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SSPD Conference 2020 - Welcome 
Dear Colleagues, 

We warmly welcome you to this year’s SSPD Conference, our first virtual conference. This event is the 9th 
conference of the Sensor Signal Processing for Defence series and provides a chance to present, listen to and 
discuss the latest scientific findings in signal processing for defence.  

We are privileged to have our two keynote speakers, Professor Vivek Goyal from Boston University and Dr. 
Daniel Sternlicht from the U.S Naval Surface Warfare Center, Panama City. The SSPD 2020 conference also 
welcomes our invited speakers; Professor Paul White from the University of Southampton; Professor Athina 
Petropulu from Rutgers University; Professor Sean Gong from Queen Mary University of London; and 
Dr. Paul Thomas from Dstl. 

A welcome also extends to our military and industrial speakers and the presenters of scientific papers presenting 
their novel research through live oral presentations and pre-recorded sessions. We look forward to some 
interesting debate and discussion throughout the conference. 

We would like to take this opportunity to thank the speakers, reviewers, session chairs and the technical 
committee for their contribution to this event. 

We hope you enjoy our conference. 

Mike Davies 

Chair, SSPD 2020 

Technical sponsorship  is provided by  IEEE Signal Processing Society and the  IEEE Aerospace and Electronic 
Systems Society. Proceedings will be submitted to the Xplore Digital Library. The conference is organised by 
the University Defence Research Collaboration (UDRC) in Signal Processing, sponsored by the Defence Science 
and Technology Laboratory (Dstl) and the Engineering and Physical Sciences Research Council (EPSRC).  
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Programme - SSPD2020 
Tuesday 15th September 2020 
Session 1 ‐ Tracking, Detection and Localisation ‐ Chair Mike Davies, University of Edinburgh 

9:30 Introduction and Welcome to day 1 – Mike Davies 

9:40 – 10:10 Invited Speaker: Soup in the Souk: A 'Bazaar' Approach to Defence Signal Processing, 
Paul Thomas, Dstl 

10:10 – 10:35 Subspace Perturbation Bounds with an Application to Angle of Arrival Estimation using 
the MUSIC Algorithm, Connor Delaosa1, Jennifer Pestana1, Stephan Weiss1, Ian K. Proudler1, 
1University of Strathclyde 

10:35 – 11:00 A Gaussian Process based Method for Multiple Model Tracking, Mengwei Sun1, Mike 
E. Davies1, Ian Proudler2, James R. Hopgood1, 1University of Edinburgh, 2University of Strathclyde

11:00 – 11:25 Narrowband Angle of Arrival Estimation Exploiting Graph Topology and Graph Signals, 
Ian K. Proudler1, Vladimir Stankovic1, and Stephan Weiss1, 1University of Strathclyde 

Close 11:25 

Session 2 – Radar and Defence Panel‐ Chair ‐ Stephen Ablett, Dstl 

13:00 Introduction and Welcome to Session 2 – Chair Stephen Ablett 

13:00 – 14:00 Defence Panel Discussion: Machine learning methods for defence and security face 
fundamental challenges which will inhibit their uptake, Chair Jordi Barr, Dstl

14:00 – 14:30 Invited Speaker, Dual Function Radar-Communication Systems, Athina Petropulu, 
Rutgers University 

14:30 – 14:55 Information‐Theoretic Compressive Measurement Design for Micro‐Doppler 
Signatures, Fraser K. Coutts1, John Thompson1, Bernard Mulgrew1, 1University of Edinburgh 

14:55 – 15:20 Identification of Radar Emitter Type with Recurrent Neural Networks, Sabine Apfeld1, 
Alexander Charlish1, Gerd Ascheid2  1Fraunhofer, 2RWTH Aachen University  

15:20 Close 

Session 3 Imaging ‐ Chair ‐ Stephen McLaughlin, Heriot‐Watt University 

16:00 Introduction and Welcome to Session 3 – Stephen McLaughlin 

16:00 – 17:00 Academic Keynote Speaker, One Click At A Time: Photon‐ And Electron‐Level 
Modeling For Improved Imaging, Vivek Goyal, University of Boston 
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17:00 – 17:25 Fast Surface Detection Using Single‐Photon Detection Events, Abderrahim Halimi1, 
Andrew Wallace1, Gerald S. Buller1, Stephen McLaughlin1, Heriot‐Watt University 

17:25 – 17:50 Robust depth imaging in adverse scenarios using single‐photon Lidar and beta‐
divergences, Quentin Legros1, Stephen McLaughlin1, Yoann Altmann1, Sylvain Meignen2, Mike E. 
Davies3, 1Heriot‐Watt University, 2University Grenoble Alpes, 3University of Edinburgh 

17:50 Close 

Wednesday 16th September 2020 
Session 4 Machine Learning – Chair – Neil Robertson, Queen’s University Belfast 

9:30 Introduction and Welcome to day 2 – Neil Robertson 

9:40 – 10:00 Invited Speaker: Search & Learn: From User Guided Search to Federated Zero-Shot 
Learning, Sean Gong, Queen Mary University of London 

10:10 – 10:35 Optimising Network Architectures for Provable Adversarial Robustness, Henry Gouk1, 
Timothy M. Hospedales1, 1University of Edinburgh 

10:35 – 11:00 Tail of Distribution GAN (TailGAN): Generative‐Adversarial‐Network‐Based Boundary 
Formation, Nikolaos Dionelis1, Mehrdad Yaghoobi1, Sotirios A. Tsaftaris1, 1University of Edinburgh 

11:00 ‐11:25 Electrical device classification using deep learning, Richard O Lane1, Steven P Lindsay1,  
1QinetiQ 

Close 11:25 

Session 5 – Mix of Signal Processing – James Hopgood, University of Edinburgh 

13:00 Introduction and Welcome to Session 5 – James Hopgood 

13:00 – 14:00 Spotlight presentations 

14:00 – 14:30 Spotlight Questions and Answers. 

Multimodal Learning for Early Detection of Explosive Sounds using Relative Spectral Distribution, 
Vishwajeet Shukla1, Mayank Singour1, 1Samsung Research Institute 

Detection and Identification of Radar Waveforms in Electronic Warfare context, Antoine Foucault1, 
Cedric Cornu1, Ali Khenchaf2, Fabrice Comblet2, 1Thales Defense Mission Systems, 2Lab STICC, ENSTA 
Bretagne, CNRS. 

Robust Source Number Estimation Based on Denoising Preprocessing, Koichi Ichige1, Shohei 
Hamada1, 1Yokohama National University, Katsuhisa Kashiwagi2, Nobuya Arakawa2, Ryo Saito2, 
2Murata Manufacturing Co., Ltd.  

Learning Entropy of Adaptive Filters via Clustering Techniques, Ivo Bukovsky1, Gejza Dohnal1, Pavel 
Steinbauer1, Ondrej Budik1, Kei Ichiji2, Homma Noriyasu2,1Czech Technical University in Prague 
2Tohoku University. 

Classifying LPI signals with transfer learning on CNN architectures, Bunlong Lay1, Alexander Charlish1, 
1Fraunhofer FKIE. 
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14:30 – 14:55 Approximate LASSO Model Predictive Control for Resource Constrained Systems, Yun 
Wu1, Joao F. C. Mota1, Andrew M. Wallace1, 1Heriot‐Watt University 

14:55 – 15:20 Extraction of Analytic Eigenvectors From a Parahermitian Matrix, Stephan Weiss1, Ian 
K. Proudler1, Fraser K. Coutts2, and Julian Deeks3, 1University of Strathclyde, 2University of Edinburgh,
3Dstl

15:20 Close 

 Session 6 Underwater Signal Processing ‐ Chair Gary Heald, Dstl 

16:00 Introduction and Welcome to Session 6 – Gary Heald 

16:00 – 17:00 Defence Keynote Speaker, Sensing and Automation in the Future Maritime 

Environment, Daniel D. Sternlicht,  

17:00 
–
 17:30 Invited Speaker, A Whistle Stop Tour of Processing for Delphinid Vocalisations, Paul 

White, University of Southampton 

17:30 – 17:40 Closing remarks 

vi
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Keynote Speakers 

Dr. Vivek Goyal 

Vivek Goyal received the M.S. and Ph.D. 
degrees in electrical engineering from the 
University of California, Berkeley, where he 
received the Eliahu Jury Award for outstanding 
achievement in systems, communications, 
control, or signal processing. He was a 
Member of Technical Staff at Bell 
Laboratories, a Senior Research Engineer for 
Digital Fountain, and the Esther and Harold E. 
Edgerton Associate Professor of Electrical 
Engineering at MIT. He was an adviser to 3dim 
Tech, winner of the 2013 MIT $100K 
Entrepreneurship Competition Launch Contest 
Grand Prize, and consequently with Nest Labs 
2014‐2016. He is now an Associate Professor 
of Electrical and Computer Engineering at 
Boston University.  

Dr. Goyal is a Fellow of the IEEE and of the OSA. He was awarded the IEEE Signal Processing Society 
(SPS) Magazine Award in 2002, the IEEE Int. Conf. on Image Processing Best Paper Award in 2014, 
the IEEE SPS Best Paper Award in 2017 and 2019, and an NSF CAREER Award. Work he supervised 
won awards at the IEEE Data Compression Conf. in 2006 and 2011, the IEEE Sensor Array and 
Multichannel Signal Processing Workshop in 2012, the IEEE Int. Conf. on Imaging Processing in 2018, 
and the IEEE Int. Conf. Computational Photography in 2018, as well as five MIT thesis awards. He is a 
co‐author of Foundations of Signal Processing (Cambridge University Press, 2014). 

ABSTRACT: ONE CLICK AT A TIME: PHOTON‐ AND ELECTRON‐LEVEL MODELING FOR IMPROVED 
IMAGING 

Using detectors with single‐photon sensitivity enables lidar systems to form depth and reflectivity 
images at very long ranges, which has improved surveillance and reconnaissance capabilities. 
Initially, our interest was in exploiting inhomogeneous Poisson processes models and the typical 
structure of natural scenes to achieve extremely high photon efficiency through first‐photon imaging 
and related methods. However, modeling at the level of individual photons does not merely give 
advantages when signals are weak. It is also central to withstanding high levels of ambient light and 
mitigating the effects of detector dead time, which ordinarily create high bias in high‐flux imaging. 
Our sensor signal processing advances thus potentially improve lidar performance in settings with 
very high dynamic range of optical flux, such as autonomomous navigation. Furthermore, modeling 
at the level of individual incident particles and emitted secondary electrons leads to improvements 
in focused ion beam microscopy that apply uniformly over all dose levels. 

Key related paper identifiers: 10.1126/science.1246775 10.1109/TSP.2015.2453093 
10.1038/ncomms12046 10.1109/TSP.2017.2706028 10.1126/science.aat2298 
10.1109/TSP.2019.2914891 10.1016/j.ultramic.2020.112948 
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Dr. Daniel D. Sternlicht 

Dr. Daniel D. Sternlicht is the Distinguished Scientist for 

Littoral Sensing Technologies at the U.S. Naval Surface 

Warfare Center Panama City Division (NSWC PCD), where 

he serves as technical expert in sensing technologies 

relevant to the full spectrum of littoral warfare systems; 

provides subject matter expertise across the Naval Research 

and Development Establishment; and leads new 

developments in maritime reconnaissance and surveillance 

for Navy and Marine Corps missions. During a career that 

includes scientific research and program and line 

management, Dr. Sternlicht’s pioneering work in through‐

the‐sensor environmental characterization, multi‐sensor 

fusion, automated change detection, and advanced 

techniques for localization and classification of underwater 

munitions, combined with his leadership in developing and transitioning state‐of‐the art sensing 

systems into the Fleet and scholarship in the historical development of U.S. Navy sensors, has led to 

international recognition as an authority in maritime reconnaissance and surveillance technologies.  

Dr. Sternlicht received the B.A. degree in Biology from the University of Pennsylvania, Philadelphia, 

the M.S. degree in Electrical Engineering from the University of Hawaii, Manoa, and the Ph.D. degree 

in Electrical Engineering and Applied Ocean Science from the University of California, San Diego and 

Scripps Institution of Oceanography.  He lectures regularly at civilian and military colleges and 

universities, has chaired numerous technical conference sessions, was guest editor for the IEEE 

Journal of Oceanic Engineering 2009 Special Issue on Synthetic Aperture Sonar, and is Executive Co‐

Chair for the upcoming 2022 MTS/IEEE OCEANS technology conference. In 2013 Dr. Sternlicht 

received the Department of the Navy Meritorious Civilian Service Award, and in 2018 he was 

promoted to the position of Senior Scientist & Technology Manager (SSTM). 

Abstract: SENSING AND AUTOMATION IN THE FUTURE MARITIME ENVIRONMENT 

In this emerging era of great power competition, the goal of outpacing potential adversaries in the 

development of military technology takes on a new urgency. Evolving capabilities in sensing and 

automation are driven by a trade space that includes range and lethality versus close engagement 

and survivability; finders versus hiders; connection/aggregation/centralization versus 

disconnection/disaggregation/decentralization; and planning and judgement versus reaction and 

autonomy. Cooperative networks of offboard systems will be essential to future maritime operations 

– where the balance between maintaining control with full communications and accepting the risk of

acting without (or with limited) communications will continue to evolve with technology. This paper

discusses developments in advanced sensors and automation that will be key to realizing a

networked force of manned and offboard systems with the ability to sense, comprehend,

communicate, predict, plan and take appropriate action in the future maritime environment.

viii



Invited Speakers 

Professor Paul White 

Paul White is Professor of Statistical Signal Processing within 

Engineering and Physical Sciences at the University of 

Southampton.  

"Sound plays a vital role in the lives of marine mammals; 

understanding how they use acoustics provides inspiration for 

man‐made systems, whilst monitoring the impact of man‐made 

noise is important for their conservation." 

Paul is Professor of Statistical Signal Processing in the Institute of 

Sound and Vibration Research (ISVR).  

Having obtained a BSc in Mathematics in 1985, Paul moved along 

the south coast to Southampton to undertake his PhD at the 

University of Southampton, becoming a lecturer in ISVR in 1988 and was awarded his Chair in 2004. 

ABSTRACT: A WHISTLE STOP TOUR OF PROCESSING FOR DELPHINID VOCALISATIONS 

Passive Acoustic Monitoring (PAM) of the ocean has increased dramatically over the last decade.  

PAM being the civilian equivalent to passive sonar.  The availability of relatively low cost, reliable, 

long‐endurance underwater acoustic recorders has meant that an increasing amount of acoustic 

data is being collected.  One of the key motivators for this technology is to study marine mammals, 

be that to: monitor for them to activities (e.g. sonar transmissions) to mitigate impacts, explore 

animal distributions or to estimate species abundance.  Having collected the large datasets there is a 

need to develop tools to assist with the analysis – traditional analysis methods rely upon manual 

inspection of data in near‐real time, which becomes unfeasibly demanding when deployments can 

last months. 

Delphinids (oceanic dolphins) are a species group which produce three general classes of 

vocalisations: echolocation clicks, burst pulses and whistles.  Classifying delphinids to the species 

level, based on acoustic data remains a significant challenge, but it is believed that whistles 

(frequency modulated chirps) provide the most promising route to acoustic classification.  Real 

datasets recorded from these animals consists of a complicated mixture of multiple rapidly 

frequency modulated narrowband signals mixed with broadband and impulsive noise sources.  This 

paper will discuss some of the processing challenges associated with analysing these whistles with 

the ultimate goal of classifying them.  In particular, we shall consider the problems of detecting the 

whistles, extracting them and then solutions to the multi‐target tracking problem that arises when 

trying to isolate whistles from individuals. 
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Professor Athina P. Petropulu 

Athina P. Petropulu is a distinguished Professor at the Electrical and 

Computer Engineering (ECE) Department at Rutgers, having served as chair of 

the department during 2010‐2016.  Prior to joining Rutgers she was a 

Professor of ECE at Drexel University (1992‐2010). She held Visiting Scholar 

appointments at SUPELEC, Universite’ Paris Sud, Princeton University and 

University of Southern California. Dr. Petropulu's research interests span the 

area of statistical signal processing, wireless communications, signal 

processing in networking, physical layer security, and radar signal processing. 

Her research has been funded by various government industry sponsors including the National Science 

Foundation (NSF), the Office of Naval research, the US Army, the National Institute of Health, the 

Whitaker Foundation, Lockheed Martin and Raytheon. Dr. Petropulu is Fellow of IEEE and AAAS and 

recipient of the 1995 Presidential Faculty Fellow Award given by NSF and the White House. She is 

President‐Elect for the IEEE Signal Processing Society for 2020‐2021. She has served as Editor‐in‐Chief of 

the IEEE Transactions on Signal Processing (2009‐2011), IEEE Signal Processing Society Vice President‐

Conferences (2006‐2008), and is currently member‐at‐large of the IEEE Signal Processing Board of 

Governors. She was the General Chair of the 2005 International Conference on Acoustics Speech and 

Signal Processing (ICASSP‐05), Philadelphia PA, and is General Co‐Chair of the 2018 IEEE International 

Workshop on Signal Processing Advances in Wireless Communications (SPAWC). She is recipient of the 

2005 IEEE Signal Processing Magazine Best Paper Award, and the 2012 IEEE Signal Processing Society 

Meritorious Service Award. She was Distinguished Lecturer for the Signal Processing Society for 2017‐

2018, and is currently Distinguished Lecturer for the IEEE Aerospace & Electronics Systems Society. 

ABSTRACT: DUAL FUNCTION RADAR-COMMUNICATION SYSTEMS 

Automotive radars for advanced driver assistance systems and autonomous driving are required to have 

high angle discrimination capability and small package size so that they can be easily integrated into 

vehicles. Unlike conventional phase arrays whose resolution is proportional to their size, multi‐input 

multi‐output (MIMO) radar can meet both high resolution and small size requirements. This is because 

MIMO radar can synthesize virtual arrays with large apertures using only small number of transmit and 

receive antennas. Even with the help of MIMO radar technology, however, the cost of synthesizing a 

large virtual uniform linear array (ULA) with half wavelength element spacing can be very high. One way 

to further reduce the cost without sacrificing angle resolution is to use virtual sparse linear arrays (SLAs), 

e.g., use a thinned receive ULA. SLA operating as a MIMO radar can properly deploy the reduced number 
of transmit and receive antennas, such that the element spacing of the corresponding virtual array is 
larger than half wavelength, while its aperture is the same as that of a ULA with half wavelength element 
spacing. Prior approaches have focused on optimal sparse array design, or use of interpolation 
techniques for filling the holes in the synthesized SLA before applying digital beamforming for angle 
finding. In this talk, we present a new approach, where we use matrix completion to complete the 
corresponding virtual ULA before estimating the target angle. In particular, we show that for a small 
number of targets within the same range‐Doppler cell, the Hankel matrix constructed by subarrays of the 
virtual ULA is low‐rank, and thus under certain conditions, can be completed based on the SLA 
measurements. We derive the coherence properties of the Hankel matrix so that it can be competed via 
nuclear norm minimization methods. We also demonstrate via examples the effect of various SLA 
topologies on the identifiability of the Hankel matrix.

x



Professor Sean Gong 

Shaogang (Sean) Gong is Professor of Visual Computation at 

Queen Mary University of London and a Turing Fellow of the 

Alan Turing Institute of Data Science and Artificial Intelligence. 

He established the Queen Mary Computer Vision Laboratory in 

1993 and has enjoyed immensely working with PhD students 

and postdoctoral researchers. His research is in Computer 

Vision and Machine Learning (Google Scholar and DBLP), with 

a focus on Object Recognition, Action Recognition, and Video 

Analysis. His brief bio and publications with pdf download.  

ABSTRACT: SEARCH AND LEARN: FROM USER GUIDED SEARCH TO FEDRATED ZERO-SHOT 
LEARNING 

Deep learning has been successful for many computer vision tasks due to the availability of shared 

and centralised large sized training data. However, increasing awareness of privacy concerns poses 

new challenges to deep learning, especially for human subject related recognition such as person 

reidentification (Re‐ID). Moreover, existing person search methods predominantly assume the 

availability of at least one‐shot imagery sample of the queried person. This assumption is limited in 

circumstances where only a brief textual (or verbal) description of the target person is available. 

