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BAD THINGS HAPPEN TO PEOPLE ON THE OCEAN
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Cargo loss Sinking
Photo by Petty Officer 3rd Class Matthew West (10.28.2018), DVIDS

Grounding
Photo by U.S. Coast Guard District 8, (12.21.2002), DVIDS

Medical Emergencies
Photo by U.S. Coast Guard District 7 PADET Tampa Bay (08.26.2012) 
DVIDS

Losing power/propulsion
James Brickwood/SMH 07.05.2022, 9News 

Fire
Dakota Santiago, 07.09.2023, The New York Times 



PEOPLE DO BAD THINGS ON THE OCEAN
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False route reporting 
(High collision risk)

Trade sanction dodging Illegal fishing Vessel type spoofing
Image © Alex Hofford / Greenpeace.

Smuggling Terrorism



HOW DO WE FIND ANOMALIES? 

• Many data sources, both 
public and proprietary, for 
monitoring vessel tracks.

• Example: All large ships 
are required by 
international law to be 
equipped with automatic 
identification system 
data (AIS)

Henriksen, Amelia. (2023). HawaiiCoast_GT: Curated AIS for Hawaii's coast correlated with ground truth incidents (v1.0) [Data set]. 
Zenodo. https://doi.org/10.5281/zenodo.8253611



HOW DO WE FIND ANOMALIES? 

The Problem:

Maritime vessel data is

• Unlabelled

• Large

• Noisy

• Prone to changes in the 
underlying distribution
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HOW DO WE FIND ANOMALIES? 

The Common Problem:

Maritime vessel data is

• Unlabelled

• Large

• Noisy

• Prone to changes in the 
underlying distribution

Anomaly detection algorithms 
for vessel tracks are largely 
unsupervised (UAD)



HOW DO WE FIND ANOMALIES? 

The Common Problem:

Maritime vessel data is

• Unlabelled

• Large

• Noisy

• Prone to changes in the 
underlying distribution

Expensive (and sometimes 
impossible) for experts* to 
assess all tracks.

* Domain experts OR expensive   
expert algorithms



The Problem:

Maritime vessel data is

• Unlabelled

• Large

• Noisy

• Prone to changes in the 
underlying distribution

HOW DO WE FIND ANOMALIES? 

Basic UAD:
Assume the majority of 
samples are normal and 
identify outliers.



The Problem:

Maritime vessel data is

• Unlabelled

• Large

• Noisy

• Prone to changes in the 
underlying distribution

HOW DO WE FIND ANOMALIES? 

Basic UAD:
Assume the majority of 
samples are normal and 
identify outliers.

If the norm changes, our 
model needs to change with 
it.



HOW DO WE FIND ANOMALIES? 

The Problem:

Maritime vessel data is

• Unlabelled

• Large

• Noisy

• Prone to changes in the 
underlying distribution

This is concept drift.

Today we focus on two 
kinds of drift:

1. Gradual drift
2. Seasonal drift



GRADUAL CONCEPT DRIFT

• One of the most well 
understood forms of 
concept drift

• Describes the slow, 
consistent evolution of data 
over time. 



SEASONAL CONCEPT DRIFT

• Describes patterns that 
appear repeatedly in the 
data in a periodic way

• Vessel movements are 
affected by the earth’s literal 
meteorological seasons. 



ACCOUNTING FOR MULTIPLE TYPES OF CONCEPT DRIFT
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• Almost all modern vessel 
track UAD pipelines don’t 
account for any concept drift.

• In the few cases where it is 
incorporated, only gradual 
drift is addressed. 

• How do we solve this 
problem? 



DBSCAN AND MARITIME ANOMALY DETECTION
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[1] M. Ester, H. P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for 
discovering clusters in large spatial databases with noise.” in kdd, vol. 96, no. 34, 1996, 
pp. 226-231

DBSCAN: Density-based spatial 
clustering of applications with 
noise [1]

• Can automatically identify 
outliers

• Has few hyperparameters

• Does not need a pre-set number 
of clusters (unlike k-means). 

https://github.com/NSHipster/DBSCAN

https://github.com/NSHipster/DBSCAN
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Examples in Maritime Anomaly Detection:DBSCAN: Density-based spatial 
clustering of applications with 
noise [1]

• Can automatically identify 
outliers

• Has few hyperparameters

• Does not need a pre-set number 
of clusters (unlike k-means). 
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[1] M. Ester, H. P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for 
discovering clusters in large spatial databases with noise.” in kdd, vol. 96, no. 34, 1996, 
pp. 226-231

DBSCAN: Density-based spatial 
clustering of applications with 
noise [1]

• Can automatically identify 
outliers

• Has few hyperparameters

• Does not need a pre-set number 
of clusters (unlike k-means). 

