Outline

Background

- Existing solution and its problem
- **D** Numerical Results

Background

$$\mathbf{R} = \mathbf{E} \begin{bmatrix} \mathbf{r} \mathbf{r}^{\mathrm{H}} \end{bmatrix} = \mathbf{A} \mathbf{R}_{s} \mathbf{A}^{\mathrm{H}} + \sigma_{n}^{2} \mathbf{I}_{M}$$
$$\mathbf{R} = \mathbf{\Phi} \mathbf{A} \mathbf{R}_{s} \mathbf{A}^{\mathrm{H}} \mathbf{\Phi}^{\mathrm{H}} + \sigma_{n}^{2} \mathbf{I}_{M} \xrightarrow{f(.)} \mathbf{\theta}$$

Existing solution

Fig. 1. Structure of proposed DNN for DOA estimation. The network consists of two parts, one is a multitask autoencoder for spatial filtering and the other is a fully connected multilayer NN for spatial spectrum estimation.

Z. -M. Liu, C. Zhang and P. S. Yu, "Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections," in *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 12, pp. 7315-7327, Dec. 2018 <u>Training dataset</u>: $\mathbf{R} = \mathbf{\Phi} \mathbf{A} \mathbf{R}_s \mathbf{A}^{\mathrm{H}} \mathbf{\Phi}^{\mathrm{H}} + \sigma_n^2 \mathbf{I}_M$

□ Fixed phase error

<u>Testing dataset</u>:

✓ Same array phase error as the one used in training dataset

 Performance in testing stage degrades when phase error is different from the one in training stage.

MDNN METHOD: Methodology

$$\mathbf{r}_{ew} = \mathbf{r} \odot \mathbf{r}^{*}$$
$$\mathbf{R}_{ew} = \mathbf{E} \Big[\mathbf{r}_{ew} \mathbf{r}_{ew}^{\mathrm{T}} \Big]$$
$$\mathbf{z} = \Big[\widehat{\mathbf{R}}_{ew} (1, 2), \cdots, \widehat{\mathbf{R}}_{ew} (1, M), \cdots, \widehat{\mathbf{R}}_{ew} (M - 1, M) \Big]$$
$$\mathbf{z}_{0} = \big(\mathbf{z} - mean(\mathbf{z}) \big) / \big\| \mathbf{z} - mean(\mathbf{z}) \big\|_{2}$$

Fig. 1 Scheme of MDNN

MDNN METHOD: DNN structure

Size of each layer of MDNN and original DNN methods

Proposed MDNN	Multitask autoencoder			Each Classifier			
(<i>J</i> = <i>J</i> ₀);	IL	HL	OL	IL	HL1	HL2	OL
Original DNN	J		$P \times J$	J	2J	4J	I_0
(<i>J</i> = <i>J</i> ₁)						[9]	

 J_0 and J_1 are the sizes of the input in the MDNN method and the original DNN method, respectively.

$$J_0 = \frac{M^2 - M}{2}$$
 $J_1 = M^2 - M$

IL, HL, and OL stand for input layer, hidden layer, and output layer, respectively

MDNN METHOD: Training strategy

The training dataset consists of two equal-power source signals.

$$\theta_{1} \in \left[-60^{\circ}, 60^{\circ} - \Delta\right)$$
$$\theta_{2} = \theta_{1} + \Delta$$
$$\Delta \in \left\{3^{\circ}, 6^{\circ}, \dots, 60^{\circ}\right\}$$

$$\Delta = 3^{\circ}$$
 $\theta_1 \in \{-60^{\circ}, -59^{\circ}, \dots, 57^{\circ}\}$ The number of covariance vectors is equal to 117.

 $(117+114+\dots+60) \times 10 \times 4 = 70800$

MDNN METHOD: Training strategy

<u>Training dataset</u>: $\mathbf{R} = \mathbf{\Phi} \mathbf{A} \mathbf{R}_{s} \mathbf{A}^{H} \mathbf{\Phi}^{H} + \sigma_{n}^{2} \mathbf{I}_{M}$

Multiple randomly generated phase errors

<u>Testing dataset :</u>

✓ Array phase error which is different from those in training dataset

 Performance in testing stage is fairly evaluated when phase error is different from those in training stage.

GM-MDL METHOD: Simulation Results

MDNN METHOD: RMSE

RMSE versus array phase errors

MDNN METHOD: RMSE

RMSE versus SNR

MDNN METHOD: RMSE

RMSE versus number of snapshots

MDNN METHOD: Conclusions

- Use the magnitude of array data to construct an input vector, which is independent of phase errors.
- **Obtain the MDNN method for DOA estimation.**
- MDNN is independent of phase errors.
- MDNN is more efficient than existing DNN method.
- MDNN has limit to array geometry and angle estimation ambiguity.