In this talk, I will describe challenges and recent progress on deep learning for text attribute based 

person search without any query image, and decentralised learning from non‐shared private training 

data distributed at multiple user‐cites of independent multidomain labels for person re‐

identification. Both problems require solving generalised Zero‐Shot Learning. 

xi



Dr. Paul Thomas 

Paul is a Fellow in the UK MOD’s Defence Science and 

Technology Laboratory (Dstl) and Visiting Professor of 

Sensor Fusion and Autonomy at the University of 

Loughborough.  

With 20+ years’ experience in the area of sensor fusion, 

signal processing and autonomy for defence 

applications, Paul now holds the role of Principal 

Advisor for ISR Fusion and Processing and Lead 

Technical Reviewer for Underpinning Data Science.  

Paul serves on the Technical Programme Committees 

for the ISIF Fusion and IET Intelligent Signal Processing 

(ISP) conferences. 

ABSTRACT: SOUP IN THE SOUK: A ‘BAZAAR’ APPROACH TO DEFENCE SIGNAL PROCESSING 

You are currently experiencing an earthquake in software and algorithm development.  Open Source 

threatens to shake down the cathedrals of corporate software projects and flatten the chapels of 

private code repositories.  Replacing them with the ad‐hoc, organic, collaborative energy of the 

bazaar.  This is, in equal measure, an opportunity for the signal processing algorithm developer and 

the defence industry as a whole. 

This talk describes the development of Stone Soup, the open source framework for tracking and 

state estimation.  We describe the development process of an open source project and experiences 

gained while creating critical mass.  We discuss how structure is key to enabling engagement and 

how design is important even in an amorphous project.  Stone soup is already transforming the 

culture of the academic community and we discuss how it can bring changes to the way defence 

industry exploits signal processing innovations. 

xii



SSPD2020 Conference Committee 
General Chairs 

 Mike Davies ‐ University of Edinburgh
 Stephen McLaughlin ‐ Heriot‐Watt University
 Jordi Barr ‐ Dstl
 Gary Heald ‐ Dstl

Publicity and Local Arrangements Chair 

 Janet Forbes ‐ University of Edinburgh

Technical Programme Committee 

 Abderrahim Halimi ‐ Heriot‐Watt University
 Alasdair Hunter ‐ Dstl
 Alessio Balleri ‐ Cranfield University
 Andreas Ahrens ‐ Hochschule Wismar
 Andrew Baird ‐ Dstl
 Andrew Wallace ‐ Heriot‐Watt University
 Andy Stove ‐ Stove Specialties
 Antonio de Maio ‐ University of Naples "Federico II"
 Athanasios Gkelias ‐ Imperial College London
 Augusto Aubry ‐ Universita degli studi di Napoli
 Bernard Mulgrew ‐ University of Edinburgh
 Brian Barber ‐ Dstl
 Bruno Clerkx ‐ Imperial College London
 Carmine Clemente ‐ University of Strathclyde
 Chris Baker ‐ University of Birmingham
 Christoph Wasserzier ‐ Fraunhofer
 Christos Ilioudis ‐ University of Strathclyde
 Cristian Rusu ‐ Dublin University
 David ‐ Nethercott Dstl
 David Garren ‐ Naval Postgraduate School
 Duncan Williams ‐ Dstl
 Fan Liu ‐ University College London
 Francis Watson ‐ Thales
 Francisco Javier Aparicio Navarro ‐ De Montfort University
 George Jacob ‐ Dstl
 Harvey Alison ‐ Leonardo
 Hugh Griffiths – University College London
 Ian Proudler ‐ Loughborough University
 Ioannis Kaloskampis ‐ Cardiff University
 Ivo Bukovsky ‐ Czech Technical University in Prague
 James Hopgood ‐ University of Edinburgh

xiii



 Joao Mota ‐ Heriot‐Watt University
 John Buck ‐ University of Massachusetts Dartmouth
 John Thompson ‐ University of Edinburgh
 Jose Vazquez ‐ Seebyte
 Julian Deeks ‐ Dstl
 Keith Brown ‐ Heriot‐Watt University
 Keith Thompson ‐University of Strathclyde
 Kin Leung ‐ Imperial College
 Krishnaprasad Nambur Ramamohan ‐ Delft University of Technology
 Laura Anitori ‐ TNO
 Mahesh Banavar ‐ Clarkson University
 Maria Greco ‐ University of Pisa
 Mathini Sellathurai ‐Heriot‐Watt University
 Mehrdad Yaghoobi ‐ University of Edinburgh
 Murat Uney ‐ NATO CMRE
 Neil Cade ‐ Leonardo
 Oliver Sims ‐ Leonardo
 Rodrigo de Lamare ‐ Pontifical Catholic University of Rio de Janeiro
 Sami Aldalahmeh ‐ Al‐Zaytoonah University of Jordan
 Simon Maskell ‐ University of Liverpool
 Stephen Ablett ‐ Dstl
 Vladimir Stankovic ‐ University of Strathclyde
 Wei Dai ‐ Imperial College London
 Wenwu Wang ‐ University of Surrey
 Wolfgang Koch ‐ Fraunhofer
 Yoann Altmann ‐ Heriot‐Watt University

xiv



S
S

P
D

 2
0

2
1

 

Interna�漀nal Conference in Sensor Signal Processing for Defence: from Sensor to Decision 

The Sensor Signal Processing for Defence Conference is organised by the University Defence Research  
Collaboration (UDRC) in Signal Processing. SSPD 2021 aims to bring together researchers from academia, 

industry and government organisations interested in Signal Processing for Defence.  

All submi�ed papers will be peer reviewed. Technical sponsorship is provided by the IEEE Signal
Processing Society and the IEEE Aerospace and Electronic Systems Society and proceedings will be

submi�ed to the Xplore Digital Library. 

www.sspdconference.org 

Important Dates: 

Submission of Papers: 18 April 2021 

Notification of Paper Acceptance: 1 July 2021 

Final version of Paper Due: 30
 
July 2021  

Date of conference: 14 to 15 September 2021 

Location: University of Edinburgh 

Papers are solicited from the following areas:- 

- Array Signal Processing
- Image Processing
- Radar, Sonar and Acoustic
- Multimodal Signal Processing
- Multi-Target Tracking
- Signal Acquisition and Sensor Management
- Multiple-input and multiple-output  (MIMO)
-Deep Learning, Machine Learning 

- Information/Data Analysis
- Data Fusion
- Source Separation
- Anomaly Detection
- Distributed Signal Processing
- Low Size Weight & Power Solutions
- Target Detection and Identification
- Electro-Optic Sensing

xv



Table of Contents 

Session 1: Tracking, Detection and Localisation 
Subspace Perturbation Bounds with an Application to Angle of Arrival Estimation using the MUSIC 
Algorithm ................................................................................................................................................ 1 
Connor Delaosa, Jennifer Pestana, Stephan Weiss, and Ian K. Proudler 

A Gaussian Process Based Method for Multiple Model Tracking ............................................................ 6 
Mengwei Sun, Mike E. Davies, Ian Proudler, and James R. Hopgood 

Narrowband Angle of Arrival Estimation Exploiting Graph Topology and Graph Signals ...................... 11 
Ian K. Proudler, Vladimir Stankovic, and Stephan Weiss 

Session 2: Radar 
Information-Theoretic Compressive Measurement Design for Micro-Doppler Signatures ..................... 16 
Fraser K. Coutts, John Thompson, and Bernard Mulgrew 

Identification of Radar Emitter Type with Recurrent Neural Networks ................................................... 21 
Sabine Apfeld, Alexander Charlish, and Gerd Ascheid 

Session 3: Imaging 
Fast Surface Detection using Single-Photon Detection Events ............................................................ 26 
Abderrahim Halimi, Andrew Wallace, Gerald S. Buller, and Stephen McLaughlin 

Robust Depth Imaging in Adverse Scenarios using Single-Photon Lidar and Beta-Divergences .......... 31 
Q. Legros, S. McLaughlin, Y. Altmann, S. Meignen, and Mike E. Davies 

Session 4: Machine Learning 
Optimising Network Architectures for Provable Adversarial Robustness .............................................. 36 
Henry Gouk and Timothy M. Hospedales 

Tail of Distribution GAN (TailGAN): Generative-Adversarial-Network-Based Boundary Formation ....... 41 
Nikolaos Dionelis, Mehrdad Yaghoobi, and Sotirios A. Tsaftaris 

Electrical Device Classification using Deep Learning ........................................................................... 46 
R.O. Lane 

Session 5: Other Signal Processing 
Multimodal Learning for Early Detection of Explosive Sounds using Relative 
Spectral Distribution ............................................................................................................................. 51 
Vishwajeet Shukla and Mayank Singour 

Detection of Linear Frequency Modulation, Phase-Coded and Multicarrier Radar Waveforms in 
Electronic Warfare Context .................................................................................................................. 56 
Antoine Foucault, Cédric Cornu, Ali Khenchaf, and Fabrice Comblet 

Robust Source Number Estimation Based on Denoising Preprocessing .............................................. 61 
Koichi Ichige, Shohei Hamada, Katsuhisa Kashiwagi, Nobuya Arakawa, and Ryo Saito 

Learning Entropy of Adaptive Filters via Clustering Techniques ........................................................... 66 
Ivo Bukovsky, Gejza Dohnal, Pavel Steinbauer, Ondrej Budik, Kei Ichiji, and Homma Noriyasu 

Classifying LPI Signals with Transfer Learning on CNN Architectures.................................................. 71 
Bunlong Lay and Alexander Charlish 

xvi



Approximate LASSO Model Predictive Control for Resource Constrained Systems ............................. 76 
Yun Wu, João F. C. Mota, and Andrew M. Wallace 

Extraction of Analytic Eigenvectors from a Parahermitian Matrix .......................................................... 81 
Stephan Weiss, Ian K. Proudler, Fraser K. Coutts, and Julian Deeks 

Session 6: Underwater Signal Processing 
Sensing and Automation in the Future Maritime Environment .............................................................. 86 
Daniel D. Sternlicht 

  

xvii



Subspace Perturbation Bounds with an Application
to Angle of Arrival Estimation using the MUSIC

Algorithm
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Abstract—This paper explores how angle of arrival (AoA) esti-
mation using the multiple signal classification (MUSIC) algorithm
is affected by estimation errors in the space-time covariance
matrix. In particular, we explore how this estimation error
perturbs the signal-plus-noise and noise-only subspaces of the
matrix, and how this subsequently affects the performance of
MUSIC for AoA estimation. This subspace perturbation is shown
to depend on the space-time covariance matrix itself, the sample
size over which it is estimated, as well as the distance of the
smallest signal-related eigenvalue to the noise floor. We link a
bound on this perturbation to a bound on MUSIC performance,
and demonstrate its utility for AoA estimation in simulations.

Index Terms—space-time covariance matrix, parahermitian
matrix, cross-correlation sequence, estimation, angle of arrival,
MUSIC

I. INTRODUCTION

In broadband array processing a space-time covariance ma-
trix forms the basis for describing the second order statistics of
the data recorded from M sensor measurements. These mea-
surements, x[n] ∈ CM , can be used to calculate the space-time
covariance matrix matrix as R[τ ] = E

{
x[n]xH[n− τ ]

}
∈

CM×M , where E{·} is the expectation operator and {·}H
is the Hermitian transpose operator. In narrowband signal
processing, which captures the phase shifts between sensor
elements. it suffices to use the instantaneous covariance matrix
R[0] only. If we move to the broadband domain then explicit
time delay information must be preserved, and requires the
inclusion of the lag component τ into the space-time covari-
ance matrix R[τ ], which contains auto and -cross-correlation
sequences. This space-time covariance matrix may need to be
estimated such as in the situations of limited availability of
data samples or when data must be restricted to a small time
frame to assume stationarity. The estimation and the resulting
perturbations of this matrix has been explored in the past [1]–
[4].

In the broadband case, the multiple signal classification
(MUSIC) algorithm [5] uses the space-time covariance matrix
to estimate the angle of arrival (AoA) of a particular source.
If these matrices are estimated from finite data, we can use

This work was supported in parts by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1 and the MOD
University Defence Research Collaboration in Signal Processing, Dstl, and
a John Anderson Research Award by the University of Strathclyde.

perturbation theory to gain a measure of how much this result
is perturbed. Therefore, an understanding of how this algo-
rithm performs under estimation is important. From [2], [6] we
know the variance of the estimation error, and subsequently
how eigenvalues and eigenspaces are perturbed as a result of
the sample size, N . In this paper, we are concerned with how
this perturbation of R[τ ] impacts the MUSIC algorithm and
in particular how the algorithm degrades as a function of N .

In the past, papers have looked at the noise and signal
subspaces crucial for the performance of MUSIC. In particu-
lar, [7], [8] show that when using the singular value decom-
position (SVD) and the root-MUSIC algorithm, respectively,
subspace methods for a small fixed sample size severely
degrade as the signal-to-noise ratio (SNR) decreases greatly.
In order to improve the direction of arrival (DoA) estimates for
subspace methods in poor conditions, various papers modify
the MUSIC algorithm in different ways such as introducing: a
new estimator [9], an innovative MUSIC algorithm to decrease
the threshold of SNR before degradation [10], or an iterative
algorithm to reduce unwanted terms in the sample spatially
correlated covariance matrix [11]. Under the influence of vary-
ing modelling errors [12] investigates the MUSIC estimator
showing its performance degradation for higher error terms.
In contrast, in this paper we look to extend [7], [8] to the
broadband case where we use an eigenvalue decomposition
(EVD) to obtain the subspaces as we vary N . We apply
perturbation theory in order to understand the degradation of
the traditional MUSIC algorithm for a fixed SNR and a range
of sample sizes with the aim of establishing a link between a
bound of this perturbation and a bound on the performance of
MUSIC.

This paper is laid out as follows; in Sec. II the data model
and the MUSIC algorithm based on ideal quantities are stated.
Sec. III demonstrates the construction of an estimated space-
time covariance matrix, the estimation error between this and
the ideal case and how this error can lead to eigenvalues
and eigenspaces being perturbed. In Sec. IV we relate the
perturbation of subspaces to the MUSIC algorithm estimated
from limited data and therefore derive a bound to characterise
this relationship. We then, in Sec. V, verify the theory through
simulation and test the performance of the bound and related

978-1-7281-3810-7/20/$31.00 ©2020 IEEE 1



quantities.

II. ANGLE OF ARRIVAL ESTIMATION

A. Data Model

Let x[n] ∈ CM be a data vector recorded from M sensor
measurements xm[n], m = 1, . . . ,M . This array is illuminated
by K sources in the far-field, and while we assume no loss
in gain, these source signals sk[n], k = 1, . . . ,K, arrive at
the different sensors with time delays τk,m. Therefore, the
propagation environment can be described by a broadband
steering vector ak[n],

ak[n] =
1√
M

 f [n− τk,1]
...

f [n− τk,M ]

 , (1)

with f [n−τ ] implementing a fractional delay filter [13], [14].
For the time delay τk,m = 1

cTs
kT
k rm, c denotes the propagation

speed in the medium, Ts is the sampling period, kk is the
normal vector to the wavefront of the kth source signal and rm
is the location of the mth sensor in three-dimensional space.
Using the steering vector, a model for the received data is

x[n] =
K∑
k=1

ak[n]sk[n] + v[n], (2)

where v[n] is spatially and temporally uncorrelated Gaussian
noise with covariance E

{
v[n]vH[n− τ ]

}
= σ2

vIδ[τ ] and I is
an M ×M identity matrix.

The cross-spectral density (CSD) matrix, R(z), originates
from the z-transform of R[τ ] i.e. R(z) =

∑
τ R[τ ]z−τ , or in

short R(z) •—◦ R[τ ], where •—◦ denotes a transform pair.
In almost all cases R(z) admits a parahermitian matrix EVD
(PhEVD) [15], [16] such that

R(z) = Q(z)Λ(z)QP(z). (3)

Here Q(z) ∈ CM×M is paraunitary i.e. Q(z)QP(z) = I
where {·}P denotes the parahermitian operator of a given
matrix such that R(z) = RP(z) = RH(z−1). The quantity
Q(z) is analytic [15] in most cases [17] and contains the
eigenvectors while Λ(z) = diag{λ1(z), . . . λM (z)} holds the
M eigenvalues.

Given the time domain model in (2), the CSD matrix for
this scenario is

R(z) =
K∑
k=1

ak(z)Sk(z)aP
k(z) + σ2

vI, (4)

where Sk(z) is the power spectral density (PSD) of the kth
source signal sk[n]. This signal sk[n] can be tied to an
uncorrelated zero-mean unit-variance Gaussian signal uk[n]
via an innovation filter [18] bk[n] •—◦ Bk(z), such that
Sk(z) = Bk(z)BP

k(z).

B. MUSIC based on Ideal Space-Time Covariance Matrices

Since the factors in (3) are analytic in some region of
convergence including the unit circle, in the subsequent anal-
ysis we restrict ourselves to evaluating on the unit circle i.e.
z = ejΩ. With knowledge of the number of sources, K,
we partition, Q(z)|z=ejΩ into two subspaces such that the K
columns of Qs(e

jΩ) span the K-dimensional signal-plus-noise
subspace, while the columns of Qn(ejΩ) form the basis for its
complement, the M − K -dimensional noise-only subspace.
Hence

R(ejΩ) =
[
Qs(e

jΩ) Qn(ejΩ)
] [ Λs(e

jΩ) 0
0 Λn(ejΩ)

]
·

·
[

QH
s (ejΩ)

QH
n (ejΩ)

]
, (5)

where Λs(e
jΩ) contains the K eigenvalues associated with the

signal-plus-noise subspace, and Λn(ejΩ) contains the remain-
ing M −K eigenvalues.

With these quantities now defined, it can be stated that
the steering vectors, aϕ,ϑ(ejΩ) = [a1(ejΩ), . . . ,aK(ejΩ)]T

for azimuth ϕ and elevation ϑ, contribute to the signal-plus-
noise subspace, Qs(e

jΩ). These therefore reside within the
nullspace of the noise subspace, Qn(ejΩ), i.e. the vector
QH

n (ejΩ)aϕ,ϑ(ejΩ) tends toward a zero vector if aϕ,ϑ(ejΩ)
is the steering vector of a source. As a result, we can scan
the noise-only subspace with steering vectors determined by
a range of angles {ϕ, ϑ} and frequencies Ω such that

ξMUSIC(ejΩ, ϕ, ϑ) =
1

aP
ϕ,ϑ(e

jΩ)Qn(ejΩ)QP
n(ejΩ)aϕ,ϑ(ejΩ)

,

(6)
which is also known as the ideal MUSIC spectrum [5].
In practice, this metric will be computed using estimated
quantities, resulting in perturbations. The next two sections
will therefore investigate the estimation errors and analyse the
subspace perturbation of the noise-only subspace and its effect
on MUSIC.

III. COVARIANCE ESTIMATION AND SUBSPACE
PERTURBATIONS

A. Space-Time Covariance Estimation

Instead of determining R[τ ] via an expectation operation,
in practice it has to be estimated in time over a finite
window of snapshots, say N . Given the data vector x[n] for
n = 0, . . . , (N − 1), a sample space-time covariance matrix
R̂[τ ] can be calculated e.g. via an estimator [19]

R̂[τ ] =


1

N−|τ |

N−|τ |−1∑
n=0

x[n+ τ ]xH[n] , τ ≥ 0

1
N−|τ |

N−|τ |−1∑
n=0

x[n]xH[n− τ ] , τ < 0

. (7)

Because this estimator is unbiased, for the estimation error

E[τ ] = R̂[τ ]−R[τ ], (8)
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we find that its power, E
{
‖E[τ ]‖2F

}
, equals the variance of

R̂[τ ], which has been shown to depend on both the ground
truth R[τ ] and the sample size N [19].

