the objective values for all assessed patterns whose first n ∈ [k, N - 1] placement locations match that of the candidate pattern
- We use complete rollouts and do not discount returns
- Multiobjective approach means there is a set of nondominated Q-values for available actions in each state, rather than a single best action
- We use a more complex version of the ε-greedy approach to decide actions

- MORL structure:
- Initialization import archive of assessed patterns from the MOEA and recalculate fitness values based on updated information about the position of the contacts
- 2. For each sonobuoy placement, with probability ε choose a next location at random, or else:
 - if any next states exist with zero Q-values:
 - with probability ε , select at random from the zero states;
 - or otherwise with probability $1-\varepsilon$, selects at random from the non-zero states;
 - if no next states exist with zero Q-values:
 - select a next placement location at random from patterns on the PF
- 3. Calculate objective values ,add the new pattern to the archive and go to 2. for required number of episodes

Results – MOEA with uniform environment

Elite patterns for *N*=9

Elite patterns for *N*=12



- For lower values of N, patterns tend to be located at one side of the contacts
- As the number of sonobuoys increases, nondominated solutions with :
 - lower placement times tend to be within or close to the zone containing the contacts
 - lower localization uncertainty increasingly surround the contacts

Results – MOEA+MORL, complex environment

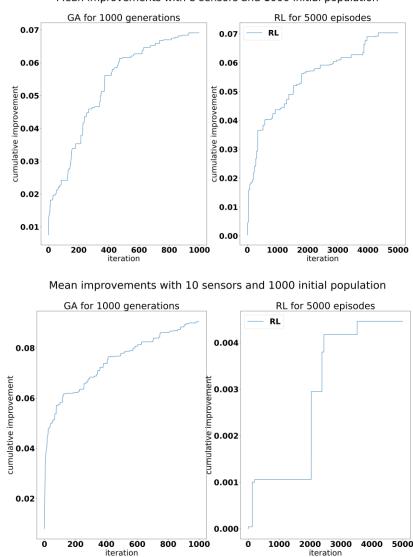
Number of sensors	MOEA mean	MORL mean	MOEA max	MORL max	MOEA %	MORL %
8	3.0%	1.1%	9.4%	11.3%	83.3%	20.0%
9	3.4%	1.3%	9.5%	11.9%	80.0%	30.0%
10	5.1%	0.8%	15.3%	8.8%	90.0%	20.0%
11	5.5%	0.8%	11.5%	6.2%	96.7%	20.0%
12	4.1%	0.3%	7.7%	3.5%	100.0%	16.7%

- Results averaged over 30 runs of 100 MOEA generations + 100 MORL episodes
- Mean figures represent improvement in the modulus of the minimum modulus solution
- Max figures represent the mean maximum improvement
- % figures represent the percentage showing some improvement

Mean improvements with 8 sensors and 1000 initial population

Results – MOEA vs. MORL

- With N=8 sonobuoys, both MOEA and MORL phases show continuous but improvement
- With N=10 sonobuoys, improvement is faster for the MOEA than with 8 sonobuoys, but slower and less continuous for the MORL
- Likely due to higher computational complexity of the MORL – cubic in N vs quadratic for the MOEA



Discussion and conclusions

- MOEA shows good results with the static problem
- MORL has a hard job to do improving on already optimised results from the MOEA and coping with updated information – but shows good results with smaller numbers of sonobuoys
- MOEA scales well with larger numbers of sonobuoys but MORL shows decreased performance
- Approach gives operator a choice as to how to prioritize localization uncertainty vs. total placement time
- Algorithm may also make it possible to use smaller numbers of sonobuoys, lowering costs

Discussion and conclusions

- Computational complexity is higher for the MORL vs the MOEA
- Many more MORL episodes required to gain good
 results for higher numbers of sonobuoys
- More sophisticated approximation function may be required
- More advanced parallelization techniques also a topic for future research

Q&A

• Any questions?

Reference: Taylor CM, Maskell S, Ralph JF. Optimizing sonobuoy placement using multiobjective machine learning. In: SSPD 2022; Forthcoming.