1. DBSCAN is still 
fundamentally a static 
method. 

2. We’d like to incorporate 
multiple forms of drift
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This setup starts most UAD 
pipelines on trajectories.

The algorithm must process an 
incoming stream of trajectories (or 
trajectory segments.)



THE DB-DRIFT ALGORITHM

Automatic 
Identification 
System (AIS) 

Data

Raw Data 
Stream

Trajectory 
Processing

Trajectory 
n-features

Step 1. Step 2.

Awesome resource: “A study on the geometric and 
kinematic descriptors of trajectories in the 
classification of ship types.” by Tavakoli, Peña-
Castillo, and Soares. 

This setup starts most UAD 
pipelines on trajectories.

The algorithm must process an 
incoming stream of trajectories (or 
trajectory segments.)



This setup starts most UAD 
pipelines on trajectories.

The algorithm must process an 
incoming stream of trajectories (or 
trajectory segments.)

Sandia National Labs’ 
Tracktable is our 
BEST FRIEND for this stage in 
the pipeline. 

THE DB-DRIFT ALGORITHM

Automatic 
Identification 
System (AIS) 

Data

Raw Data 
Stream

Trajectory 
Processing

Trajectory 
n-features

Step 1. Step 2.

https://tracktable.sandia.gov/

https://tracktable.sandia.gov/
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GRADUAL DRIFT
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We want:
• Model that works quickly on a stream with low overheads

• Model that emphasizes more recent “normal behavior” over past 
behavior. 

Naïve approach: Simple sliding window model



GRADUAL DRIFT
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• Better approach: Damped window 
model.
• Fades (re-weights) old samples as 

new samples arrive

• Controlling the fade factor lets you 
control the rate at which the model 
evolves. 

𝑤𝑡 𝑥 = 2−𝜆 𝑡 −𝑇0 𝑥

𝑤𝑡 𝑥 :Weight at time 𝑡 for sample 𝑥
𝜆: Fade factor

𝑇0 𝑥 : Arrival time for sample 𝑥



GRADUAL DRIFT
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We choose DenStream [1] as our 
core model:

1. Uses the damped window 
model

2. It can easily identify outliers in 
real time

3. It has low memory requirements

4. It requires very short burn in 
period (typically only a few days 
worth of data)

[1] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based 
clustering over an evolving data stream with noise,” in 
Proceedings of the 2006 SIAM international conference on 
data mining. SIAM, 2006, pp. 328–339



HOW DENSTREAM WORKS
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p-microclusters 
(aka “normal” 
points) 



HOW DENSTREAM WORKS
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o-microclusters 
(aka “outlier” 
points) 



HOW DENSTREAM WORKS
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If enough points are 
added to an 
o-microcluster, it’s 
weight passes a 
threshold

The o-microcluster 
then becomes a 
p-microcluster.



HOW DENSTREAM WORKS
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If new points aren’t 
added to a 
p-microcluster, the 
weight decreases.

If the weight 
decreases enough, 
the p-microcluster is 
pruned 



HOW DENSTREAM WORKS
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Similarly, if no points 
have been added to 
an o-microcluster, 
the weight goes 
below a threshold 
𝜉and it is pruned.



HOW DENSTREAM WORKS
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If an incoming 
point is an outlier, 
output the distance 
to the nearest p-
microcluster as the 
outlier score. 

෠𝑂(𝑥)
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THE DB-DRIFT ALGORITHM

Gradual Drift 
Model 

Outlier 
ID/Score

Seasonal 
Drift Model 

Combined 
Score

Threshold

Step 3. Step 4.

Handling seasonal drift for 
density-based clustering is 
an open field of 
research—nearly no 
prior work.



SEASONAL MODEL
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• General idea: assign a 
separate model for each 
season [1, 2].