B. Perturbation of Eigenspaces

With the PhEVD R̂(z) = Q̂(z)Λ̂(z)Q̂
P
(z) we parti-

tion the eigenvalues and eigenvectors similarly to (5). The
eigenvalues in Λ̂(ejΩ) = blockdiag{Λ̂s(e

jΩ) Λ̂n(ejΩ)}
are split into a K-element diagonal matrix containing the
eigenvalues corresponding to the signal-plus-noise-subspace
and an M − K diagonal matrix of values that form the
noise floor. The eigenvectors are then defined as Q̂(ejΩ) =
[Q̂s(e

jΩ) Q̂n(ejΩ)], such that the subspaces are given by
Ûs,n(ejΩ) = range{Q̂s,n(ejΩ)}, with the ideal subspaces being
denoted similarly. With these quantities, we assess the differ-
ence between the ground-truth noise-only subspace Un(ejΩ)
and its estimated version Ûn(ejΩ) as

dist{Ûn(ejΩ),Un(ejΩ)} = ||P̂ n(ejΩ)− P n(ejΩ)||2, (9)

where P̂ n(ejΩ) = Q̂n(ejΩ)Q̂
H

n (ejΩ) and P n(ejΩ) =
Qn(ejΩ)QH

n (ejΩ) are projection operators into the noise-only
subspaces. To find bounds on the eigenspace perturbations we
must first define the spectral distance δ between the signal-
plus-noise and noise-only eigenvalues as

δ = min
λ1 ∈ Λs(e

jΩ)
λ2 ∈ Λn(ejΩ)

|λ1 − λ2| > 0 ; (10)

in other words, δ is the absolute minimum difference between
the signal-plus-noise and noise-only eigenvalues.

If the estimation error [6, Sec. 7.2] satisfies

||E(ejΩ)||2 < δ/5 , (11)

we can state that the subspace distance is bounded as fol-
lows [2], [6]:

dist{Ûn(ejΩ0),Un(ejΩ0)} ≤ 4

δ
||Esn(ejΩ0)||2 . (12)

Here Esn(ejΩ0) is extracted from the following partioning of
a similarity transform of the estimation error matrix E(ejΩ0) =
E(ejΩ)|ejΩ=ejΩ0 with E(ejΩ) •—◦ E[τ ],

QH(ejΩ0)E(ejΩ0)Q(ejΩ0) =

[
Es(e

jΩ0) EH
sn(ejΩ0)

︸ ︷︷ ︸
K

Esn(ejΩ0) ︸ ︷︷ ︸
M −K

En(ejΩ0)

]
.

(13)

From the quantities defined, we can state that the subspace
perturbation depends on: the ground truth covariance matrix,
R(ejΩ), the sample size N via Esn(ejΩ0), and the distance δ
i.e. by how much the ‘signal eigenvalue’ differs from the noise
floor. We can now use this in Sec. IV to analyse the MUSIC
algorithm.

IV. MUSIC BASED ON SAMPLE COVARIANCE MATRICES

Following Secs. II and III-A, where the ideal MUSIC algo-
rithm and the estimated quantities are introduced, we formulate
the estimated MUSIC cost function in Sec. IV-A below. The
link between its inverse and the subspace perturbation bound
is then investigated in Sec. IV-B.

A. Estimation of MUSIC

Using the noise-only subspace Q̂n(ejΩ0), we obtain

ξ̂−1
MUSIC(ejΩ0 , ϕ, ϑ) = aH(ejΩ0)Q̂n(ejΩ0)Q̂

H

n (ejΩ0)a(ejΩ0)

= ||Q̂
H

n (ejΩ0)aϕ,ϑ(ejΩ0)||22, (14)

which defines the MUSIC spectrum derived from estimated
quantities. Ideally, (14) should be zero at the angles of arrival
but, due to the use of the estimated covariance matrix, it can
deviate from zero by an unknown amount. Since the MUSIC
metric in (14) is based on the estimated subspaces we can now
relate this to Sec. III-B and describe the relationship between
ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0) and the perturbation of subspaces.

B. Perturbation Bounds of the MUSIC Metric

In the following, we analyse the inverse MUSIC spectrum in
(14) in the direction of arrival of the source, {ϕ0, ϑ0}, only.
For notational brevity, we omit subscripts from the steering
vector.

Since Q̂
H

n (ejΩ0)Q̂n(ejΩ0) = I ∈ RK×K (14) becomes

ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0) = aH(ejΩ0)Q̂n(ejΩ0)Q̂

H

n (ejΩ0)·

· Q̂n(ejΩ0)Q̂
H

n (ejΩ0)a(ejΩ0)

= ||Q̂n(ejΩ0)Q̂
H

n (ejΩ0)a(ejΩ0)||22.
(15)

Since QH
n (ejΩ0)a(ejΩ0) = 0, we can write (15) such that

ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0) = ||Q̂n(ejΩ0)Q̂

H

n (ejΩ0)a(ejΩ0)−
−Qn(ejΩ0)QH

n (ejΩ0)a(ejΩ0)||22
≤ ||P̂ n(ejΩ0)− P n(ejΩ0)||22||a(ejΩ0)||22
= dist{Ûn(ejΩ0),Un(ejΩ0)}2. (16)

Here we have that ||a(ejΩ0)||2 = 1 by design and using (9)
with Ûn(ejΩ0) and Un(ejΩ0).

Using (12), we can relate ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0) to the error

matrix in (13) and the eigenvalue distance, δ, in (10) such that

ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0) ≤ 16

δ2
||Esn(ejΩ0)||22, (17)

whenever (11) is satisfied. Thus we can link the inverse
MUSIC spectrum at the source AoA to the derived eigenspace
perturbation in (16) and to its bound via (17).

V. RESULTS AND SIMULATIONS

A. Scenario

As an example, we look at the case of a single source
(K = 1) impinging on an array of M = 3 sensors from
an angle of arrival of ϕ0 = −60◦ and no elevation i.e.
ϑ0 = 0◦. The innovation filter b1[n] of Sec. II-A has a
passband response, where the normalised passband frequencies
are defined as Ωpass = [0.2π 0.9π]. This filter is excited
by a zero-mean unit-variance uncorrelated complex circularly
symmetric Gaussian source. The sample space-time covariance
matrix, R̂[τ ], is estimated from N snapshots of data x[n] for
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n = 0, . . . , N − 1 samples and with the support value, τ ,
adjusted to be optimal [4]. For the simulations below, we vary
the sample size from 200 to 10000 samples in intervals of 100
samples. Each parameter setting is tested over an ensemble of
104 simulations so that we can analyse the statistics of the
results. We consider only one fixed frequency at Ω0 = π

4 .

B. MUSIC and Subspace Perturbations

For the following results, we are interested in how the
quantities in (11) and (17) perform, and investigate the validity
of these for different N . For clarity, we convert (17) into a
ratio such that

γ(ejΩ0) = ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0)/

16

δ2
||Esn(ejΩ0)||22, (18)

which satisfies γ(ejΩ0) ≤ 1 if (11) is satisfied.
As discussed previously, the subspace distance is related to

a condition specified in (11). We first look at the proportion of
total simulations that satisfy (11) as a function of sample size;
this is shown in Fig. 1 where we see this proportion increase
as the sample size, N , increases which is to be expected. From
this, it is important to note that often for smaller sample sizes
we fail to satisfy the condition for the simulations carried out
in this paper. We denote the simulations that pass this condition
by the {·}(pass) superscript.

In Fig. 2 we investigate the distribution of (18) for the
simulations that pass (11) and from this result we verify that
if (11) is satisfied then (17) is always satisfied. Since we often
do not satisfy the condition in (11) we look at the distribution
of γ(ejΩ0) for all simulations to see the overall performance of
(18) and, therefore, test if (17) is useful independently of the
condition. The result from Fig. 3 shows that as we increase
N more simulations satisfy these bounds, with the median
of γ(ejΩ0) almost constant. For the curve given by the 95th
percentile, it can be seen that at N ≥ 400 samples γ(ejΩ0)
crosses 100 and satisfies (17) and (18) for at least 95% of
simulation runs. For N < 400 we notice that for many of the
trials, the 95th percentile curve is relatively close to one.

In Fig. 4 it can be seen that even though the distribution in
Fig. 3 has 95th percentiles less than one, we still have a small
percentage of simulations that fail to satisfy (17) for small
sample sizes. As we increase the sample size to N = 2000
this percentage tends to 0 showing that all simulations satisfy
the bound irregardless of the condition in (11).

C. Extraction of the Angle of Arrival

In Sec. IV-B, we were concerned by how
ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0) is affected at the ideal/expected

angle of arrival. We now investigate the extraction of the
angle of arrival from the inverse MUSIC spectra based on
estimates.

If estimated quantities are used then the inverse MU-
SIC spectrum can vary and where we would expect the
angle of arrival to be extracted i.e. at the global minima
of ξ̂−1

MUSIC(ejΩ0 , ϕ0, ϑ0), could shift. However, as we have
discussed, the use of more data can result in more accurate
estimates. In this example, we extract an angle of arrival,
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Fig. 1. Proportion of simulations that satisfy (11).
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Fig. 2. Distribution of (18) for simulations that satisfy (11) with 5, 25, 75,
and 95th percentiles, where the median is shown by the solid red line.
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Fig. 3. Distribution of (18) for all ensemble probes with 5, 25, 75, and 95th
percentiles, where the median is shown by the solid red line.
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Fig. 4. Proportion of all ensemble probes that satisfy the ratio given in (18).
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Fig. 5. Distribution of the extracted AoA, ϕ̂0, from estimated MUSIC spectra
with 5, 25, 75, and 95th percentiles, where the median is shown by the solid
red line.

ϕ̂0 = min{ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0)} from each inverse MUSIC

spectra calculated from each simulation and show the results
as a statistical distribution.

It can be seen from Fig. 5 that there is a large deviation
at low sample sizes, so that if the global minimum was used
then we could extract an angle of arrival that is far from the
correct value. As we increase the number of samples then we
are more likely to extract values closer to the true value with
minimal variation. The median of the distribution is constant
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Fig. 6. Ensemble average (right) and variance (left) of ξ̂−1
MUSIC(ejΩ0 , ϕ0, ϑ0)

as a function of N on a logarithmic scale.

throughout the large number of simulations and indicates that
we can extract the correct estimate but not consistently as
the percentiles demonstrate. In defense applications, it may
be useful to track targets within a certain angular range. The
results in Fig. 5 shows that this could be applied for more
targets/sources or for a lower sample size if the restriction of
a single accurate AoA was lifted. For the scenario in this paper,
a sample size N < 200 showed a heavy degradation in the
extracted angle to the point that this angle can be ambiguous.

D. Mean and Variance of MUSIC

Given that we have discussed bounds and conditions related
to the estimated MUSIC metric, ξ̂−1

MUSIC(ejΩ0 , ϕ0, ϑ0), we
now look at this metric directly. If ξ̂−1

MUSIC(ejΩ0 , ϕ0, ϑ0) is
evaluated at the ideal angle of arrival then we would expect
that this value should be 0. Due to the estimated quantities
we would now expect ξ̂−1

MUSIC(ejΩ0 , ϕ0, ϑ0)→ 0 as N →∞.
Therefore, if a distribution of this function was calculated for
all simulations then the mean and variance of this function
should decrease as N increases i.e. we should increase the
reliability of ξ̂−1

MUSIC(ejΩ0 , ϕ0, ϑ0) as we increase N .
As demonstrated in Fig. 6 we notice that both the ensemble

average and variance decrease on a logarithmic scale. This,
combined with Fig. 5, allows us to see that the reliability of the
inverse MUSIC algorithm estimated from quantities calculated
from finite data increases as we use more data.

VI. CONCLUSION

When estimating a space-time covariance matrix, it is
imperative to understand the effect of perturbations before
using real-world applications such as the MUSIC algorithm.
In this paper we have: (i) discussed how eigenspaces can be
perturbed as a result of using space-time covariance matrices
estimated from limited data, (ii) stated theoretical bounds for
the perturbations of subspaces, and (iii) provided a condition
which depends on the error between ideal and estimated space-
time covariance matrices and the distance between signal-plus-
noise and noise-only eigenvalues for the ideal case.

We have shown that subspace perturbations can be used to
derive a theoretical bound to describe the degradation of the
MUSIC algorithm, evaluated at a single frequency point, as a
function of the sample size used. We tested the performance
of this bound as well as the condition on which it depends.

For the simulations carried out it can be verified that if the
condition is satisfied then this bound is always satisfied for
all sample sizes tested. If this condition is not satisfied e.g.
for low sample sizes, then it can be shown that the bound is
satisfied 75% of the time.

If we now relate these findings to the extraction of an AoA
then this can be shown to vary as a function of the sample
size. Given a large number of samples we can successfully
extract the AoA with small statistical variation. Additionally
as we increase the number of samples, the extracted AoA tends
towards the ideal case with decreasing variance.
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A Gaussian Process based Method for Multiple
Model Tracking

Mengwei Sun, Mike E. Davies, Ian Proudler, James R. Hopgood

Abstract—Manoeuvring target tracking faces the challenge
caused by the target motion model uncertainty, i.e., unknown
model types or uncertain model parameters. Multiple-model
(MM) methods have been generally considered to deal with
this challenge, in which a bank of elemental filters is run
simultaneously to provide a joint decision and estimation of
motion model and localisation. However, if the uncertainty of
the target trajectory increases, such as the target moves under
mixed manoeuvring behaviours with time-varying parameters,
more filters with different model assumptions have to be taken
into account to match the motion of the target, which may lead to
prohibitive computational complexity. To address this problem,
we establish a training based algorithm which can learn the
actual motion model as a Gaussian process (GP) regression.
Then, by integrating the trained GP into the particle filter
(PF), a GP-PF based tracking method is developed to track the
manoeuvring targets in real-time. Monte Carlo experiments show
that the proposed method had much lower tracking root mean
square error (RMSE) and robustness compared with the most
commonly used MM methods.

Index Terms—Gaussian process, manoeuvring target tracking,
mixing manoeuvres, particle filtering

I. INTRODUCTION

TARGET tracking is a fundamental task in sensor-based
applications, such as radar, sonar, and navigation

[1]. Numerous mathematical models have been developed
to approximate the motion trajectory of the target [2],
such as the commonly used non-manoeuvring model, i.e.,
constant velocity (CV) model and highly manoeuvring
model, i.e., coordinated turn (CT) model. The application
of Bayesian filters for target tracking is based on the actual
state-space model of objects, therefore being conditional on
a motion model. However, in reality, there may be significant
motion-model uncertainty when targets undergo unknown or
mixed manoeuvring behaviours [3][4]: i.e., the evolution of
the target state is too complex to be approximated as one
specific mathematical model. Uncertainty can also be caused
due to various parameters not being known a priori, or if they
change with time. Examples of such parameters include: the
turn rate when CT model is considered [5], or the process
noise level. If incorrect models or parameters are applied,
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the tracking performance of traditional Bayesian filters would
degrade and even become unacceptable.

To deal with this problem, multiple-model (MM) methods
are commonly used [3]. The basic idea of MM methods is
to assume a set of motion models as possible candidates for
the manoeuvring target, and then use a bank of elemental
filters with these different models to capture the mixed
motion behaviours of the target, and generate the overall
estimation based on the results achieved by each elemental
filter [3]. MM based methods can achieve satisfactory tracking
performance when the uncertainty is low. However, in
some cases, such as when the rotation is a time-varying
or doubly-stochastic process, a sufficiently large set of
models with different parameters is required to cover the
range of possible motion models, which leads to a high
computation complexity [4]. To address this aspect, [4] and [5]
incorporated adaptive parameter estimation methods into the
Bayesian filter framework, where the unknown parameter is
estimated by approximating its distribution with particles and
corresponding weights. However, as parametric models are not
always able to capture all aspects of the motion behaviours,
those methods might fail if the chosen motion model set is
incapable of modelling the ground truth trajectory.

As an alternative to traditional Bayesian methods, machine
learning based tracking algorithms have been proposed
recently [6]-[8]. In [6], a quadruplet convolutional neural
network (CNN) based algorithm was designed for multi-target
tracking. A long short-term memory (LSTM) neural network
was used in [7] to perform the prediction step of single-target
localisation, which can improve the tracking accuracy and
facilitate the use of computationally efficient low-dimensional
state spaces. Wahlstrom [8] proposed an extended target
tracking method using a Gaussian process (GP) to estimate
the shape of the object whose moving trajectory followed a
linear CV model. These methods achieved better performance
and higher flexibility, but are limited to a fixed but unknown
motion behaviour and did not take into consideration the case
of mixed motion behaviours with uncertain parameters.

To overcome the limitations of existing methods regarding
to mixed motion behaviours, in this paper, Gaussian process
regression [9]-[11] is introduced to learn the motion model of
the moving target. The key advantage of GP is the flexibility
for modelling the uncertain systems, and the ability to learn
noise and parameters from training data. The contributions
of this paper can be summarised into two aspects. First,
we develop a GP-PF based tracking method, showing how

978-1-7281-3810-7/20/$31.00 ©2020 IEEE 6



to integrate the trained GP prediction motion model into a
particle filter (PF) tracking framework. Second, the GP-PF
based method is compared to interacting MM (IMM) methods
with different number of elemental filters. The simulation
results show the improved tracking performance and higher
robustness of the proposed method.

The remainder of this paper is organised as follows. The
description of the formulated problem and GP regression
are presented in Section II. The proposed algorithm is
developed in Section III. Simulation results and performance
comparisons are presented in Section IV. Finally, conclusions
are provided in Section V.

II. BACKGROUND

A. Problem Formulation

For simplicity and clarity, a 2-D horizontal model is
considered but it is easily extended to 3-D. The discrete
time state-space model for tracking a single moving target
is described by:

xt+1 = ft(xt) + vt, (1)
zt = h(xt) + et. (2)

Here, xt = [ξt, ξ̇t, ηt, η̇t]
T denotes the target state at time

t in a 2-D plane, and (ξt, ηt) and (ξ̇t, η̇t) represent the
target position and the corresponding velocity in X-axis
and Y-axis, respectively. The velocity is a vector with its
magnitude as the speed. zt denotes the measurement detected
by the sensor. The state motion functions defined as ft(xt) :

4 → 4 dynamically follow different motion models, and
two typical motion models are considered in this paper, the
non-manoeuvring CV model, and the highly manoeuvring
CT model with unknown turn rate. Note, the motion models
assumed are not a given which means that more sophisticated
state space models can also be used equally. The measurement
function h(xt) : 4 → 2 is defined as:

zt = Hxt + et, (3)

where,

H =

[
1 0 0 0
0 0 1 0

]
. (4)

vt ∼ N (0, Q) and et ∼ N (0, R) denote the process noise
and the measurement noise, respectively. The matrix Q =
qI4×4 and R = rI2×2, where q and r are the corresponding
noise variance and are assumed to be static in this paper.

Based on Bayes’ rule, the posterior probability density
function (PDF) of the target state vector conditioned on the
measurements is,

p(x1:t|z1:t) ∝ p(zt|xt)p(xt|x1:t−1)p(x1:t−1|z1:t−1), (5)

where p(zt|xt) = N (zt|h(xt), R) describes the likelihood of
the measurement given the state. The quantity p(xt|x1:t−1) is
the prediction probability which can be calculated based on
the real-time motion model ft−1(xt−1), i.e., p(xt|x1:t−1) =
N (xt|ft−1(xt−1), Q). Typically, the motion model is a

parametric description for the underlying evolution process.
While in practice, motions of the target may not follow
parametric models. Therefore, GP is used to identify the
motion models by placing GP priors on the unknown functions
and will be introduced in the following.

B. Gaussian Process Regression

GP regression is a popular means of non-parametric
nonlinear modelling that can directly capture model
uncertainty. It attempts to model a function g(x) by providing
both the mean function m(x) and covariance/kernel function
k(x,x′) [11]:

g(x) ∼ GP(m(x), k(x,x′)), (6)
m(x) = [g(x)] , (7)

k(x,x′) = [(g(x)−m(x)) (g(x′)−m(x′))] . (8)

Let us consider a general GP regression problem with noisy
observations from an unknown function described as:

y = g(x) + v, v ∼ N (0, σ2
vI). (9)

The training inputs are denoted as X = [x0,x1, . . . ,xN−1]
and the outputs are y = [y0, y1, . . . , yN−1]

T . The purpose of
GP is to derive the latent distribution of the function g∗ =[
g∗0 , . . . , g

∗
T−1

]T
at the test inputs X∗ =

[
x∗0, . . . ,x

∗
T−1

]T
,

conditioned on the training data set D = {X,y}. The joint
distribution of the training measurement values y and the test
function value at one test point, i.e., g∗t = g(x∗t ), is given as,[

y
g∗t

]
∼ N

([
m(X)
m(x∗t )

]
,

[
K(X,X) + σ2

vI k(X,x∗t )
k(x∗t , X) k(x∗t ,x

∗
t )

])
.

