
We proposed an algorithm for controlling multiple

Unmanned Aerial Vehicles (UAVs) to track multiple

targets in challenging 3-D environments in the

presence of obstacles and occlusions.

A Q-Learning (QL) algorithm is used to improve the

intelligence of UAVs on how to navigate

autonomously and avoid obstacle collisions. The

proposed QL-based controller selects the optimal

joint control actions to achieve high tracking

performance and obstacle avoidance.

The proposed method:

1. maximizes a novel reward efficiency function

with joint consideration for computation time

and energy consumption and obstacle

avoidance.

2. learns the environment and its dynamics.

Our simulation results show that the proposed QL-

based UAV controller provides a highly accurate

target-tracking solution with low energy and delay

costs.

UAVs have become a promising technological

platform offering high mobility, flexible

deployment, and low cost [1]. UAVs have a

higher chance of Line-of-Sight (LoS) links to

ground users, compared to ground Base

Stations (BSs). UAVs are able to provide fast,

reliable, and cost-effective network access to

regions poorly covered by terrestrial networks

[2].

The Edge Computing (EC) technique can

emerge as a promising solution to address the

challenges imposed on UAVs [3]. The UAV-

enabled EC is envisioned and developed as a

viable option to improve the target tracking

process.

We presented a new approach to RSSI-based

multi-target tracking. We focused on a tracking

environment where sensor nodes and UAVs

are equipped with mobile RSSI sensors. We

used RSSI because it has low cost, lower

power consumption, intrinsic simplicity in

hardware, and simpler receivers; furthermore,

there is no need to have highly calibrated

timing and synchronization between nodes.

We developed an algorithm based on Q-

Learning (QL) to decide the control actions of

UAVs in order to achieve accurate target

tracking.

• In this study, a Q-learning algorithm has

been developed to track the target. The

reward function developed in this algorithm

is based on accuracy, energy consumption,

and delay.

• The power of the received signals from the

target has been used as input for the

multilateration algorithm for estimating the

position of the target.

• Our simulation results indicated that our

algorithm for tracking multi-targets is

effective and accurate.

• In the future, we will focus on the multi-

agent Q-learning algorithm. We also intend

to employ ToA and AoA instead of RSSI and

compare these techniques in different

environments and conditions.
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Figure 5. Target tracking based on the non-

clustered strategy.
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Figure 8. Comparison 3 scenarios in terms of total 

energy consumed by UAVs during the target 

tracking 

Figure 1.  Network model.

• We propose a QL-based
algorithm to control multiple
UAVs in such a way that
multiple targets are being
optimally tracked in
challenging 3-D environments
in the presence of both LoS
and NLoS conditions.

• We design a novel reward
function to maximize reward
efficiency function with joint
consideration for computation
time and energy consumption
and obstacle avoidance.

• We verify the proposed
approach through extensive
simulation experiments and
compare it with existing
solutions.

The following
are the key

contributions
of this study

We evaluated our algorithm in terms of the

task failure rate and searching time. The

objective of numerical analysis is to investigate

whether the proposed algorithm results in less

task failure rate and less searching time

compared to other state-of-the-art solutions.

We used MATLAB as the simulation platform

for our algorithm evaluation. We created an

environment with obstacles by creating a

matrix that represents the environment and

some cylinders and cones to represent the

obstacles. In this environment, there are 2

targets and 5 UAVs for tracking targets.

We defined three scenarios to evaluate and

analyze our model:

1. Scenario 1: Grouping three UAVs into a

cluster and electing a UAV as a cluster

head (CH)

2. Scenario 2: Grouping two UAVs into a

cluster and electing a UAV as a cluster

head (CH)

3. Scenario 3: non- clustered UAVs

We considered a swarm of UAVs. Once the position

of the detected target is estimated, the Edge Node

(EN) selects a swarm of nearby UAVs for tracking

the target.

These UAVs make a cluster that consists of a

Cluster Head (CH) and other UAVs that directly and

wirelessly are connected to CH.

Since each UAV is limited by its battery capacity,

EN selects a UAV with the highest battery as CH.

Since the Q-learning algorithm utilized in UAVs is a

state-action algorithm, we considered some

allowable control actions for UAVs that can be taken

by them at each state. In this work, the number of

actions is equal to 8.

Each UAV by performing the Q-learning algorithm

and reward function included in the algorithm

selects the best state among the 8 existing states

and flies toward this state.

Figure 6. Tracking 2 targets by multi-UAVs ( 3 

UAVs for target #1 and 2 UAVs for target #2).

Figure 2. Process of our algorithm and data 

communication between UAVs and their cluster 

head. 

Figure 3. Process of UAV battery power 

monitoring. 

Figure 1. Allowable control actions, where the 

number of actions = 8.
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Figure 4. Target tracking based on clustering 

strategy.

Figure 7. Comparison between 3 scenarios in 

terms of RMSE.
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