Jan 
2017

Jan 
2018

Jan 
2019

Jan 
2020

January 
Model

Pause PausePause

Feb 
2017

Feb 
2018

Feb 
2019

Feb 
2020

February 
Model

Pause PausePause

Dec 
2017

Dec 
2018

Dec 
2019

Dec 
2020

December 
Model

Pause PausePause

[1] Hyde, R., Angelov, P., & MacKenzie, A. R. (2017). 
Fully online clustering of evolving data streams into 
arbitrarily shaped clusters. Information Sciences, 382, 
96-114.
[2] Katakis, I., Tsoumakas, G., & Vlahavas, I. (2008). An 
ensemble of classifiers for coping with recurring 
contexts in data streams. In ECAI 2008 (pp. 763-764). 
IOS Press.
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Gradual Drift 
Model 

Outlier 
ID/Score

Seasonal 
Drift Model 

Combined 
Score

Threshold

Step 3. Step 4.
• General idea: assign a 

separate model for each 
season [1, 2].

• For known periodic 
seasons, there can be 
seasonal anomaly detectors 
at multiple scales (months, 
quarters, weeks, etc). 
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Gradual Drift 
Model 

Outlier 
ID/Score

Monthly 
Drift Model

Combined 
Score

Threshold

Step 3. Step 4.

Quarterly 
Drift Model

Weekly Drift 
Model

Night/Day 
Drift Model

• General idea: assign a 
separate model for each 
season [1, 2].

• For known periodic 
seasons, there can be 
seasonal anomaly detectors 
at multiple scales (months, 
quarters, weeks, etc). 
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Gradual Drift 
Model 

Outlier 
ID/Score

Monthly 
Drift Model

Combined 
Score

Threshold

Step 3. Step 4.

For our preliminary 
experiments, we have 
focused on the 
monthly model.
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Gradual Drift 
Model 

Outlier 
ID/Score

Monthly 
Drift Model

Combined 
Score

Threshold

Step 3. Step 4.

IMPORTANT NOTE:
Seasonal drift is a subset of recurrent drift.

Expanding this algorithm to find seasons (in 
addition to defining known seasons) is a very 
challenging ongoing effort. 

For our preliminary 
experiments, we have 
focused on the 
monthly model.
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Combined 
Score

Threshold

Step 4.

How do we define the 
combined outlier score?

How do we choose (and 
update) the appropriate 
threshold for a point to be 
considered an outlier? 
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For sample 𝑥 at time 𝑡 = 𝑇(𝑥):
෠𝑂 𝑥 = 𝑤𝑔 min

𝑔𝑡,𝑖∈𝐺𝑡
𝑥 − 𝑐(𝑔𝑡,𝑖) + 𝑤𝑠 min

𝑠𝑡,𝑖∈𝑆𝑡
𝑥 − 𝑐(𝑠𝑡,𝑖) ≥ 𝜃𝑖,𝑗

𝐺𝑡: The set of p-micro-clusters 𝑔𝑡,𝑖 for the gradual model at time 𝑡

𝑆𝑡: The set of p-micro-clusters 𝑠𝑡,𝑖 for the seasonal model at time 𝑡

𝑐(⋅): The center of a given microcluster (the fade- weighted sum of the points)

𝑤𝑔, 𝑤𝑠: The outlier-score weights for the gradual and seasonal models. 

We set 𝑤𝑠 =
2

3
, 𝑤𝑔 =

1

3
to emphasize the importance of seasonal anomalies. 

𝜃𝑖,𝑗: For time 𝑇 𝑥 after some sample time period [𝑡𝑖 , 𝑡𝑗], the minimum threshold for a 

sample to be considered an outlier based on the desired anomalous subset 
size. 
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≥ 𝜃𝑖,𝑗

𝜃𝑖,𝑗: For time 𝑇 𝑥 after some sample time period [𝑡𝑖 , 𝑡𝑗], the minimum threshold for a 

sample to be considered an outlier based on the desired anomalous subset 
size. 



WHAT IS THE POINT OF UAD AT SEA? 
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The whole point of anomaly detection 
on maritime surveillance to:

1. Process data too big for experts 
to process

2. Find potential anomalies outside 
expert detection. 



WHAT IS THE POINT OF UAD AT SEA? 
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Expert

We want to output a tractable subset of 
points that contain the trajectories of 
interest—not a final anomaly decision. 