(10)

where k(X,x∗t ) = [k(x0,x
∗
t ), . . . , k(xN−1,x

∗
t )]

T , k(x∗t ,x
∗
t )

is the covariance of g(x∗t ), and K(X,X) denotes the
covariance matrix for the training input data:

K(X,X) =

 k(x0,x0), . . . , k(x0,xN−1)
...

. . .
...

k(xN−1,x0), . . . , k(xN−1,xN−1)

 .
(11)

From (10), the conditional distribution of the test function
is derived as,

(g∗t |D) ∼ N (ḡ∗t ,V [g∗t ]), (12)

ḡ∗t = m(x∗t ) + k∗t
T [K + σ2

vI]−1 (y −m(X)) , (13)

V [g∗t ] = k(x∗t ,x
∗
t )− k∗t

T [K + σ2
vI]−1k∗t . (14)

III. GP-PF BASED TRACKING ALGORITHM

In this section a tracking algorithm is proposed where the
uncertainty and mixing behaviour of the motion model is
first learned by non-parametric stationary and GP regression
off-line, i.e., the training process, and then the learned model
is integrated into the PF framework to estimate the target
states on-line, i.e., the test process. The notations used in
this section are listed in Table I. The motion model f(x) is

7



TABLE I: The meaning of notations used in Section III.

Notation Meaning
x0:N Target state of training data sequence
z0:N Observation of training data sequence
x∗

0:T Target state of test data sequence
z∗
0:T Observation of test data sequence

(ξt, ηt) Position of target at 2-D plane
(ξ̇t, η̇t) Velocity of target at 2-D plane
Q Covariance matrix of process noise
R Covariance matrix of measurement noise
D Training data set for GP
X State space
Z Observation space

f0:N (x0:N ) Motion function of training process
f∗
0:T (x0:T ) Motion function of test process
h(xt) Measurement function

learned using the non-parametric GP, while the measurement
function h(x) is deterministic by different sensor type with
no correlation over time and is given in arbitrary parametric
form in (3). Hence, the state-space model shown in (1)-(2)
can be graphically illustrated in Fig. 1. Our goal is to integrate
the learned GP regression into the PF framework to estimate
the target states. Specifically, the motion function with mixed
behaviours is approximated by a prediction Gaussian process,
which is then applied into the PF framework for drawing
particles. Next, the correction step is performed by updating
the weights of particles and achieving the estimations of target
states based on the maximum a posterior probability (MAP)
criterion.

To train the state transition function, we take training
data set D := {XI ,xO} ⊂ X × X as the input and
output respectively, where XI = [x0,x1, . . . ,xN−1] and
xO = [x1,x2, . . . ,xN ]T , and xn = [ξn, ξ̇n, ηn, η̇n]T . The
test sequence are represented as {x∗0:T , z∗0:T } ⊂ X×Z , where
z∗0:T := (z∗0 , . . . ,z

∗
T ) is the sequence of test observations

while the target states x∗0:T := (x∗0, . . . ,x
∗
T ) are unknown

and need to be estimated sequentially.

A. Learning the Motion Model based on GP Regression

The joint conditional distribution of the states for the test
process can be partitioned as [11],

p(x∗0:T |D) =

∫
p(x∗0:T ,f

∗
0:T |D)df∗0:T ,

=

∫
p(x∗0:T |f∗0:T ,D)p(f∗0:T |D)df∗0:T .

(15)

Based on the GP regression (12), the distribution of motion
function can be written as,

p(f∗0:T |D) = N
(
f∗0:T |f̄∗(x∗0:T ),Vf∗(x∗0:T )

)
, (16)

where f̄∗(x∗0:T ) = [f̄∗0 , . . . , f̄
∗
T ] and Vf∗(x∗0:T ) =[

Vf∗
0
, . . . ,Vf∗

T

]
, where f̄∗t and Vf∗

t
can be calculated by

(13) and (14) respectively. We have that the test input x∗t is
independent from the training data set X but relates to the

Fig. 1: State-space models: GP-based state transition and parametric
measurement functions. Circle represents the variable node and square is
the non-parametric function node. D, X and Z represent the training data
space, test state space and test observation space respectively.

motion function f∗t−1 and the state x∗t−1 in the previous time
slot, thus yielding,

p(x∗0:T |f∗0:T ,D) = p(x∗0:T |f∗0:T ),

= p(x∗0)

T∏
t=1

p(x∗t |f∗t−1,x∗t−1),

= p(x∗0)
T∏
t=1

N
(
x∗t |f∗t−1,Q

)
.

(17)

For the tracking problem, the Bayesian filter is implemented
by realising (15) in an iterative way as shown in Fig. 1.

p(x∗t |D) =

∫
p(x∗t |f∗t−1)p(f∗t−1|D)df∗t−1. (18)

As we mainly focus on the four variables of the
target states in this paper, i.e., x∗t = [ξ∗t , ξ̇

∗
t , η
∗
t , η̇
∗
t ]T ,

the motion function f∗t−1 is decomposed into f∗t−1 =
[f∗ξ,t−1, f

∗
ξ̇,t−1, f

∗
η,t−1, f

∗
η̇,t−1] and is learned and modelled as

four Gaussian processes jointly, as shown in Fig. 2. Therefore,
the prediction distribution in (18) can be decomposed as:

p(x∗t |D),

=
∏

st={ξ∗t ,ξ̇∗t ,η∗t ,η̇∗t }

∫
p(st|f∗s,t−1)p(f∗s,t−1|D)df∗s,t−1.

(19)

Here,

p(st|f∗s,t−1) = N (st|f∗s,t−1, q), (20)

p
(
f∗s,t−1|D

)
= N

(
f∗s,t−1|f̄∗s,t−1(x∗t−1),Vf∗

s,t−1
(x∗t−1)

)
,

∼ N (f̄∗s,t−1,V
[
f∗s,t−1

]
),

(21)
where the mean and covariance function can be calculated as
(13)-(14). By substituting (20) and (21) into (19), we obtain

p(x∗t |D),

=
∏

st={ξ∗t ,ξ̇∗t ,η∗t ,η̇∗t }

N (st|f̄∗s,t−1,V
[
f∗s,t−1

]
+ q). (22)

8



Fig. 2: Joint GPs for state prediction.

B. Data Test based on Particle Filter

In order to estimate the states for the test data iteratively, a
PF is used to estimate the posterior distribution over the state
p(x∗t |z∗1:T ,D) for each test time t = 1, ..., T [12] [13]. Based
on the PF, the posterior probability can be approximated by
the particles with corresponding weights as,

p(x∗t |z∗t ,D) =
p(z∗t |x∗t )p(x∗t | D)∫
p(z∗t |x∗t )p(x∗t | D)dx∗t

,

≈
M∑
m=1

wm,tδ(x
†
m,t − x∗t ),

≈
M∑
m=1

wm,tδ(ξ
†
m,t − ξ∗t )δ(ξ̇†m,t − ξ̇∗t ),

× δ(η†m,t − η∗t )δ(η̇†m,t − η̇∗t ).

(23)

Here, m is the index of the particles, and m = 1, . . . ,M .
x†m,t = [ξ†m,t, ξ̇

†
m,t, η

†
m,t, η̇

†
m,t]

T represents the particles and
wm,t is the corresponding weight. The particles are drawn
from the importance density which is chosen to be the
prior probability [14] derived in (22), and weights are then
calculated based on the likelihood function and observed
measurement as (28). The pseudo-code of the proposed GP-PF
based filter for tracking is illustrated in Algorithm 1.

IV. SIMULATION RESULTS

We first evaluate the derived distribution of the motion
function f∗1:T based on GP with a synthetic data-set. Then, the
tracking performance is evaluated and compared with different
existing tracking methods. The data for both training and test
processes are synthetic, i.e., the generated target states evolve
following motion models which switch between the CV or
CT models as specified by the transition probability matrix:

Γ =

[
pCV→CV pCV→CT
pCT→CV pCT→CT

]
=

[
0.6 0.4
0.4 0.6

]
. (30)

For all experiments, the following parameters are used: the
model parameters are updated every 10 samples; the rotation
rate of the CT model is distributed as ωt ∼ N (0.1, 0.4); the
process noise variance of both CT and CV models is q = 1.
The length of the training data set is N = 2000.

A. Synthetic Data Set Evaluations

Before we evaluate the tracking performance of the
proposed method, it is worth to verify the prediction

Algorithm 1

1) Initialisation: Draw M samples x†m,0 ∼ p(x0), and the
initial weights are set as wm,0 = 1/M,m = 1, . . . ,M .
2) For t = 1, . . . , T , do:

For m = 1, . . . ,M :
2.1) Draw particles x†m,t = [ξ†m,t, ξ̇

†
m,t, η

†
m,t, η̇

†
m,t, ]

T

using the distribution in (22),

ξ†m,t ∼ N (f̄∗ξ,t−1,V
[
f∗ξ,t−1

]
+ q), (24)

ξ̇†m,t ∼ N (f̄∗
ξ̇,t−1,V

[
f∗
ξ̇,t−1

]
+ q), (25)

η†m,t ∼ N (f̄∗η,t−1,V
[
f∗η,t−1

]
+ q), (26)

η̇†m,t ∼ N (f̄∗η̇,t−1,V
[
f∗η̇,t−1

]
+ q), (27)

2.2) Update the weight according to [14] as,

wm,t ∝ wm,t−1 ×N (zt|h(x†m,t), R), (28)

End For
2.3) The weight is then normalised and MAP estimation of

the state is achieved according to,

[x̂∗t ]
MAP

= arg max
x∗

t

p(x∗t |z∗1:T ,x∗1:t−1). (29)

2.4) Resampling: Replace particles with negligible weight by
new particles in proximity of higher weighted particles.

End For

performance of the trained GP models for positions and
velocities in 2D plane. The root-mean-square error (RMSE)
of the prediction for each state within time are shown in Fig.
3. From this figure, we can conclude that the motion model
with mixed behaviours and random rotation can be learned and
approximated accurately using non-parametric GP regression.

B. Tracking Performance

This experiment compares and analyses the performance
of different tracking methods. The performance of the target
tracking is evaluated using the RMSE of the target positions.
The proposed algorithm is compared with two other methods:
The traditional PF with full information and the interacting
multiple model-particle filter (IMM-PF) method with partial
prior information. Specifically, for the traditional PF method,
the dynamic motion mode in real-time and the turn rate
for CT model ωt are fully-known when operating the filter.
This gives us measure of the optimum tracking performance.
While for the IMM-PF method, the statistical distribution
of the turn rate, i.e., ωt ∼ N (µω,Σω), are known as
a prior information. The motion model is a mixture by
CV and CT, therefore, two different multiple model (MM)
set are used. The first denoted as IMM-PF1 is set to be
{CV,CTω=µω

}. The second denoted as IMM-PF2 is designed
based on minimum distribution-mismatch design rule and
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Fig. 3: Prediction performance of GP models: RMSE of the prediction for
each state.

Fig. 4: Comparison of RMSE tracking performance achieved by different
methods, and the straight lines show the mean value of the RMSE.

denoted as {CV,CTω=ω(1) , . . . , CTω=ω(Υ)}, where Υ is the
number of the equal intervals that the cumulative distribution
function (CDF) of ω is divided into. The comparisons of
tracking performance achieved by the proposed GP-PF based
method with others are shown in Fig. 4 and Fig. 5. In
Fig. 4, r = 1, RMSE performance comparison is evaluated
by different Monte Carlo realisations, i.e., different random
target trajectories. In Fig. 5, RMSE performance with different
measurement process noise variance is evaluated, where
r = {0.1, 1, 2, 5, 10, 20}. From these two figures, we see
that the proposed method outperforms the IMM-PF methods.
Furthermore, the proposed method shows better robustness
for different random trajectories of the target. Compared with
the traditional PF with full information, the performance of
GP-PF is very good considering it has no prior knowledge of
the turn rate.

V. CONCLUSION

In this study, we propose a new method for single target
tracking for mixed and uncertain motion. The proposed
method is based on Gaussian process regression. The
experiments show that this method has clear advantages to
IMM methods when dealing with model uncertainty, and
shows great robustness for random target trajectories and

Fig. 5: RMSE tracking performance comparison within various measurement
noise density, averaged over 100 Monte Carlo realisations.

system parameters. Further work will explore the proposed
filter’s performance on real world data and the performance
when dealing with the multi-target tracking problem.
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Abstract—Based on recent results of applying graph signal
processing (GSP) to narrowband angle of arrival estimation for
uniform linear arrays, we generalise the analysis to the case
of arrays with elements placed arbitrarily in three dimensional
space. We comment on the selection of the adjacency matrix,
analyse how this new approach compares to the multiple sig-
nal classification (MUSIC) algorithm, and provide an efficient
implementation. We demonstrate that the GSP approach can
perform as well as the MUSIC algorithm in terms of accuracy
and computational cost. Simulations indicate that the proposed
GSP approach avoids the severe performance degradation with
which MUSIC is associated at low signal to noise ratios.

I. INTRODUCTION

An important task in array processing is to estimate the

angle of arrival (AoA) of any sources that illuminate the

sensors. This is often based on the second order statistics of

the array data. For example, the ‘classic’ multiple signal clas-

sification (MUSIC) algorithm [1] estimates the data covariance

matrix; from its eigenvalue decomposition (EVD), MUSIC

then derives a subspace decomposition that enables the AoA

estimation. More than three decades after its publication, the

MUSIC algorithm still remains subject to further investigations

and extensions, see e.g., [2]–[4].

Although array processing algorithms such as MUSIC are

not necessarily restricted to discrete data, many implemen-

tations operate on regularly spaced sampling in time and

space. This however is not necessary: sampling in time can

be non-uniform [5] particularly in the case of compressive

sensing [6], and sampling in space can deviate from the linear

uniformly spaced array (ULA), either deliberately or because

of array deformation or calibration errors, to arbitrary array

configurations [7], [8].

Graph signal processing (GSP) and graph spectral analysis

allow the characterisation and efficient analysis of data that

has been obtained on an irregularly sampled grid [10], and

therefore provide an interesting fit to an array whose elements

may be arbitrarily arranged in space. To date, two papers

have attempted to harness GSP for array signal processing and

AoA estimation in particular: [11] experimentally established a

coarse correspondence of the graph Fourier transform (GFT)

coefficients to the AoA for a single source in a ULA; also

for a ULA, [12] have chosen the graph topology, and hence

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1 and the MOD
University Defence Research Collaboration in Signal Processing.

the GFT, such that a MUSIC-like subspace projection can be

exploited to estimate the AoA of a source. Specifically, the

graph is constructed so that the steering vector for the source

signal is an eigenvector (with unit eigenvalue) of the graph’s

adjacency matrix. Hence, in the noise-free case, the array data

will be orthogonal to the subspace defined by the remaining

eigenvectors.

The ULA in [11], [12] defines a simple and straightforward

adjacency between sensor elements, and derives a cyclic

spatial graph structure by connecting each sensor node with

its two nearest neighbours using unweighted [11] or weighted

edges [12]. In [12], temporal samples acquired by each sensor

are also modelled by a cyclic graph. Modelling the ULA by

a cyclic graph leads to a sparse graph adjacency matrix [18]

that contains only two non-zero elements in each row.

In this paper, we further develop the approach in [12]

and particularly consider the case of non-uniform sampling,

i.e. the case where arrays may be arbitrarily distributed in three

dimensional space [9]. Since for an arbitrary array, spatial

adjacency of sensors is not clearly defined, and sparsity of a

graph’s adjacency matrix has no implications on the sparsity

of the GFT, we replace the adjacency matrix used in [12] for

a fully connected graph in both spatial and temporal domains.

The resulting algorithm has a similar philosophy to that in [12]

but differs in detail. We further develop a low complexity

scheme, and highlight the performance difference between

the GSP and MUSIC approaches. We show that the former,

including its particularisation in [12], operates as a matched

subspace detector [13].

First, we provide a brief review of the array signal model

and MUSIC algorithm in Sec. II. Based on this, the graph

topology and the GFT are motivated in Sec. III. Our GSP-

based AoA estimation approach is then analysed in Sec. IV

and compared to MUSIC via simulations in Sec. V.

II. SIGNAL MODEL AND ANGLE OF ARRIVAL ESTIMATION

A. Signal Model

We assume M sensors located arbitrarily in space, such

that rm ∈ R
3 is the Cartesian coordinate vector for the mth

sensor, with m = 1, . . . ,M . With respect to this array, a

far-field source has a planar wavefront with normal vector

kϕ,ϑ = [sinϑ cosϕ, sinϑ sinϕ, cosϑ]
T

travelling across the

array, whereby the source direction is given in spherical

coordinates by azimuth ϕ and elevation ϑ. When normalised

978-1-7281-3810-7/20/$31.00 ©2020 IEEE 11



by the propagation speed c in the medium, kϕ,ϑ/c is also

known as the source’s slowness vector.

The time delay which the wavefront experiences at the mth

element relative to the origin is tm = 1
c
kT
ϕ,ϑrm. If the unit

length in the coordinate system is chosen as half the minimum

wavelength, then |kϕ,ϑ| = 1 = λmin/2 = c/(2fmax) = cTs,
where Ts is the sampling period assuming critical sampling in

time. Therefore, tm = τmTs with

τm = kT
ϕ,ϑrm , (1)

which measures the wavefront’s delay relative to the origin in

samples.

If the array is illuminated by a narrowband source (labelled

i) from direction {ϕi, ϑi}, then its normalised angular fre-

quency Ωi turns the delay in (1) into a phase shift. The steering

vector, which uniquely describes the phase shift for a source

characterised by {Ωi, ϕi, ϑi}, is

aΩi,ϕi,ϑi
=

1√
M

[

ejΩiτ1 , . . . , ejΩiτM
]H

, (2)

with τm, m = 1, . . . ,M , depending on {ϕi, ϑi} via (1). Also

note that with the relative time lag between the mth and µth

sensor being

τm,µ = kT
ϕi,ϑi

(rµ − rm) , (3)

the corresponding phase shift between the two sensors is

reflected in the complex gain e−jΩiτm,µ .

Using the steering vector in (2), and assuming no loss in

gain across the array, the M sensor signals xm[n] ∈ C, m =
1, . . . ,M with time index n, can be collected into a vector

x[n] ∈ C
M ,

x[n] =

I
∑

i=1

aΩi,ϕi,ϑi
si[n] + v[n] , (4)

where si[n], i = 1, . . . , I, is the ith of I narrowband

source signals illuminating the array, each with parameters

{Ωi, ϕi, ϑi}. The term v[n] ∈ C
M in (4) represents spatially

and temporally uncorrelated zero-mean Gaussian noise with

E
{

v[n]vH[n− τ ]
}

= σ2
vIδ[τ ], where E{·} is the expectation

operator, I is the identity matrix, and δ[τ ] the impulse function.

B. Covariance Matrix and its Eigenvalue Decomposition

For independent narrowband sources with Ω1 = · · · = ΩI ,

the second order statistics of the data are captured by the

spatial covariance matrix

R = E
{

x[n]xH[n]
}

=

I
∑

i=1

σ2
i aΩi,ϕi,ϑi

aHΩi,ϕi,ϑi
+ σ2

vI , (5)

where σ2
i is the power of the ith source. Thus, R contains

information on the angles of arrival {ϕi, ϑi} via the steering

vectors aHΩi,ϕi,ϑi
, i = 1, . . . , I .

The covariance matrix can be factorised via the EVD R =
QΛQH =

∑M
m=1 λmqmqH

m with unitary Q = [q1, . . . ,qM ]
containing the eigenvectors and Λ = diag{λ1, . . . , λM} the

eigenvalues of R. This factorisation is structurally similar to

(5), but the EVD generates orthogonal eigenvectors, a property

that is not necessarily shared by the steering vectors in (5).

Therefore, the eigenvectors do not provide direct access to the

steering vectors and thus to the source parameters {ϕi, ϑi}.

However, if eigenvalues are arranged in descending order, the

EVD provides a subspace partitioning

R = [Qs Qn]

[

Λs 0

0 Λn

] [

QH
s

QH
n

]

, (6)

where Λn = σ2
vI, and Λs ∈ R

I×I contains the dominant

eigenvalues and all source steering vectors lie in the signal-

plus-noise subspace spanned by their corresponding eigenvec-

tors in Qs ∈ C
M×I . The remaining noise-only subspace is

spanned by the columns of Qn ∈ C
M×(M−I). Hence all the

source steering vectors should be orthogonal to this noise-only

subspace.

