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Overview

• In previous work we looked at the problem of optimally placing a 

field of passive sonobuoys in a complex undersea environment 

to track an uncooperative and possibly stealthy target

• We now consider a joint problem for active sonar:

– optimally place a field of sonobuoy receivers AND 

– optimally select waveform pulse train, in real time

• We wanted to establish benchmarks using fixed, predetermined 

placement patterns and pulse trains

• Then use deep reinforcement learning (DRL) to train a model 

that could respond to updated information as sonobuoys are 

placed and measurements are taken, and compare

• A particular algorithmic issue is that the sensor placement and 

waveform selection decisions have different timescales



Recap of the sonobuoy placement problem

• Sonobuoys are portable, 

expendable sonar systems

• Sonobuoys consist of a 

flotation device and an array of 

hydrophones that unfurls on 

deployment

• Sonobuoys are placed 

sequentially by an agent such 

as a helicopter, aircraft or 

UAV, typically directed by a 

surface vessel

• Sonobuoys may be active or 

passive, with monostatic, 

bistatic or multistatic operation
https://www.militaryaerospace.com/sensors/article/14

198901/antisubmarine-warfare-asw-sonobuoys-

multistatic



Waveform selection

• As with radar, active sonar systems can transmit different types 

of waveforms with various characteristics

• Much of the literature concentrates on a few simple waveforms, 

in particular continuous wave (CW) and linear frequency 

modulated (LFM)

• CW transmits with high power and has better range-rate 

(Doppler) performance

• LFM offers superior range performance compared to CW

• It is possible to combine waveforms sequentially in a pulse train

• For example, a pulse train [LFM,LFM,CW,LFM,LFM,CW] has 

length 6 and a proportion 𝜇𝑝𝑡 =  0.66 of LFM pulses



Modelling the joint optimization problem

• The mission goal is to maximize the amount of time during 

which position estimates have errors below a certain threshold 

value 

• Errors are defined as the difference between mean position 

estimates for a single target of interest (TOI) and ground truth

• Constraints on the optimization problem:

– Placing agent (e.g., a helicopter or UAV) has a limited 

payload of sonobuoys

– Mission ends when the TOI leaves a predefined area of 

interest (AOI)

• It may not be possible to place all sonobuoys before the target 

leaves the AOI



Modelling the joint optimization problem

• The simulated environment has several stochastic, randomly 

generated  elements that are not known by the algorithm:

– The undersea environment has spatially varying noise/clutter

– Initial position, course and speed of the target of interest (TOI)

• Simplifying assumptions:

– After placement, sonobuoys do not drift, and positions are known 

with certainty

– There is a single TOI which is detected by all sonobuoys

– No false alarms or sensor failure

• We use an unscented Kalman filter (UKF)-based tracker for 

sensor fusion and localization

• Sensors that are a large distance from the TOI will yield little or 

no useful information



Creating benchmarks
• We wanted to create benchmarks for comparison with our 

machine learning approach

• We investigated a scenario where:

– a placing agent follows a fixed flight plan, dropping sonobuoys in a 

predetermined pattern

– A fixed platform transmits a repeating, predetermined sonar pulse 

train consisting of a sequence of CW and LFM waveforms

• The difference between LFM and CW is modelled by 

appropriately parameterizing the respective UKF models

• We simulated all combinations of:

– the 55 possible waveform combinations in a pulse train of length 6

– 30 different randomly pre-generated noise/clutter maps

– patterns of between 8 to 20 sonobuoys, arranged as staggered 

lattices



Sonobuoy placement 

patterns

• Fidelity of the track 

varies considerably 

depending on the 

combination of pulse 

train and sonobuoy 

placement pattern, as 

well as the chosen 

noise/clutter map

• In some simulations, 

the tracking is even 

poorer than the one 

shown here! • Each numbered x represents an ordered 

sonobuoy placement position 

• Active sonar transmitter is located at the left-

hand edge of the AOI



Benchmark results

• Pulse trains with higher 

proportions of LFM do better 

in combination with 

placement patterns with 

larger numbers of sonobuoys

• For smaller numbers, a lower 

proportion of LFM (and 

higher proportion of CW) 

performs better

• The “sweet spot” in these 

simulations is 14-15 

sonobuoys with  around 60-

80% LFM

• Increased deployment time 

means more sensors is not 

always better

Mean % time-on-track is the average 

proportion of time localization error falls 

below a required threshold



The custom environment simulation
• Created a custom simulation environment using the OpenAI 

Gym standard – widely used by the RL community

• Effectively creates a customized “function” that:

–  takes an action (such as placing a sonobuoy or transmitting 

a sonar waveform) as its argument 

– returns observations (such as sonar measurements) and a 

reward for the action

• An RL algorithm can use observations and rewards in training to 

learn an approximately optimal policy

• The trained model will take the optimal action for any state of 

nature

• In DRL algorithms such as Proximal Policy Optimization (PPO):

–  inputs to the (policy) neural network are observations

– outputs form a probability distribution over possible actions



Observation space

• With a maximum payload of N sonobuoys, the observation 

space consists of the following:

• x-position of each sensor (size:N)

•  y-position of each sensor (size:N)

•  bearing prediction from each sensor (size:N)

•  range from each sensor (size:N)

•  range-rate from each sensor (size:N)

• predicted state vector for the target from the tracker

• (size:4)

•  position covariance from the tracker (size:4)

•  prediction variance from the tracker (size:2)

•  steps remaining to time limit (size:1)



Action space and action masking

• Use a discretized grid with 5000 possible placement locations

• At each timestep once the first sonobuoy is placed and 

operational, can choose to transmit a CW or LFM waveform

• Only at timesteps where the placing agent (e.g. a UAV) has no 

course currently plotted and sonobuoys remain to be placed, a 

new sonobuoy placement location is chosen, and a course 

plotted

• Also take into consideration constraints on how close to each 

other sonobuoys can be placed

• Since not all actions are necessarily available at a given 

timestep, we use action masking to cope with this

• Unavailable actions are “masked” from the output of the neural 

network



Experiments with deep reinforcement 

learning 

• We trained using the PPO algorithm, adapted for action masking

• Initial payload of 14 sonobuoys

• New random noise/clutter map generated each time the 

environment resets during training

• Since the algorithm has no access to ground truth, we cannot 

train directly using time-on-track

• Use a proxy reward function, where the reward is received at 

each timestep only if the localization uncertainty calculated by 

the tracker falls below a predetermined threshold

• Although we trained for as much as 20 million timesteps, we 

found the best results were from the model trained for 8 million 

timesteps

• Likely that the model overfits beyond a certain point in training



Results

• We compared our 

model to the 

benchmark using 100 

randomly generated 

environments

• We looked at 

performance using 

different error 

thresholds up to 1km 

in 100m increments

• The best DRL model 

outperformed the best 

benchmark at all 

thresholds

The algorithm is considered “on track” if the 

predicted position is within a given distance 

threshold



Discussion & conclusions

• Investigations of fixed patterns reveal that:

– Patterns with different numbers of sonobuoys benefit from being 

combined with pulse trains with different mixes of CW and LFM

– More is not always better – increased deployment time for patterns 

with larger numbers of sonobuoys leads to diminishing returns last 

a certain number

• Using a placing agent with the ability to react to updated 

information and make both placement decisions and waveform 

choices accordingly can produce improved performance over 

fixed placement patterns and sonar pulse trains

• Further improvements might be made by changing the 

observation space or improving/changing the DRL algorithm



Q&A

• Any questions?
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