Could be a human 
expert, or an 
expensive expert 
algorithm. 
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≥ 𝜃𝑖,𝑗

𝜃𝑖,𝑗: For time 𝑇 𝑥 after some sample time period [𝑡𝑖 , 𝑡𝑗], the minimum threshold for a 

sample to be considered an outlier based on the desired anomalous subset 
size. 
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Q ෠𝑂 > 0
𝑇 𝑥 ∈ 𝑡𝑖,𝑡𝑗

, 1 − 𝑞𝑖,𝑗 𝑞𝑖,𝑗 < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝜃𝑖,𝑗 = 

𝑞𝑖,𝑗 =
𝑛𝑡𝑖,𝑡𝑗𝑟

ො𝑛𝑡𝑖,𝑡𝑗

𝑟: The desired percentage of the dataset to return as an anomalous subset.

[𝑡𝑖 , 𝑡𝑗]: A sample time period used to determine 𝜃 for incoming points.

𝑄(𝑋, 𝑞): The 𝑞’th sample quantile for a set of scalar values 𝑋.

𝑛𝑡𝑖,𝑡𝑗: The number of samples that arrived during period [𝑡𝑖 , 𝑡𝑗].

ො𝑛𝑡𝑖,𝑡𝑗: The number of samples 𝑥 with outlier score ෠𝑂 𝑥 > 0.



EXAMPLE: THE 
HAWAIICOAST_GT
DATASET



THE HAWAIICOAST_GT DATASET

• Fully open and FAIR dataset 
available at 
https://zenodo.org/record/8253
611 [1].

• Curated AIS data from 
MarineCadastre.gov [2]-[5].

• Includes 208 labelled tracks 
corresponding to 154 real-world 
incidents. 

47

[1] Henriksen, Amelia. (2023). HawaiiCoast_GT: Curated AIS for Hawaii's coast correlated with ground truth  incidents (v1.0) [Data 
set]. Zenodo. https://doi.org/10.5281/zenodo.8253611
[2] Bureau of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA). 
MarineCadastre.gov. AIS Data for 2017. Retrieved 7/25/2022 from marinecadastre.gov/data 
[3] Bureau of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA). 
MarineCadastre.gov. AIS Data for 2018. Retrieved 7/25/2022 from marinecadastre.gov/data 
[4] Bureau of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA). 
MarineCadastre.gov. AIS Data for 2019. Retrieved 7/26/2022 from marinecadastre.gov/data 
[5] Bureau of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA). 
MarineCadastre.gov. AIS Data for 2020. Retrieved 7/27/2022 from marinecadastre.gov/data 

https://zenodo.org/record/8253611
https://zenodo.org/record/8253611


PRELIMINARY RESULTS

• Our goal was to improve 
performance for UAD pipelines 
with DBSCAN

• We compare it to sliding window 
DBSCAN over a range of window 
sizes (reporting best results over a 
range of hyperparameters). 

Method Real incidents 
captured

Intersection 
with DB-Drift

DB-Drift 22

DBSCAN 2w 14 13

DBSCAN 3w 17 15

DBSCAN 4w 17 14

DBSCAN 8w 18 14

Test: anomalous fishing vessel trajectories from HawaiiCoast_GT. 
Total real world incidents: 74 (varied anomaly types)



PRELIMINARY RESULTS

DB-Drift DBSCAN

2w

DBSCAN

3w

DBSCAN

4w

DBSCAN

8w

DBSCAN vs DB-Drift Detection

Total real incidents captured

Intersection with DB-Drift

DB-Drift captures 
more real incidents 
than DBSCAN



PRELIMINARY RESULTS

DB-Drift DBSCAN

2w

DBSCAN

3w

DBSCAN

4w

DBSCAN

8w

DBSCAN vs DB-Drift Detection

Total real incidents captured

Intersection with DB-Drift

DB-Drift captures 
most of the incidents 
captured by DBSCAN



PRELIMINARY RESULTS
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Total real incidents captured

Intersection with DB-Drift

More advantages:
• DB-Drift requires a burn in of 

only a few days, DBSCAN 
requires at least 1 window 
period.

• Significantly lower memory 
requirements 



NEXT STEPS:

Experiments:

• Trajectory feature optimization 
to improve overall 
performance.

• Additional tests for each vessel 
class and specific anomaly 
types.

• Curating further datasets using 
our ground truth technique for 
additional benchmarking.

Algorithm:

• Season discovery vs known 
seasons.

• Adding abrupt drift 
detection to reweight 
historical information. 
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