C. Multiple Signal Classification

In the multiple signal classification (MUSIC) algorithm [1],

we estimate the space-time covariance matrix R̂ from the data.

Due to finite sample size, such that x[n], 0 ≤ n < N , is only

available for N snapshots, there will be a finite approximation

error (R− R̂) that depends on both R and N [14]. As in (6),

we perform a subspace decomposition

R̂ =
[

Q̂s Q̂n

]

[

Λ̂s 0

0 Λ̂n

] [

Q̂H
s

Q̂H
n

]

, (7)

where the columns of Q̂s and Q̂n span the estimated signal-

plus-noise and noise-only subspaces, respectively. The estima-

tion error in R̂ will perturb these estimated subspaces w.r.t. the

ground truth in (6) [15].

Given a steering vector aΩ,ϕ,ϑ for a particular AoA {ϕ, ϑ},

we then test how much it leaks into the estimated noise-only

subspace Q̂n, i.e.

ξ−1
MUSIC(ϕ, ϑ) = ‖Q̂H

n aΩ,ϕ,ϑ‖22 . (8)

This is repeated for each AoA {ϕ, ϑ} of interest. The function

ξ−1
MUSIC(ϕ, ϑ) is zero if a steering vector lies entirely outside

the estimated noise-only subspace. Typically, in MUSIC, in-

stead of looking for zeros/dips of ξ−1
MUSIC(ϕ, ϑ), we inspect

ξMUSIC(ϕ, ϑ) for poles/spikes.

III. GRAPH TOPOLOGY AND GRAPH SIGNAL PROCESSING

In the following, akin to [11], [12], we operate with a single

source, I = 1 (for brevity, let Ω1 = Ω), and investigate how

GSP could assist us with the AoA estimation problem.

A. Spatial Adjacency Matrix

In [12], the adjacency matrix takes into account the phase

shift between neighbouring nodes in a ULA, which induces

sparsity. For the arbitrary 3-d array considered here, defining

neighbourhood or ordering of the sensors is less straightfor-

ward, and hence we work with the cross-correlation between

nodes. This leads to a fully connected graph. Since all elements

have the same gain towards the source signal, they have an
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instantaneous cross-correlation of identical magnitude. Hence

for a single narrowband source with frequency Ω, we have

As =
1

M











0 e−jΩτ1,2 . . . e−jΩτ1,M

e−jΩτ2,1 0 . . . e−jΩτ2,M

...
. . .

...

e−jΩτM,1 . . . e−jΩτM,(M−1) 0











= aΩ,ϕ,ϑa
H
Ω,ϕ,ϑ − 1

M
I , (9)

where aΩ,ϕ,ϑ is the steering vector defined in (2). The lag τi,j
is the relative delay experienced by the source signal between

the ith and jth sensor elements as defined in (3). The only

sparsity of As in (9) are the zero values on the diagonal. The

much sparser arrangement in [12] has little consequence, since

the EVD of As generally will not reflect this sparsity.

B. Temporal Adjacency Matrix

If N snapshots of x[n], n = 0, . . . (N − 1), are available,

then this temporal window of the data can be embedded into

the graph structure. Similar to the cyclic graph structure for

the spatial ULA component, in [12] the temporal dimension is

embedded as a cyclic graph for each sensor element, such that

the overall adjacency matrix emerges as a Kronecker product

between the spatial and the temporal adjacency matrices.

For a narrowband signal at frequency Ω, the snapshots will

induce a phase progression which can be gathered in a vector

aΩ ∈ C
N ,

aΩ = 1√
N

[

1, ejΩ, . . . , ej(N−1)Ω
]H

, (10)

that is similar to a steering vector. Thus, we formulate

At = aΩa
H
Ω − 1

N
I (11)

as an N×N adjacency matrix of the temporal graph associated

with each sensor. With this and (9), the overall adjacency

matrix of the graph connecting all sensors in both spatial and

temporal domains becomes A = As⊗At, with ⊗ denoting the

Kronecker product (see Fig. 2 in [12] for the ULA example).

C. Graph Fourier Transform

Following [12], we use the graph Fourier transform (GFT)

[18] to analyse signals defined on graphs. It is based on the

EVD of the adjacency matrix A = As ⊗At,

A = QΛQH . (12)

Note that with the EVDs As = QsΛsQ
H
s and At = QtΛtQ

H
t ,

(12) simplifies [12] to Λ = Λs ⊗ Λt and Q = Qs ⊗ Qt,

whereby the latter represents the GFT matrix, containing the

GFT basis in its columns [19].

For the EVD of As, given (9) it is easy to show that

As = [aΩ,ϕ,ϑ Vs]Λs

[

aHΩ,ϕ,ϑ

VH
s

]

(13)

where Λs = diag
{

M−1
M

,− 1
M
, . . . ,− 1

M

}

. Due to the eigen-

value λs = − 1
M

possessing an algebraic multiplicity of

(M − 1), Vs ∈ C
M×(M−1) can be selected arbitrarily with

orthogonal columns such that VH
s Vs = I and VH

s aΩ,ϕ,ϑ = 0.

For the temporal component At of the adjacency matrix,

based on (11) and analogously to (13), we have that

At = [aΩ Vt]Λt

[

aHΩ
VH

t

]

, (14)

with Λt = diag
{

N−1
N

,− 1
N
, . . . ,− 1

N

}

and Vt ∈ C
N×(N−1)

arbitrary such that VH
t Vt = I and VH

t aΩ = 0.

This defines the GFT matrix Q in terms of the spatial and

temporal steering vectors aΩ,ϕ,ϑ and aΩ, and their orthogonal

complements Vs and Vt. It is not difficult to show, when the

array configuration is reduced to a ULA, that this Q is identical

(up to ambiguities w.r.t. Vs. and Vt) to the GFT associated

with the sparse adjacency matrices selected in [12].

IV. MUSIC-LIKE SPECTRUM BASED ON GRAPHS AND

GRAPH SIGNALS

A. Scanning Subspaces

Given a fully-connected graph defined by the adjacency

matrix A = As ⊗ At, we define the graph signal as the

concatenation of the snapshots x[n], i.e.,

x
H =

[

xH[0], xH[1], . . . , xH[N − 1]
]

. (15)

In the noiseless case, this graph signal x for a source defined

by {Ω, ϕ1, ϑ1} is aligned with the principal eigenvector of

the GFT matrix Q, i.e. aΩ,ϕ1,ϑ1
⊗ aΩ. Consequently, x is

orthogonal to the space spanned by the other eigenvectors.

Similar to the MUSIC algorithm, for robustness when noise

is present (or for multiple sources), instead of probing for

the alignment of x with this principal eigenvector, we check

for the leakage of x into the complement V of the principal

eigenvector, which is given by

VΩ,ϕ,ϑ = [aΩ,ϕ,ϑ ⊗Vt , Vs ⊗Qt] . (16)

The columns of VΩ,ϕ,ϑ therefore span the noise-only subspace

of the graph signal. With this, we scan the graph signal

for leakage into the noise-only subspace, i.e. we look for

zeros/dips in

ξ−1
GSP(ϕ, ϑ) = ‖VH

Ω,ϕ,ϑx‖22 , (17)

with Ω = Ω1 fixed,s or akin to MUSIC, check ξGSP(ϕ, ϑ) for

poles/spikes.

B. Comparison to MUSIC

The approach in (17) is similar to MUSIC in (8) in the

sense that a noise-only subspace is scanned. The difference

lies in which quantities are estimated, and which quantities

are used to scan a range of parameters. In the GSP approach

for ξGSP(ϕ, ϑ) in (17), the noisy data contributes the vector

x while we obtain VΩ,ϕ,ϑ deterministically for a range of

values {Ω, ϕ, ϑ}. In contrast, MUSIC estimates the noise-only

subspace from the (noisy) sample covariance matrix, and scans

this with the deterministic steering vector aΩ,ϕ,ϑ.

As a further difference, the GSP approach for ξGSP(ϕ, ϑ)
utilises a vector space of dimension MN , and attempts to

average out noise through the matrix multiplication in (17).
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MUSIC averages across the temporal window of N snapshots

to calculate an M ×M sample space time covariance matrix,

such that the dimension of the vector used for scanning is only

M .

C. Numerical Efficiency

For both MUSIC and GSP approaches (8) and (17), we need

to evaluate a norm of the form ‖VHy‖22. Therefore, we have

that

‖VHy‖22 = ‖VVHy‖22
= ‖(I−V⊥V⊥,H)y‖22 , (18)

where [V⊥, V] is unitary. The first step is easy to confirm

via an SVD of V, and the second step is based on subspace

projections [16].

Identifying V⊥ = Q̂s ∈ C
M×1 and y = aΩ,ϕ,ϑ, MUSIC

can thus be evaluated equivalently as

ξ−1
MUSIC(ϕ, ϑ) = ‖aΩ,ϕ,ϑ − Q̂s(Q̂

H
s aΩ,ϕ,ϑ)‖22 . (19)

Calculating (19) only requires 2M complex multiply accu-

mulates (MACs) per tested angle pair {ϕ, ϑ}. However to

determine Q̂s, MUSIC additionally requires the evaluation of

R̂, which over N snapshots absorbs 1
2M(M + 1)N MACs,

and the calculation of its EVD at a cost of O(M3).
For the GSP approach, in (18) we identify V⊥ = aΩ,ϕ,ϑ ⊗

aΩ and y = x, such that instead of (17), we can evaluate

ξ−1
GSP(ϕ, ϑ) = ‖x− (aΩ,ϕ,ϑ⊗aΩ)(aΩ,ϕ,ϑ⊗aΩ)

H
x‖22. (20)

This requires 2MN MACs for the evaluation of an angle

pair {ϕ, ϑ}, but no cost needs to be expended on covariance

estimation or an EVD.

V. SIMULATIONS AND RESULTS

To compare the GSP approach and MUSIC, we assume

an array of M = 5 sensors that lies within a cube of unit

side length, where unity refers to critical spatial sampling at

Ω = π. The three spatial coordinates for each sensor are

drawn—once for all simulations—from a uniform distribution

U(0, 1), while the source signal at a narrowband frequency

Ω1 = π
2 illuminates the array from an azimuth ϕ1 = 20◦

and an elevation ϑ1 = 70◦. As in [12], we collect N = 41
snapshots of data at an adjustable signal-to-noise ratio (SNR).

Over a grid of azimuth and elevations angles {ϕ, ϑ}, Figs. 1

to 4 show the evaluations of (19) and (20) for Ω = Ω1 and two

different SNR regimes. For the high SNR scenario of 30 dB in

Figs. 1 and 2, both the GSP approach and MUSIC provide an

accurate extremum at the source parameters {20◦, 70◦}, with a

sharper lobe for MUSIC. For the lower SNR scenario of 0 dB

in Figs. 3 and 4, the peaks are of lower intensity compared

to the 30 dB scenario, with ξMUSIC(ϕ, ϑ) still providing a

sharper peak compared to ξGSP(ϕ, ϑ).
To assess the accuracy of the proposed GSP-based method,

we evaluate the estimated AoA using the cost functions in (19)

and (20) as

{ϕ̂1, ϑ̂1} = argmin
ϕ,ϑ

ξ−1
i (ϕ, ϑ) (21)
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Fig. 1. GSP-based metric ξGSP(ϕ, ϑ) for M=5 and N=41 at 30 dB SNR.
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Fig. 2. MUSIC metric ξMUSIC(ϕ, ϑ) for M = 5 and N = 41 at 30 dB
SNR.
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Fig. 3. GSP-based metric ξGSP(ϕ, ϑ) for M=5 and N=41 at 0 dB SNR.
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Fig. 4. MUSIC metric ξMUSIC(ϕ, ϑ) for M = 5 and N = 41 at 0 dB
SNR.

with i = {MUSIC, GSP}. This non-linear optimisation prob-

lem is solved by the simplex algorithm [17], and performed

over an ensemble of 104 realisation with different noise vectors

v[n] in (4) for every SNR value under test. As a metric,

we measure the angle between the direction kϕ1,ϑ1
of the

source, and the direction associated with the estimated source

parameters, k
ϕ̂1,ϑ̂1

via

ψ = ∠{kϕ1,ϑ1
,k

ϕ̂1,ϑ̂1
} = arc cos(kH

ϕ1,ϑ1
k
ϕ̂1,ϑ̂1

) (22)

i.e. the Hermitian angle between the two direction vectors.

Varying the SNR over the range from -20 dB to 20 dB, mean

values of ψ for the GSP-based approach and for MUSIC are

shown in Fig. 5. For high SNR, as expected from the surface of

the metrics in Figs. 1 and 2, the mean performance is identical.

To give an insight into the spread of the distribution of the

ensemble of 104 experiments per SNR, Fig. 5 also contains the

quartiles, which highlight that the MUSIC and GSP provide

asymptotically identical accuracy as the SNR increases.
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Fig. 5. Ensemble results for measuring the deviation of the estimated direction
from the true one, ψ in (22), in dependency of the SNR of the data.

Towards low SNRs, the covariance matrix estimate R̂

becomes increasingly poor, leading to larger perturbation of

the subspaces in (7) as compared to (6). For MUSIC, this

subspace leakage is known to reach a cliff-edge type perfor-

mance degradation as the estimation error increases [3]. This

degradation can be observed in Fig. 5 for SNR region below

0 dB; similar results have been observed in e.g. [4]. Albeit

that neither algorithms produce very accurate results, the GSP-

based approach degrades gracefully and hence at lower SNR

values outperforms MUSIC, since (20) essentially represents

a matched filter using a beamformer [13], which is known to

be optimal for the single user case.

For the above simulations, solving (21) under Matlab on an

Intel CPU N3350 1.1GHz with 4GB RAM takes on average

11.9 ms CPU time for the GSP approach, while MUSIC takes

11.0 ms. Since for the selected parameters MN ≈ O(M3),
the two computational costs from Sec. IV-C are in balance.

VI. CONCLUSIONS

In this paper we have investigated a GSP approach for angle

of arrival estimation. Starting from [12], we have extended the

approach from a ULA to an arbitrary sensor array, investigated

the similarities and differences to the MUSIC algorithm, and

provided a numerically efficient approach over [12] to the

evaluation of both the GSP approach and MUSIC: while MU-

SIC estimates the noise-only subspace from data, and probes

it with accurate steering vectors, in the GSP approach, the

subspace is obtained from the adjacency matrix and therefore

deterministically from the graph topology, which is probed by

the potentially noisy graph signal.

For the selected simulation scenario and its parameters,

both algorithms were of similar computational complexity.

Simulations suggest that as SNR increases, the GSP approach

asymptotically performs like MUSIC. At low SNR however,

the GSP approach, implementing an optimum single user

matched filter, avoids the fast degradation that is associated

with MUSIC due to subspace leakage. This implies that the

GSP approach, acting as a matched subspace detector, cannot

provide any new gains for AoA estimation. This is perhaps

unsurprising since GSP draws its advantages from additional

information [18], while the matched subspace detector already

operates optimally on all available data.

Because of the arbitrary three-dimensional array configura-

tion, we have not embedded any measure of physical adjacency

of sensors in the graph topology, and both the graph and

its adjacency matrix were selected non-sparse. While this

does not impact on the GFT and hence the results in this

paper, sparsity in the adjacency matrix can be important when

seeking distributed implementations [20] and will therefore be

worth investigating as a future step.
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Abstract—In this work, we utilise gradient-ascent multi-
objective optimisation within an information-theoretic compres-
sive sensing framework to classify micro-Doppler (m-D) signa-
tures in the presence of structured input noise. The proposed
framework has the potential to simultaneously detect the class
of a primary source exhibiting m-D features in its radar return
and the class of a secondary, coincident source with its own
m-D signature. We demonstrate through simulations with real
radar return data that there is a configurable trade-off between
the classification accuracies for the two sources and that, given a
sufficient number of compressive measurements, the performance
for the secondary source can be improved without substantially
impacting the classification accuracy for the primary source.

I. INTRODUCTION

The main motion of an object with respect to a radar
determines its predominant Doppler frequency shift; any sec-
ondary motions, such as the rotation of an aircraft’s rotor
blades, contribute with features known as micro-Doppler (m-
D) signatures [1], [2]. Such signatures appear superimposed
on the object’s main Doppler contribution, and can be used
to identify targets such as humans [3], animals [4], and heli-
copters [5]. Since m-D signatures are generally best perceived
in the time-frequency domain [2], dimensionality reduction
and feature extraction efforts typically revolve around spectro-
gram [2], [6], cepstrum [7], or bispectrum and bicepstrum [8]
representations. In general, when utilising features extracted
from such time-frequency representations, the most prominent
m-D classification approaches involve support vector ma-
chines [6], Bayesian classifiers [9], Gaussian mixture models
(GMMs) [7], [8], or neural networks [3].

Dimensionality reduction methods based on linear random
projections — i.e., compressive sensing [10] (CS) — have
gained significant attention recently; however, random projec-
tions may not be the best choice if we know the statistical
properties of the underlying signal [11]. By employing an
information-theoretic approach, one can design a linear pro-
jection such that the mutual information (MI) between the
projected signal and the source signal or its class label is
maximised [12]. Intuitively, as the MI increases, the recovery
of the source signal or label information improves; indeed, the
Bayes classification error is bounded by the MI [12]. Work
in [13] utilises MI optimisation to design a linear projection
that can trade-off signal recovery and classification accuracy
for sources with arbitrary distributions.

The majority of CS approaches tackle scenarios in which a
source is compressively sampled in the presence of measure-
ment noise — i.e., noise added after the act of measurement.

The main signal model considered in this paper instead corre-
sponds to an instance of CS with input — or “folded” [14] —
noise, which some argue is a more realistic setup for CS [15].
In the context of m-D signatures in radar returns from moving
objects, input noise might correspond to non-static clutter or
a secondary source of m-D information. Existing CS-based
m-D classification approaches [5] typically frame the problem
as one of sparse signal recovery and do not account for input
noise.

In general, a single Gaussian model does not provide a
sufficiently accurate description of source signals [16]; instead,
the distribution of a collection of signals can be approximated
by a mixture of several Gaussians. In addition to being capable
of modelling m-D features extracted from a time-frequency
representation [7], GMMs have been shown to be effective [17]
and in some cases superior to sparse signal models [16] in
CS scenarios. Recent work [18] utilised MI maximisation
and GMMs within a CS framework to optimise information
throughput for a source signal in the presence of structured
input noise.

Here, we generalise a key information-theoretic result
of [18] to complex signal models and demonstrate its use in a
subspace learning algorithm that can be applied to real radar
data containing m-D signatures. In this context, we propose a
novel system capable of jointly classifying the m-D signatures
of a primary, always-present source and a secondary, fleeting
source. By modelling both sources via GMMs and treating
each as a source of structured input noise for the other, this
system employs an iterative gradient-ascent approach to design
a linear projection matrix capable of discriminating between
the information throughput for each source. We demonstrate
the various performance trade-offs that exist within the chosen
signal model through simulations.

Below, Sec. II and Sec. III establish the signal model con-
sidered in this paper and a key theoretical result, respectively.
Sec. IV provides an overview and practical demonstration of
the proposed approach, and conclusions are drawn in Sec. V.

Notation: Straight bold lowercase and uppercase symbols
denote vectors and matrices, respectively, and In is an n×n
identity matrix. Italicised uppercase letters such as Y and C
denote random vectors and variables; their realisations are
lowercase equivalents, such as y or c. The superscripts {·}H
and {·}∗ denote Hermitian transpose and complex conjugate
operations. Operators E[·], |·|, and Arg{·} evaluate the expec-
tation, magnitude, and phase. The complex gradient matrix
is defined as in [19], such that ∇ΦF , ∂F/∂Φ∗, where

978-1-7281-3810-7/20/$31.00 ©2020 IEEE 16



[∇ΦF ]ij=∂F/∂[Φ∗]ij and [·]ij represents the (i, j)th element
of a matrix. Similarly, [·]i returns the ith element of a vector.

II. SIGNAL MODEL

We consider the following complex-valued signal model,
which can be considered an input (“folding” [14]) noise model:

Y = Φ(X + N) + W . (1)

Following the compressive sampling protocol, we have mea-
surements Y ∈ C

m obtained from some desired signal X ∈ C
n

via a compressive measurement matrix Φ ∈ C
m×n, with

m ≪ n. The signal N ∈ C
n, which is independent of X

and — when attempting to recover the features of X — can be
considered as input noise, is distributed according to a complex
Gaussian mixture (GM); i.e.,

N ∼
∑K

k=1
sk CN (n;µ(k),Γ(k)) , (2)

with µ(k) ∈ C
n, Γ(k) ∈ C

n×n, and
∑K

k=1 sk = 1. The vector
W ∼ CN (w;ν,Λ) represents additive complex Gaussian
noise with mean ν ∈ C

m and covariance Λ ∈ C
m×m. The

distribution of Y given the observation of x and the knowledge
that n has been generated according to the kth Gaussian
component in (2) is therefore

py|x,k(y|x, k) = CN (y; ȳ(k),Σ(k)) , (3)

with mean vector ȳ(k) = Φ(x + µ(k)) + ν and covariance
Σ(k) = ΦΓ(k)ΦH +Λ. It is assumed that Σ(k) is invertible.

Suppose that an instance of X is generated by one of Jx
underlying classes, with each class, c = 1 . . . Jx, occurring
with probability zc. If the data distribution for class c is
px|c(x|c), the joint density is px,c(x, c) = zc px|c(x|c), and the
global signal density is px(x) =

∑Jx
c=1 zc px|c(x|c). For now,

we make no assumption on the form of px|c(x|c).

III. KEY THEORETICAL RESULT

In [18], several terms relating to the gradient of MI for a
real-valued version of the signal model in (1) are introduced.
In this section, we generalise one of these results to our chosen
complex signal model.

Theorem 1. With I(C;Y) defined as the Shannon MI between
the underlying class of X — denoted by a discrete random
variable C — and Y, the gradient of I(C;Y) with respect to
Φ for the signal model of (1) is

∇ΦI(C;Y) = Λ−1ΦEz,c . (4)

Here, Z = X+N such that C → X → Z→ Y forms a Markov
chain, Ez,c = Ec,y

[

(E[z|c, y]−E[z|y])(E[z|c, y]−E[z|y])H
]

,

E[z|c, y] =
K
∑

k=1

pk|c,y(k|c, y)
(

Γ(k),−1 +ΦHΛ−1Φ
)−1

×
(

Γ(k),−1
(

E[x|c, y, k] + µ(k)
)

+ΦHΛ−1(y− ν)
)

, (5)

and E[z|y] =
∑Jx

c=1 pc|y(c|y)E[z|c, y].

Proof. The gradient of I(C;Y) can be defined as
∇ΦI(C;Y) = ∇Φh(Y) − ∇Φh(Y|C). In a proof that
will be described in a subsequent publication, we formulate

expressions for the gradient of the entropy of Y, ∇Φh(Y),
and the gradient of the conditional entropy, ∇Φh(Y|C). �

IV. APPLYING THE SIGNAL MODEL TO RADAR DATA

A. Scenario

For a practical demonstration of the utility of the expression
in (4), we consider a scenario in which the signal model of (1)
is applied to radar data containing m-D signatures. GMMs
have been shown to be effective in CS [16], [17] and for the
modelling of m-D time-frequency features [7]. We therefore
opt for both X and N to be represented by GMMs. Random
vector X represents some signal of interest that is guaranteed
to be present in the signal model and is distributed as

X ∼
∑Jx

c=1
zc
∑O

o=1
πc,o CN (x;χc,o,Ωc,o) . (6)

That is, the probability distributions of classes c = 1 . . . Jx
of X are each characterised by a GM with O components.
Random vector N represents a secondary source that may or
may not be present in the system at the time of measurement.
The secondary source — which has a probability of occurrence
of γñ — is distributed as

Ñ ∼
∑Jñ

ℓ=1
r̃ℓ
∑G

g=1
υ̃ℓ,g CN (ñ; η̃ℓ,g, Θ̃ℓ,g) . (7)

When the secondary source is not present, N is distributed as
CN (0, σIn) for some arbitrarily small σ; i.e., the value of N
at this moment is close to zero. Thus, the distribution of N is

N ∼
∑Jn

ℓ=1
rℓ
∑G

g=1
υℓ,g CN (n;ηℓ,g,Θℓ,g) , (8)

with Jn = Jñ + 1 and

rℓ =

{

γñr̃ℓ, ℓ < Jn

1− γñ, ℓ = Jn
, υℓ,g =

{

υ̃ℓ,g, ℓ < Jn

1/G, ℓ = Jn
,

ηℓ,g =

{

η̃ℓ,g, ℓ < Jn

0, ℓ = Jn
, Θℓ,g =

{

Θ̃ℓ,g, ℓ < Jn

σIn, ℓ = Jn
.

Within the context of the signal model of (1), we primarily
wish to design Φ such that we are able to accurately classify
X given Y. Provided that there is no significant detrimental
impact on the classification accuracy of X, it might also be
beneficial to use knowledge of the characteristics of N to
complement the design of Φ such that both X and N can be
accurately classified given Y. Designing Φ in this way would
be useful if the operational circumstances of the system were
to change, with N (i.e., Ñ) becoming a signal of interest.

If we want to identify the Φ that maximises I(C;Y), we can
reparameterise N according to (2) and use (4) in a gradient
ascent scenario akin to that of [13], [18]. Analogously, if ℓ
denotes an instance of a discrete random variable L, we could
maximise I(L;Y) by treating X as a noise signal. Given the
above scenario, the objective function to be maximised is

F (Φ, β) = I(C;Y) + βI(L;Y) , (9)

where β ∈ R controls the relative importance of the infor-
mation from the secondary source, I(L;Y). This problem is
reminiscent of the one in [13]; though in our case, we distin-
guish between two independent sources instead of balancing

17



the reconstruction and classification of a single source. For
our purposes, we maintain β ≥ 0. If β is negative as in [18],
information relating to the class of the secondary source is
actively penalised; this might be advantageous if the class of
the secondary source is to be kept hidden from the receiver of
the compressed measurement.

An iterative gradient ascent algorithm can attempt to iden-
tify the Φ that maximises F (Φ, β) by setting Φ ← Φ +
δ∇ΦF (Φ, β) at each iteration. The step size δ > 0 controls the
rate of change of Φ. To obtain ∇ΦI(C;Y), we reparameterise
the probability distribution of N according to (2) with
K = JnG, sk = rℓ′υℓ′,g′ , µ(k) = ηℓ′,g′ ,

Γ(k) = Θℓ′,g′ , ℓ′ =
⌈

k
G

⌉

, g′ = ((k−1)modG)+1,

where ⌈·⌉ is the ceiling function. We can then evaluate (4) via
Monte Carlo (MC) integration and utilise the inference model
detailed in Sec IV-B.

To obtain ∇ΦI(L;Y), we redefine the probability distri-
bution of X as a GM with JxO components and use an
appropriately modified version of the inference model below.

B. Inference Model

Under the chosen signal model in (1), the general Bayesian
inference model for X is a novel complex-valued extension of
the model in [18]. It is constructed as follows:

pc|y(c|y) =
zc py|c(y|c)

py(y)
=

zc py|c(y|c)
∑Jx

c′=1 zc′ py|c(y|c′)
, (10)

py|c(y|c) =
∑O

o=1

∑K

k=1
πc,o sk py|c,k,o(y|c,k,o) , (11)

py|c,k,o(y|c,k,o) = CN (y;Φ(χc,o+µ(k))+ν,

Σ(k)+ΦΩc,oΦ
H) , (12)

pk|c,y(k|c, y) =
sk
∑O

o=1 πc,o py|c,k,o(y|c, k, o)
py|c(y|c)

, (13)

px|c,y,k,o(x|c, y, k, o) = CN (x; χ̃(k)
c,o , Ω̃

(k)
c,o ) , (14)

Ω̃(k)
c,o =

(

ΦHΣ(k),−1Φ+Ω−1
c,o

)−1

, (15)

χ̃(k)
c,o = Ω̃(k)

c,o

(

ΦHΣ(k),−1
(

y−Φµ(k)−ν
)

+Ω−1
c,oχc,o

)

. (16)

A closed-form expression can therefore be found for

E[x|c, y, k] =
∑O

o=1 πc,o py|c,k,o(y|c, k, o)χ̃(k)
c,o

∑O
o′=1 πc,o′ py|c,k,o(y|c, k, o′)

. (17)

Furthermore, the most likely class given knowledge of y is

ĉ = max
c

pc|y(c|y) = max
c

{

zc py|c(y|c)
}

. (18)

A similar inference model can also be derived for N.

C. Gradient-Based Numerical Solution

To attempt to identify the Φ that maximises F (Φ, β), we
adapt the iterative gradient ascent approach of [13]. Note that
F (Φ, β) is not, in general, a convex or concave function of
Φ; thus, finding a global-optimal solution is not guaranteed.
During iterations, we constrain the energy of Φ such that

tr
{

ΦΦH
}

=m. The gradient ascent approach operates over a
total of ρ iterations and can be summarised as follows:
• Draw [Φ]ij from CN (0, 1); normalise s.t. tr

{

ΦΦH
}

=m.
• While the number of iterations is below ρ:

1) Draw S samples of X, N, and W; evaluate (1);
2) Compute (15) and (16); evaluate (13) and (17);
3) Compute ∇ΦI(C;Y) via (4) using MC integration;
4) Update the inference model for N; compute ∇ΦI(L;Y);
5) Φ← Φ+ δ∇ΦF (Φ, β); normalise s.t. tr

{

ΦΦH
}

= m.

D. Formatting the Radar Data
To establish the parameters of the GMMs prior to the design

of Φ, instances of the primary and secondary sources, X and
Ñ, are obtained by applying the short-time Fourier transform
(STFT) to continuous-wave (CW) radar return time series data
captured in the presence of each source in isolation. For testing
purposes, when either the primary source or both sources are
present, instances of X or (X+Ñ) are obtained by applying the
STFT to radar return time series data captured in the presence
of the primary source or both sources, respectively.

A time series r is the output of a radar receiver system
and can contain the radar returns from the primary source, the
secondary source, or both sources together. The time series
has been reduced to baseband and downsampled such that
the final sampling rate is adequate to capture the maximum
m-D frequency shift without aliasing. Using the terminology
of [4], for feature extraction purposes, the time series is split
into R non-overlapping ‘frames’ of a predetermined length.
Each frame rf , f = 1 . . . R, is then further segmented
into B overlapping ‘bursts’. Each burst from frame f , bf,b,
b = 1 . . . B is then windowed to reduce spectral leakage and
transformed to the frequency domain via the discrete Fourier
transform to obtain af,b.

When training the GMMs that describe the probability
distributions of X, Ñ ∈ C

n via the expectation-maximisation
(EM) algorithm [20], instances of X and Ñ are obtained
from af,b when r contains radar returns from either source
in isolation. Each vector af,b ∈ C

n has elements defined as
[af,b]i = |[af,b]i|ejArg [af,b]i , i = 1 . . . n. A disadvantage of
this approach is that the probability distribution of the phase
term, ejArg [af,b]i , is a circular uniform distribution, since it is
unknown a priori at which point in its cycle an m-D signature
is sampled. To successfully approximate the distributions of X
or Ñ in this form, a significant number of Gaussian mixture
components might be required.

In m-D signature analysis, the magnitude of the time-
frequency representation is often used [2]; an approach that
discards the phase could therefore generate instances of X or Ñ
from examples of |af,b|. However, it should be noted that if the
phase is discarded during testing, when af,b contains features
from both sources, the signal model of (1) does not necessarily
apply, since |[x]i + [ñ]i| ≤ |[x]i| + |[ñ]i|, with equality only
when Arg [x]i = Arg [ñ]i + 2πd for i = 1 . . . n and d ∈ Z.

In this paper, we choose to uphold the complex signal
model in (1) and accept that a significant number of Gaus-
sian mixture components might be required to encapsulate
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TABLE I
APPROXIMATE FAN SPEEDS IN ROTATIONS PER SECOND.

Fan Speed 1 Speed 2 Speed 3

1 5.68 rps 6.21 rps 6.78 rps
2 2.63 rps 4.10 rps 5.06 rps

the aforementioned phase ambiguity. Fortunately, results in
Sec. IV-E demonstrate that a moderate number of components
can still achieve a good level of classification accuracy.

E. Simulation Results for Real Data

Real radar returns from two fixed-location, three-bladed
fans were acquired with a monostatic K-MC3 24GHz radar
system in CW mode at a sample rate of 22 kHz. The fans
were positioned at a similar distance from the radar in an
anechoic chamber and possessed three rotation speeds; these
were estimated from the data and can be seen in Tab. I.
Note that the fans had different blade designs and therefore
produced m-D signatures with different characteristics. Three
acquisitions of 30 seconds were made for each speed; these
were downsampled to a rate of 5.5 kHz, which was found
to adequately capture the maximum Doppler shift from each
fan without aliasing. Both fans were positioned such that the
plane in which the fan blades were rotating was approximately
parallel to the radar line of sight. In our simulations, Fan 1
and Fan 2 are considered to be the primary and secondary
sources, respectively.

For feature extraction purposes, we use a frame length
of 700, as this captures a period of the m-D signature of
the slowest fan speed. As has been noted elsewhere [7], as
the GMM dimensionality increases, the parameter estimation
performance in the GMM training stage degrades due to the
finite training database size. We therefore limit the number of
frequency coefficients generated in the STFT (and therefore
the burst length and dimensionalities of X,N ∈ C

n) to n = 32.
To aid with the extraction of m-D signatures in various stages
of their cycles, we use a burst overlap of 0.75; i.e., each burst
shares 75% of the same time series data with its neighbours.
Each burst is windowed using a 32-point Hamming window.
Given these parameters, each frame produces B = 84 bursts.

Training data is obtained from 200 frames of radar return
time series data recorded for each fan individually at each
speed. For testing purposes, Fan 1 is either alone or in the
presence of Fan 2 in the anechoic chamber; since each fan has
three speeds, a total of 12 configurations are available. Data
used for testing purposes only is obtained from 32 frames of
time series data for each testing configuration.

We set the probability of occurrence of the second source
signal, Ñ, to be γñ = 0.75 to match the rate of occurrence in
the dataset used for testing. For the MC integration step at each
iteration, S = 500 draws are used to evaluate ∇ΦF (Φ, β).
Note that if γñ were to be decreased, additional MC draws
might be required at each iteration to adequately account for
the characteristics of the now less-probable second source
when designing Φ.

Using the EM algorithm [20] and the training examples for
each fan speed, the distributions of X and Ñ are fitted such
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Fig. 1. Classification accuracy for sources (a) X and (b) N for various β and
G=O∈{1, 3, 5, 7} mixture components for each class with m = 5.

that each of the Jx = Jñ = 3 classes had O = G ∈ {1, 3, 5, 7}
mixture components. For demonstration purposes, samples
of measurement noise W ∈ C

m are drawn according to
W ∼ CN (w;0, 10−6Im). Values of m ∈ {1, 3, 5, 7, 9} and
δ = 0.01 are used. To illustrate the flexibility of the approach,
β is varied in the range β ∈ [0,∞). Here, β = 0 results in
the optimisation of I(C;Y) only, while β = 1 attributes equal
weight to both gradient terms. We use the notation β =∞ to
represent the optimisation of I(L;Y) only; this corresponds
to the case where ∇ΦI(C;Y) is ignored and β = 1. In the
absence of the second source, the covariance of N is deter-
mined by σ = 10−6. At each iteration, the aforementioned
test samples are used to compute the classification accuracy.
While each burst can be classified with respect to the classes
of X via (18), if each burst b = 1 . . . B generates an output
y1 . . . yB , we can classify each frame of test data via

ĉf = max
c

{

zc py|c(y1|c) · · · py|c(yB |c)
}

, (19)

under the assumption that yb, b = 1 . . . B, are mutually
independent when conditioned on class c = 1 . . . Jx. We
similarly classify each frame with respect to the classes of
N. Results are obtained after ρ=500 iterations and averaged
over 100 instances of the simulation scenario.

Fig. 1 demonstrates the impact of changing the number of
mixture components for various choices of β with m = 5.
These results confirm that the method is working as expected;
i.e., increasing β reduces the throughput of information relat-
ing to X while increasing knowledge of N at the output. For
this choice of m, the method cannot significantly increase the
classification accuracy for N without notably impacting the
performance for X. Fig. 1 also confirms that increasing the
GMM order generally increases performance. However, given
that performance for N has in general only increased slightly
— and, indeed, has decreased slightly in the case of β = ∞
— with the transition from order 5 to 7, it can be established
that increasing the GMM order beyond this point is unlikely
to be worth the additional computational cost.

The choice of number of measurements, m, enables a
trade-off between performance and computational and memory
requirements for the end-user. This trade-off is evidenced by
Fig. 2, which confirms that increasing m generally increases
classification accuracy for both X and N. It should be noted
that for m = 7 and m = 9 and β ∈ [0, 1], performance for X
is roughly the same, indicating that the maximum achievable
classification accuracy for X has been reached. The increase
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Fig. 2. Classification accuracy for sources (a) X and (b) N for various β and
m∈{1, 3, 5, 7, 9} measurements with G = O = 1.
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Fig. 3. Classification accuracy versus β for sources X and N with: (a) G =
O ∈ {1, 7} and m = 5; (b) G = O = 1 and m ∈ {5, 9}.

in m for these cases therefore only significantly increases
performance for N. Clearly, the advantages offered by the
proposed approach are most significant for these larger values
of m, as there are sufficient degrees of freedom within the
design process for Φ such that information from X and N can
be jointly maximised.

To evaluate the impact of increasing β on classification
accuracy for X and N, we have extrapolated the results of
Fig. 1 and 2 by fitting a set of exponential functions to the
data points. Fig. 3(a) illustrates the functions fitted to Fig. 1
for G = O ∈ {1, 7} and Fig. 3(b) similarly shows the
functions for Fig. 2 for m ∈ {5, 9}. Fig. 3(b) highlights that
for β ∈ [0, 1] and m = 9, a small sacrifice in performance
for X translates to relatively large gains in performance for N.
If the proposed framework were to be deployed in another
application, a similar figure could aid the system designer
when selecting system parameters.

V. CONCLUSIONS

In this work, we have utilised an information-theoretic
expression for the gradient of MI to develop a novel CS
framework capable of jointly classifying the m-D signatures
of a primary, always-present source, and a secondary, fleeting
source. Through simulations, we have demonstrated that when
using the proposed approach, there is a configurable trade-
off between the classification accuracies for the sources.
Notably, we have shown that if the number of compressive
measurements is sufficiently high, the classification accuracy
for the secondary source can be increased without significantly
impacting the performance for the primary source.

The proposed framework could be extended to applications
in which the operational parameters are liable to change such
that a secondary source of information — which might be
ignored in normal circumstances — becomes more important.
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Abstract—In this paper, we present a method for the iden-
tification of different multifunction radar emitter types. It is
based on Long Short-Term Memory recurrent neural networks
and a previously published hierarchical modelling approach. This
approach maps radar pulses to different levels of symbols which
can be regarded as parts of a radar language. We evaluate our
method with an example emitter that can make use of three
different resource management techniques. The results show that
it is possible to distinguish between radar types that mainly
use the same emission parameters but differ in the resource
management method.

I. INTRODUCTION

Identification of the radar emitter type from a stream of
pulses is an important aspect in the field of electronic warfare
(EW) as it provides information about the threat an emitter
poses to a platform. Traditionally, emitter identification is
performed by comparing the parameters stored in a database
to the ones measured from the received signal. Incoming
pulses are described by pulse descriptor words (PDWs), which
include parameters like pulse repetition interval (PRI) or pulse
repetition frequency (PRF), radio frequency (RF), and pulse
width (PW). However, modern multifunction radars are agile
such that simple pattern matching methods do not provide
satisfactory identification accuracy any more. To recognise an
agile radar, the sequential information provided in the PDW
stream needs to be considered. In this paper, we therefore
present an identification approach based on a special variant
of a recurrent neural network, the Long Short-Term Memory
(LSTM) [1], which is especially well suited to process sequen-
tial data that contains long-term dependencies.

Data from different radars is collected by listening to a
specific frequency for a certain amount of time, which is called
the (receiver) dwell time. Usually, several emitters are active
simultaneously and hence, pulses from different radars are
received at once. The first processing step therefore consists
of sorting the pulses into sequences that should contain PDWs
from one emitter only. This step is called deinterleaving, an
introduction to the basic methods can be found in [2]. No
information about the emitter identity is available after the
deinterleaving step. Therefore, it is not possible to combine
sequences received in different dwells into a longer sequence
of PDWs of the same emitter to improve the identification
accuracy. Effectively, data from different emitters is alternating
in the input to the identification method. This is illustrated in

Sorted pulsesIntercepted pulses

Sequence 1Sequence 2

Deinter-
leaving

Sequence 3

Fig. 1. The input to the identification method is a stream of sequences that
consist of deinterleaved pulses from potentially different emitters.

Fig. 1. At this point, start and end of each sequence are known,
but not to which emitter it belongs.

A. Related Work

First attempts to identify emitters with neural networks
date back to 1990 [3]. Since then, radars have become more
complex and neural networks more powerful. More recent
approaches include the use of multilayer perceptrons [4],
convolutional neural networks [5] and deep belief networks
[6]. However, these methods need a fixed-length representation
of their input and are therefore not efficiently applicable for
processing of streaming data. The methods most similar to
ours are those presented in [7]–[9] since they also employ
recurrent neural networks (RNNs) for emitter identification.
The RNN employed in the papers is either an LSTM or a
Gated Recurrent Unit (GRU) [10]. Studies that evaluate the
differences between gated RNN architectures like LSTM and
GRU showed that none of them is fundamentally superior to
the other [11], [12].

In contrast to our approach, [7]–[9] use a different encoding
or modelling of the input data and different architectures of the
networks. In [7], a sequence of n PDWs with several features
(PRI, RF, PW, bandwidth (BW), amplitude (Amp), RF shift)
is projected to a higher dimension and then averaged by a
trainable layer before being processed by a GRU. In [8], the
features of the pulses considered are PRI and PW. These are
discretised with reference to a global maximum, embedded
into a vector and input to a GRU network. In [9], the features
PRI, RF and PW are used. They perform two types of input
normalisation and concatenate the results, which is then input
to parallel layers of LSTM cells that process different features
separately.

B. Our Contributions

In this paper, we develop an LSTM based identification
approach that is applicable to the hierarchical modelling
presented in [13], [14] and briefly repeated in Section II.
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Moreover, we investigate which level of the modelling is best
suited for identifying the emitter type.

As described above, the input to the identification network
consists of a stream of alternating sequences from different
emitters (see Fig. 1). None of the papers [7]–[9] thoroughly
investigates how the length of a consecutive sequence of data
from the same emitter influences the identification accuracy. In
this paper, we show how the identification accuracy depends
on this length, which we call the sequence length. The impact
of the sequence length on training and testing of the LSTMs
is evaluated. We also demonstrate that LSTMs are able to dis-
tinguish between emitter types with mainly identical emission
parameters but different resource management methods. This
means that the main difference between the radars is in the
frequency of certain parameters and agility of their emissions
and not in the emissions themselves. Furthermore, we show
that our identification approach is very robust with regards to
missing and additional data in the input stream.

In Section II, we briefly repeat the hierarchical modelling
approach presented in [14]. The example emitter used for the
evaluation is described in Section III. In Section IV, the details
on the implementation of the identification network are given
and in Section V, the evaluation is presented. The conclusions
are given in Section VI.

II. HIERARCHICAL MODELLING

The identification method presented in this paper is based
on the hierarchical modelling approach of a radar language
described in [13], [14]. Radar emissions are structured into
different levels of modelling, which are in analogy to natural
language called letters, syllables, words, commands, and func-
tions (called tasks in [14]). These are characterised as follows:

• Letters: Letters correspond to the pulses the radar emits
and can be characterised e.g. by the triple (PRF, RF, PW).

• Syllables: Syllables are common combinations of letters.
They correspond to a radar burst.

• Words: Syllables are combined to form words. These
correspond to a radar dwell.

• Commands: Commands describe words on a higher level
of abstraction and can be interpreted as word types or
classes.

• Functions: Functions are related to the purpose of the
emission, e.g. searching or tracking targets.

Fig. 2 shows a schematic visualisation of the processing
chain based on the hierarchical modelling. After the pulses
have been intercepted and deinterleaved, the sequences of
PDWs need to be mapped to the corresponding symbols
(symbol extraction). The signal to noise ratio (SNR) of the
received signal influences whether a symbol can be detected
or not, but does not affect the processing after a successful
detection. The symbol sequences are then input to the LSTM,
which outputs an emitter ID per sequence.

III. EXAMPLE EMITTER

For evaluation of the proposed identification method, we
use simulation data from an airborne multifunction radar.

TABLE I
NUMBER OF SYMBOLS USED BY EACH EMITTER TYPE [14].

Method Letter Syllable Word Command Function
QoS 18 25 380 26 653 10 3

Rules-v1 13 103 21 2 3

Rules-v2 18 27 786 34 440 10 3

The same data was also used in [14]. The radar can make
use of three different resource management methods, which
determine how the radar resources, e.g. time, are allocated
to different tasks it needs to fulfil. Furthermore, the waveform
parameters are selected adaptively. The simplest resource man-
agement method uses a set of simple and fixed rules to chose
the waveform parameters and allocate time to different tasks.
A more sophisticated version of the fixed rules constitutes
the second method. The most complex method makes use
of a Quality of Service (QoS) approach. More details on the
resource management methods and the parameters of the radar
can be found in [14]–[16]. Since the resource management has
a big impact on the structure and complexity of the emissions,
the radar can be regarded as three different radars with the
same language but a different grammar. In the following, the
radars are abbreviated with rules-v1, rules-v2, and QoS. Table
I lists the number of symbols (i.e. letters, syllables, words,
commands, and functions) used by each radar type.

IV. IMPLEMENTATION

Traditionally, emitters are identified by comparing the wave-
form parameters of the intercepted signal with the entries in a
database. However, the three example emitters presented above
partly make use of the same parameters and therefore cannot
be identified solely by the parameters used. To distinguish
between the example emitters, the identification method needs
to take the frequency and agility of the emissions into account,
i.e. it needs to identify the resource management method.
Hence, we train an LSTM network for identification.

A. Input Encoding

The input to the LSTM consists of radar symbols (see Fig.
2), which have to be encoded into a numerical representation.
In [14], word embeddings are used to encode the symbols
of each example emitter, whereby each emitter has its own
dictionary. Since the identification network needs to know the
symbols of all emitters, a global dictionary of word embed-
dings must be learnt. This is done in the same way as in [14]
by using the reference implementation of word2vec1 as a basis
and the parameters shown in Table II. The global dictionary
contains different vector representations of the symbols than
the individual dictionaries of the emitters since the learnt
representation is context-dependent and the radars differ in
their behaviour.

1https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/
tutorials/word2vec/word2vec_basic.py
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TABLE II
WORD2VEC PARAMETERS FOR THE VECTOR REPRESENTATIONS OF THE

RADAR SYMBOLS.

Parameter Letter Syllable Word Command Function
Embedding size 8 64 64 4 2

Batch size 128 128 128 128 128

Skip window 30 30 30 30 30

Num sampled 4 64 64 2 1

B. Data

For training and testing the same data as in [14] is used. It
contains emissions from eight scenarios with 300 Monte Carlo
runs per scenario and emitter type. Each scenario represents
a different kind of situation, which include raids of hostile
aircraft, fighters, jamming and missiles. Training is performed
on six of the eight scenarios with 1440 runs per emitter type.
The validation set consists of two scenarios with 240 runs per
emitter type. For testing, all eight scenarios were used with 480
Monte Carlo runs per emitter type. For letters, a huge amount
of data is available and hence, only two runs per scenario and
emitter type were considered for training and testing.

C. Architecture & Training

To show how the identification accuracy depends on the
sequence length during training, we develop different network
types that are trained with different sequence lengths. To
simulate the alternating sequences from different emitters (see
Fig. 1), the input is changed to symbols from another emitter
after the specified sequence length is reached. Per network,
we independently optimise the number of LSTM layers and
cells. One network type is trained with a sequence length of
ten symbols, which we call LSTM10. Another one is trained
with random sequence lengths in the interval [1, 1400], we
call it LSTMrand. The third network type is trained with the
complete scenarios and is called LSTMscen. The complete
scenarios consist of about 5 to 15 million letters each, those
are mapped to about 7000 to 30 000 syllables and about 1400
to 6000 words, commands, and functions.

Per symbol level, i.e. letter, syllable, command, and func-
tion, an LSTM is trained. In total, we have 15 independent
networks, one per symbol level and sequence length used
during training. The parameters of these networks are shown in
Table III. After the LSTM layer, a dropout of 50% is applied.
It is followed by a dense layer with linear activation and a
softmax layer to normalise the output.

The networks are trained with the Adam optimiser, a learn-
ing rate of 0.0002, and the cross entropy loss H(P,Q) between

TABLE III
LSTM PARAMETERS FOR THE DIFFERENT MODELLING LEVELS AND

NETWORK TYPES.

Type Param. Letter Syllable Word Command Func.

LSTM10

# layers 1 1 1 1 1

# cells 16 4 4 4 4

LSTMrand
# layers 1 1 1 1 1

# cells 16 4 4 4 4

LSTMscen
# layers 1 1 1 1 1

# cells 4 4 8 16 16

the true probability distribution P and the learnt distribution
Q

H(P,Q) = −Ex∼P logQ(x). (1)

During training, batches of 120 simulation runs (12 for
letters) are fed in parallel to the networks and the LSTM state
is kept between batches.

V. EXPERIMENTAL RESULTS

A. Evaluation Under Ideal Conditions

In a first step, the LSTMs are evaluated under ideal condi-
tions without missing or additional symbols. In this setting, the
LSTMs are compared to two simple identification strategies.
One is random guessing with a probability of 33.33% for each
emitter. The second one checks for each emitter if all symbols
of the current input sequence are in its individual dictionary,
i.e. it performs a dictionary lookup. If they are not, the emitter
is assigned a probability of zero. If a symbol can be found in
the dictionary of more than one or none of the emitters, the
probability is equally distributed. Which emitter is the top 1
prediction is randomly chosen. This method corresponds to
matching the waveform to a database.

Since the identification accuracy depends on the num-
ber of symbols intercepted in a row from one emitter, the
LSTMs are tested with different sequence lengths in the
set S = {1, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400}.
With a sequence length of e.g. 10 symbols, a new emitter
is randomly selected after ten symbols of the current emitter
have been processed. The new emitter must not be equal to
the current one. In our modelling, 1400 words correspond to
about 1.5min to 3min, 200 words last about 35 s to 45 s. On
average, a word consists of five to six syllables, therefore 1400
syllables correspond to about 25 s to 50 s, 200 to about 6 s to
9 s. These values are only intended for a rough reference since
they strongly depend on the scenarios and the emitters.
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Fig. 3. Identification accuracies of the different networks on the test data of
all emitters in comparison to simple strategies.

Fig. 3 shows the identification accuracies acc(s) on the test
data of all emitters, per symbol, identification method and
sequence length s ∈ S, with

acc(s) =
# correctly classified seq. of length s

# sequences of length s
· 100%. (2)

As can be observed, the emitters cannot be distinguished
based on their letters, the results are equal to random guessing.
Since the simulated radar is airborne, it integrates many pulse
repetitions and therefore sequences of the same letter are very
long (e.g. word w26101507 consists of 16 384 repetitions of the
same letter). When words are repeated, the sequences become
even longer and are too long for an LSTM to learn.

For syllables and longer sequences, the dictionary lookup
achieves much better results than guessing, but for a single
syllable the accuracy is only 47.8%. The LSTM10 provides
a much higher identification accuracy than the other LSTMs
when tested with only one syllable (60.47% vs. 34.37% for
the LSTMscen and 41.34% for the LSTMrand). However,
with increasing sequence length the other two LSTMs come
close or are even better. The confusion matrices of the net-
works show that the rules-v1 radar cannot be recognised,
regardless of the sequence length. All syllables of the rules-v1
radar are also contained in the dictionaries of the other radars.

TABLE IV
MEAN DIFFERENCE IN IDENTIFICATION ACCURACY accrel [%] FOR

LSTM10 , LSTMrand , AND LSTMscen WITH MISSING AND ADDITIONAL
SYLLABLES AND WORDS, AVERAGED OVER ALL SEQUENCE LENGTHS,

WITH RESPECT TO THE RESULTS FOR IDEAL DATA.

Syllables Words
Rate 10 rand scen 10 rand scen

Missing

1% -0.75 0.08 1.65 0.36 -0.07 0.04

5% -0.44 -0.98 1.88 2.02 -0.29 -0.22
10% -0.88 1.17 1.33 1.06 -0.26 -0.01
20% 0.78 0.79 0.98 2.68 0.80 0.06

Missing
in blocks

1% -0.26 -0.48 1.47 0.91 -0.77 -0.75
5% -0.39 0.41 1.38 -1.03 -0.46 -0.19
10% -0.71 -0.22 1.21 -0.67 -0.01 0.11

20% -0.20 -0.15 0.73 1.03 0.63 -0.95

Additional

1% -0.16 -0.90 1.30 -0.32 -7.44 -1.38
5% -2.19 -2.07 0.32 0.84 -15.95 -1.47
10% -2.96 -3.03 -0.33 -0.19 -18.07 -0.05
20% -5.90 -5.67 -3.12 -2.41 -19.17 -2.43

Additional
in blocks

1% -1.53 0.16 0.55 0.08 -4.35 -0.48
5% -1.82 -1.99 1.36 -0.50 -11.62 -1.37
10% -4.61 -3.96 -0.02 -0.57 -16.19 -0.76
20% -7.97 -6.27 -0.17 -2.79 -19.99 -2.99

For only one word, the LSTM10 provides the best accuracy.
However, the accuracy does not improve with increasing
sequence length, since the network has not learnt to make use
of longer sequences. Fig. 4 shows the confusion matrices of
the LSTMrand for words and different sequence lengths. The
QoS radar is identified with a very high accuracy also with
short sequences. As the two rule based approaches are more
similar in their behaviour regarding words, longer sequences
are needed to discriminate between them.

Using commands, the radars cannot be distinguished with
satisfying accuracy. The LSTM10 is able to identify the QoS
radar with an accuracy of 77%, but the two rule based radars
are always confused. The LSTMscen identifies the rules-v1
radar with an accuracy of 50% with longer sequence lengths,
but is almost never able to recognise the QoS radar.

For functions, the identification accuracy is basically iden-
tical to random guessing. Since the radars only use three
different functions (search, confirm, track) and their behaviour
is similar, they cannot be distinguished based on them.

B. Evaluation With Missing and Additional Symbols

In an actual application, the data is probably not ideal.
Therefore, we also test the LSTMs with missing and addi-
tional symbols, which might occur due to errors made in the
deinterleaving or pulses that could not be detected because of
a low SNR or because the receiver is listening to a different
RF. The additional symbols are randomly selected from the
global dictionary, i.e. also symbols from different emitters are
inserted. Two cases are considered for the evaluation. In the
first one, single symbols are randomly removed or inserted. In
the second case, symbols are removed or inserted in blocks
of five. Since the results for letters, commands, and functions
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Fig. 4. Confusion matrices at different sequence lengths (testing) of the LSTMrand for words.

are already unsatisfactory for ideal data, we only present the
results for syllables and words. Table IV shows the accuracy
accrel averaged over all sequence lengths in the set S and
relative to the results obtained with ideal data

accrel =
acccorrupt − accideal

accideal
· 100%, (3)

with

acc =
1

S

∑

s∈S

acc(s). (4)

The results show that all networks are in general very robust
with respect to missing and additional symbols, the LSTMrand

with additional words being an exception. Furthermore, it is
observed that additional symbols cause a bigger decrease in
accuracy than missing ones, which have little impact. The
difference between single additional symbols and additional
symbols in blocks of five is small. This robustness is an
advantage over the dictionary lookup. An additional symbol
from a different emitter would cause the assigned probability
of the correct emitter to be zero for the complete sequence
and therefore result in a substantial accuracy decrease.

VI. CONCLUSION

In this paper, we proposed a method to distinguish be-
tween different radar emitter types based on Long Short-Term
Memory networks and a hierarchical modelling approach of
a radar language. We demonstrated that LSTMs are able to
identify emitter types based on the frequency and agility of
their emissions and are therefore capable of recognising the
resource management method. Our evaluations show that the
identification accuracy depends on the length of consecutive
emissions received from the same radar and that longer se-
quences are needed to discriminate between similar emitter
types. Furthermore, it could be seen that radar words, which
correspond to radar dwells, are the modelling level best suited
for identification. Moreover, we demonstrated that the LSTMs
are in general very robust with respect to corrupted data.
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ABSTRACT

This paper presents a fast object detection algorithm for 3D
single-photon Lidar data. Lidar imaging acquires time-of-
flight (ToFs) events in different spatial locations to build a 3D
image of the observed objects. However, high ambient light
or obscurants, might affect the reconstruction quality of the
3D scene. This paper proposes a solution by first detecting
the pixels containing photons reflected from a object/surface,
allowing a higher level processing of the data while only
accounting for informative pixels. In contrast to histogram
based approaches, the proposed algorithm operates on the
detected photon events allowing a reduction in memory re-
quirements and computational times. A Bayesian approach
is considered leading to analytical estimates that can be com-
puted efficiently. Results on simulated and real data highlight
the benefit of the proposed approach when compared to a
state-of-the-art algorithm based on histogram of counts.

Index Terms— 3D Lidar imaging, Bayesian approach,
target detection, sparse photon regime, single-photon events.

1. INTRODUCTION

Single-photon 3D laser detection and ranging (Lidar) imag-
ing has emerged as a candidate technology for a number of
application areas including defence, automotive [1], and en-
vironmental sciences [2]. This imaging system builds a high-
resolution 3D image of the observed objects by sending laser
pulses and collecting the reflected photons from a surface
while measuring their time-of-flight (ToFs). The ToFs con-
tain information about the system-target distance while the
number of collected photons inform on the reflectivity of the
observed scene. It is also common to pre-process the detected
ToFs events into a histogram of counts and to apply differ-
ent processing strategies on the resulting waveforms. How-
ever, this data representation is memory inefficient especially
in the sparse photon regime, and requires an additional com-
putational cost to convert photon events to histograms. This
paper operates on the raw ToFs photon events to ensure an op-
timized exploitation of the available computational resources.

This work was supported by the UK Royal Academy of Engi-
neering under the Research Fellowship Scheme (RF/201718/17128), EP-
SRC Grants EP/T00097X/1,EP/S000631/1,EP/S026428/1,EP/N003446/1,
the Dasa project DSTLX1000147844 and the MOD University Defence Re-
search Collaboration (UDRC) in Signal Processing.

Thanks to their good resolution and low sensitivity to
noise, time-correlated single-photon counting (TCSPC) Lidar
systems are currently used to perform long-range imaging
[3] in addition to imaging through obscurants [4–7]. Several
pixels are scanned in both cases, however, some pixels might
only contain background counts due to ambient light, reflec-
tion from the observation environment (air, water, etc.) or
dark events due to the detector noise. Therefore, several algo-
rithms have been designed to detect pixel with useful photons,
i.e., photons reflected from an object or a surface. Such ap-
proaches include the Markov chain Monte-Carlo (MCMC)
method proposed in [8], which is time consuming due to
the use of a sampling MCMC strategy. Two fast algorithms
were recently proposed in [9, 10], which use a Bayesian
formulation to output a per-pixel probability of target pres-
ence. These algorithms showed state-of-the-art performance,
however, they operated on a histogram of counts which is
not an optimal data representation given limited computing
resources.

This paper proposes a new fast algorithm for per-pixel
object detection. We adopt a Bayesian approach operating
on the raw ToFs data and defining as parameters the target
depth (if present), a signal-to-background related parameter
and a binary parameter indicating the presence or absence
of a target. A probability mixture model is considered for
the likelihood, while appropriate prior distributions are cho-
sen for each model parameters to express their known proper-
ties. The resulting model selection problem is then solved by
marginalizing the depth and SBR parameters, leading to an-
alytical expressions for the probability of detecting a target.
The resulting analytical expressions are however combinato-
rial, and an approximation is introduced to ensure fast compu-
tations. The proposed approach is validated on simulated and
real Lidar data showing good performance when compared to
the algorithm [9] in terms of computational cost and detection
performance.

The paper is structured as follows. Section 2 introduces
the observation model of the detected photon events. Section
3 presents the proposed Bayesian model for target detection.
The computation of the marginal probabilities are described
in Section 4. Results and conclusions are finally reported in
Sections 5 and 6.
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2. OBSERVATION MODEL

Single-photon Lidar systems generally emit laser pulses and
detect the reflected photons, together with their ToFs, from
the target for each spatial location/pixel. The detected pho-
tons and measured ToFs provide useful information regard-
ing the distance of the observed target and its reflectivity,
allowing the construction of 3D images of the observed
scene. It is common to gather the measured ToFs into a his-
togram of counts yn,t, for the nth pixel and tth bin where
n ∈ {1, · · · , N} and t ∈ {1, · · · , T}, which is modelled
using a Poisson distribution given by

yn,t ∼ P [rn g (t− dn) + bn] (1)
where P(.) denotes a Poisson distribution, dn ∈ {1, · · · , T}
represent target range’s position, rn ≥ 0 the reflected counts
from the target, bn ≥ 0 denotes the background and dark
counts of the detector, g is the system impulse response (SIR)
assumed to be known from a calibration step and normalized
(
∑T

t=1 g (t) = 1) and T is the length of the ToFs histogram.
In the absence of a target, i.e. rn = 0, the measured histogram
reduces to background counts yn,t ∼ P (bn). In this paper,
we approximate the SIR with a Gaussian shape as it helps ob-
tain analytical probability results in Section 4. Model (1) has
been used in many studies, however, it assumes the availabil-
ity of histograms which in practice should be built from the
raw detected photons and ToFs and thus involve additional
computational cost. In addition, modelling the data using his-
tograms is memory consuming especially in the sparse photon
regime where only few photons are detected per-pixel. In this
paper, we aim to design a low memory and fast detection al-
gorithm, thus we directly model the detected list of photons
sn,m for the nth pixel and for m ∈ {1, · · · , ȳ}, using a mix-
ture of densities as in [11, 12]

P (sn,m|wn, dn) =
(1− wn)

T
+ wng (sn,m − dn) (2)

where wn = rn
rn+bnT

represents the probability of the de-
tected photon to belong to a target or a uniform background
and ȳ the total number of photons detected in the nth pixel.
Model (10) shows that in absence of a target in the nth pixel
(i.e., rn = wn = 0), the ToFs will be uniformly distributed as
follows

P (sn,m|wn = 0, dn) = 1/T. (3)
Assuming the independence of the observed ToFs leads to the
joint likelihood distribution

P (sn|wn, dn) =

ȳ
∏

m=1

P (sn,m|wn, dn). (4)

where sn = (sn,1, · · · , sn,ȳ) gathers all detections for the nth
pixel. Given a ToFs list denoted by sn, our goal is to design
a fast target detection algorithm to decide if 0 < wn ≤ 1
or wn = 0, i.e, if there is a target or not. Note that this is
an ill-posed inverse problem, since the parameters (wn, dn)
are unknown in practice, and we propose to solve it using a
Bayesian strategy as detailed in the next section.

3. BAYESIAN MODEL FOR TARGET DETECTION

This section introduces a Bayesian model for target detection.
The Bayesian framework assigns prior distributions to the un-
known parameters to include additional information and reg-
ularize the ill-posed inverse problem. The next section intro-
duces the proposed prior distributions for the unknown pa-
rameters.

3.1. Prior distribution for w

The parameter 0 ≤ wn ≤ 1 represents the probability of the
detected ToFs to belong to a background (wn = 0) or a target
(0 < wn ≤ 1). To satisfy these constraints, we assign this
parameter a common spike and slab prior distribution [13] as
follows

p(wn|un) = δ(wn)(1− un) + unBeta(α, β) (5)

where δ(.) denotes the Dirac delta distribution centred in 0,
Beta(α, β) is the beta distribution with known shape param-
eters α, β > 0 and un ∈ {0, 1} is a binary variable that
indicates the presence (un = 1) or absence (un = 0) of a
target. In this work, the parameters α, β > 0 are assumed
known and fixed to reflect our prior knowledge on the param-
eter wn. The latter parameter is directly related to the signal
to background (SBR) level (as follows wn = SBR

1+SBR , where
SBR= rn/(bnT )) which allow fixing the hyper-parameters
from calibration measurements. In what follows, we assume
non-informative prior and fix the parameters to α = β = 1.

3.2. Prior distribution for un

The parameter un is assigned a Bernoulli distribution with a
probability of target presence π, i.e., p(un = 1) = π and
p(un = 0) = 1 − π. The parameter π is fixed to 0.5 in
what follows, reflecting the absence of additional information
regarding this parameter.

3.3. Prior distribution for dn

A non-informative uniform prior distribution is assigned for
the discrete variable dn, as follows p(dn) = 1/T, ∀n. How-
ever, this choice can be changed in presence of additional in-
formation regarding the target position.

3.4. Posterior distribution and decision rule

Using Bayes rule, the posterior distribution can be expressed
as follows

f(wn, dn, un|sn) ∝ f(sn|dn, wn)f(dn)f(wn|un)f(un)
(6)

where ∝ means “proportional to”. To perform target detec-
tion, we are interested on the marginals of the variable un and

27



build our test rule as in [9]

f(un = 0|sn)
H0

≷
H1

f(un = 1|sn) (7)

where H0, (resp. H1) represents the absence (resp. presence)
of a target and

f(un|sn) =
T
∑

dn=1

∫ 1

0

f(wn, dn, un|sn)dwn (8)

The next section introduces the details to compute (8)

4. COMPUTATION OF DETECTION
PROBABILITIES

Our goal is to compute the marginals in (8). It is straightfor-
ward to show that

p(un = 0|sn) =
1− π

T ȳ
. (9)

To compute p(un = 1|sn) we first note that the joint like-
lihood distribution can be expressed as a polynomial, as fol-
lows

p(sn|wn, dn) = wȳ
n

ȳ
∏

m=1

[xn + g (sn,m − dn)]

= wȳ
n

ȳ
∑

m=0

anm(dn)x
m
n (10)

where xn = (1−wn)
Twn

, and anm(dn) > 0 are expressed
with respect to the sum and product of the coefficients
rdn
m = g (sn,m − dn) using the Vieta’s formulas given by

anm(dn) =
∑

1≤i1≤i2≤···≤ik≤ȳ

rdn
i1
rdn
i2
...rdn

ik
(11)

At this stage, we approximate the SIR g (which is playing
the role of signal counts distribution) by a Gaussian distribu-
tion with standard deviation σ as follows g (sn,m − dn) =
Ndn

(sn,m, σ2). This is a common approximation that has
been used in several previous studies [14] [15]. It is worth
mentioning that using a continuous Gaussian distribution to
represent the discrete ToF values has a limited effect on the
performance of the proposed approach, this is due to the time
resolution of single-photon detectors being generally very
small compared to σ. Under these assumptions, Eq. (11) re-
duces to a sum and products of Gaussian distributions which
is analytically available. The marginalization in (8) can be
analytically done leading to

p(un = 1|sn) = π
TBeta(α,β)

×
∑ȳ

m=0

[

Beta(ȳ+α−m,β+m)
T i ānm

]

(12)

Fig. 1. Comparison of false alarm probability for the pro-
posed method with different approximation levels, and the
histogram-based method in [9].

where ānm is the result of marginalizing the Gaussians in
anm(dn) with respect to dn, where we have assumed the tar-
get location dn is far from the observation window edges lead-
ing to

∑

dn
Ndn(µ, σ

2) ≈ 1. Although Eq. (12) shows an
analytical formula for the probability of detection, it should
be noted that it is a sum of combinatorial products (see (11))
that can not be computed efficiently for large ȳ > 10. Several
strategies can be adopted to solve this problem and we distin-
guish two promising directions, (i) an iterative estimation ap-
proach where (12) is evaluated for a small number of photons
M , the resulting probability is then used to update our prior
distribution by setting πt+1

n = p(ut
n = 1|stn). The procedure

can be repeated iteratively to account for all detected photons
ȳ. The second strategy, which is adopted in this paper, is to
approximate p(un = 1|sn) by limiting the number of terms
summed in (11) to K =

(

M
M/2

)

= M !
(M/2)!(M/2)! , where M is

a user fixed parameter ensuring better approximation for large
values and ! denotes the factorial operator. Note that the com-
plexity of the proposed algorithm is proportional to the small
number of detected photons instead of the size of observation
window "T" as in [9].

Finally we mention that the obtained probability maps re-
sults from an independent processing of pixels. Assuming
a similar number of surfaces for adjacent pixels [9, 16], the
probability maps can be post-processed to enforce spatial cor-
relation between pixels using a total-variation regularization
as in [9]. The latter procedure leads to better visual results as
shown in the next section.

5. RESULTS

We first evaluate the performance of the proposed algorithm,
denoted ETD for event based target detection, on simulated
data. We generate the data according to model (10) with
T = 2500bins, σ = 20, while varying SBR in the range
[0.01, 100] and the total photons ȳ in the range [1, 1000]. The
proposed strategy is evaluated for two approximation levels
M ∈ {8, 10} and is compared to the histogram based TD
algorithm (HTD) introduced in [9] as it showed state-of-the-
art results with reduced computational time. All results are
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Fig. 2. Comparison of true positive (TP) probability for (left)
the proposed method with M=10 and (right) the histogram-
based method in [9]).

Fig. 3. Comparison of the computational time of the pro-
posed method with different approximation levels, and the
histogram-based method in [9].

obtained on Matlab 2018a on a Mac Quad-Core Intel Core
i7@3.1GHz, 16 GB RAM. Fig. 1 shows the probability of
false alarm (PFA) of the two algorithms highlighting the good
results of the proposed strategy. The true positive (TP) proba-
bilities are presented in Fig. 4 where the algorithm [9] shows
more detection for low photons leading to better TP at the
expense of a higher PFA. The main benefit of the proposed
algorithm is the reduced computational time of the order of
1ms per-pixel for M=10, as illustrated in Fig. 3, which shows
an improvement factor of 10 compared to the algorithm [9].
Fig. 3 shows however that the proposed algorithm complexity
is proportional to the approximation coefficient M , and to the
number of detected photons, showing best performance for
ȳ < 100 per pixel.

The proposed strategy is also validated on real data. Akin
to [9], we consider the mannequin face scene measured at
a stand-off distance of 325 metres at midday in Heriot-Watt

Fig. 4. Detected maps for the mannequin face with 3ms ac-
quisition time per pixel (yelow: a detected target, blue: no
target ).

University, in bright conditions. The data has 200x200 pix-
els, T=1700 bins, an SBR of 0.29 with a 5th-95th percentile
interval of (0.05,0.67). We focus on the data with 3ms acqui-
sition time per pixel which has 61 average photon-per-pixel,
and we refer the reader to [8,9] for more details regarding this
dataset. Results in Table 1 shows the PD, PFA and computa-
tional cost of the studied methods (when enforced, spatial reg-
ularization is denoted by TV) showing good performance for
the proposed strategy (for M=10) especially in term of com-
putational cost. Fig. 4 shows the obtained detection maps
with ETD, HTD [9] and Altmann et al[8] indicating similar
performance, before and after applying spatial regularization.

Table 1. Probability of detection (PD), false alarm (PFA) and
computational times (in ms) of the two methods on real data
with different acquisition times. The processing time is indi-
cated in ms for each pixel while assuming a parallel process-
ing. The TV regularization requires 31ms for the full image.

HTD HTD-TV ETD ETD-TV

3ms PD(%) 80 92 85 93

data PFA(%) 4 0.07 6 0.11
Time 6 6+ 1 1+
(ms) 31 (TV) 31 (TV)

6. CONCLUSIONS

This paper has introduced a new algorithm for fast target de-
tection in single-photon Lidar data. In contrast to histogram
based methods, the proposed strategy operates on single-
photon ToF events to reduce memory requirements and en-
sure fast processing. The proposed algorithm showed good
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performance especially in presence of few photons per pixel,
which is a common scenario for rapid or long-range imaging.
The algorithm can serve as a building block for higher-level
applications such as adaptive sampling to improve data ac-
quisition [17], and can be used as a pre-processing step to
several reconstruction algorithms [11, 14, 18–21]. Future
work includes the consideration of a different approach to
enforce spatial regularization between pixels. Considering an
iterative approach to approximate the marginal posterior is
also interesting for the fast online processing of the detected
photons. A generalization to imaging through obscurants will
also be investigated.
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Abstract—This paper addresses the problem of robust esti-
mation of range profiles from single-photon Lidar waveforms
associated with single surfaces using a simple model. In contrast
to existing methods explicitly modeling nuisance photon detection
events, the observation model considered neglects such events
and the depth parameters are instead estimated using a cost
function which is robust to model mismatch. More precisely,
the family of β-divergences is considered instead of the classical
likelihood function. This reformulation allows the weights of
the observations to be balanced depending on the amount of
robustness required. The performance of our approach is assessed
through a series of experiments using synthetic data under
different observation scenarios. The obtained results demonstrate
a significant improvement of the robustness of the estimation
compared to state-of-the-art pixelwise methods, for different
background illumination and imaging scenarios.

Index Terms—3D reconstruction, Single-photon lidar, Robust
estimation.

I. INTRODUCTION

Light detection and ranging (Lidar) systems have received
an increasing interest in the past few years for their ability to
efficiently reconstruct 3D scenes at high resolution [1], [2].
One particular case is single photon Lidar (SPL) that uses a
high repetition rate pulsed laser source in conjunction with
single-photon detectors. One of the main advantages of this
technology is its temporal resolution allowing sub-millimeter
depth estimation, which makes SPL particularly attractive for
a variety of problems such as long range imaging [3], [4],
[5], underwater imaging [6], [7], or even through obscurants
[8]. Lidar technologies allow the acquisition of the depth
structure of scenes, by analysing at the time-of-flight (ToF)
of photons originally emitted by a laser source and reflected
by surfaces of interest. More precisely, time correlated single-
photon counting (TCSPC), which is used in SPL, correlates the
time-of-arrivals (ToAs) of detected photons with the time of
emission of the last pulse, and often produces ToA histograms.
Repeating this acquisition process for different pulse emission

This work was supported by the Royal Academy of Engineering under
the Research Fellowship scheme RF201617/16/31, the UK Defence Science
and Technology Laboratory (DSTL X1000114765) and by the Engineering
and Physical Sciences Research Council (EPSRC) (grants EP/N003446/1,
EP/T00097X/1 and EP/S000631/1) and the MOD University Defence Re-
search Collaboration (UDRC) in Signal Processing. M. D. acknowledges
support from the Royal Society Wolfson Research Merit Award and the ERC
advanced grant C-SENSE, project 694888.

directions allows a region of the 3D space to be sensed and
reconstructed. However, additional detection events occur in
the presence of strongly scattering media and additional light
sources, such as solar illumination. Although these events
are generally modelled as uniformly distributed, they can
present more complex distributions. This is typically the case
for instance when imaging through obscurants, where light
scattering can produce a significant number of detection events
shortly after the pulse emission (photons are reflected with
high probability before they can reach the scene of interest).

Bayesian approaches have demonstrated their efficiency to
perform a depth profile estimation of the illuminated scene
from the Lidar measurements in many different applications
[9], [10], [11], [12]. However, the quality of the estimates
depends on that of the likelihood (or observation model) used.
In this paper, we specifically concentrate on the choice/design
of this data fidelity term. Traditionally in SPL analysis, studies
have introduced complex parametric models to approximate
as accurately as possible the actual data acquisition process,
including background illumination, broadening of the system
impulse response [13], attenuation due to scattering [14] and
detector dead-time [15], [16], [17]. However, such models of-
ten comes with an increased computational complexity of the
depth estimation process, e.g. can require iterative algorithms.

In this work a simple observation model is considered,
whereby we assume that only signal photons, those originally
omitted by the laser source, can be detected. The main focus
of this work is to estimate the distance between the imaging
system and the scene. Although intensity information can be
important, it is not addressed here. To overcome the limitations
of the simple model used, we do not adopt a maximum
likelihood approach but instead use β-divergences [18], [19]
to define a more robust depth estimators. Using this family of
divergences, we can reinterpret the classical depth estimator
via matched filtering (MF), seen as a specific minimum
divergence depth estimator for SPL. Using β-divergences for
SPL has been recently investigated, in a pseudo Bayesian
framework in [20], where the main focus was to propose an
online 3D imaging method. Here, we do not adopt a Bayesian
perspective and concentrate on pixelwise, regularization-free
depth estimation, to better understand the benefits of the β-
divergence in various illumination conditions and several types
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of model mismatch.
The remainder of this paper is organized as follows. Section

II introduces and motivates the simple observation model
considered in this study. The divergence used for robust depth
estimation in the presence of an imperfectly known system
impulse response function (IRF) is introduced in Section III. A
comparison to state-of-the-art approaches using synthetic data
is conducted in Section IV to identify benefits of the proposed
approach. Conclusions are finally reported in Section V.

II. OBSERVATION MODEL

In this paper, we address the pixelwise estimation of object
range from SPL data. Thus, to simplify notation, we omit
indices representing pixel dependency. Two main pixelwise
representations of photon ToAs are currently used in the
context of SPL. The earliest methods have considered each
pixel as a ToA histogram y = [y1, . . . , yT ]

>, which consists of
T non-overlapping temporal bins (the bin width being usually
given by the temporal resolution of the detector). Note that in
this work, we implicitly assume that the repetition period of
the laser source is T , where the arbitrary time unit is width
of a temporal bin. However, with the development of high-
resolution photodetectors, T can be extremely large (although
the actual temporal span of the histogram remains constant,
the width of the time bins decreases) and the measured ToAs
can now also be seen as continuous variables [5]. In a context
of photon-starved measurements, the alternative ToA repre-
sentation is simply based on sets of individual photon ToAs.
If we assume that P photons are detected, the observations
are denoted by s = {sp}Pp=1, where sp is the ToA of the pth
detected photon.

Neglecting detector dark counts and additional light sources
apart from the classical emission laser and assuming the a
single surface is visible in the field of view, the observation
model for any ToA s can be expressed as

f(s|d) = h

(
s− 2d

c

)
, (1)

where h is the normalized IRF associated with the imaging
system. This IRF is generally measured during calibration
of the Lidar-based imaging system. In (1), c is the speed
of light and d is the distance to the target, such that 2d

c is
the characteristic ToF associated with the illuminated target.
Eq. (1) implicitly assumes that the scene is approximately
static and that the shape of h (·) remains the same for all the
admissible values of d. When P photons are detected, if the
dead-time of the detector can be neglected, the photon ToAs
are mutually independent (given d) and the joint likelihood
can be expressed as

f(s|d) =
P∏
p=1

f(sp|d). (2)

III. ROBUST ESTIMATION USING β DIVERGENCES

The model in (2) is simple (it only depends on a single
parameter d per pixel) but is often not accurate enough,

especially when ambient illumination cannot be neglected.
In particular, using maximum likelihood (ML) estimation
strategies using Eq. (1) to infer d yields poor estimation
performance.

In general, the observation model used for depth estimation
is chosen to be ”similar” to the actual (to usually unknown)
data distribution, to enable reliable parameter estimation. The
similarity measure used also impacts the estimation perfor-
mance. For instance, the estimator constructed from the ML
criterion can also by seen as the estimator minimizing the
Kullback-Leibler (KL) divergence KL(ĝ(s)||f(s|d)), between
the empirical data distribution ĝ(s) = 1

P

∑P
p=1 δ(s− sp) and

the postulated observation model in (1) (δ(·) stands for the
Dirac delta function). Instead of using the traditional KL as
similarity measure, here we consider a more general family
of divergences, to reflect the potential mismatch between the
actual data distribution and the postulated model. The main
objective here is to use a similarity measure that leads to a
robust and computationally attractive depth estimator, where
robust refers to the presence of spurious detection events.

In this work, we consider the family of β-divergences,
defined by

Dβ(g||f) =
∫ T

0

f1+β(x|d)− 1 + β

β

[
g(x)fβ(x|d)

]
+

1

β

[
(g)1+β(x)

]
dx, β > 0.

(3)

to measure the similarity between two distributions g and f .
In a similar fashion to the ML estimation which reduces to
minimizing KL(ĝ(s)||f(s|d)), here we estimate the depth in
(1) by minimizing Dβ(ĝ(s)||f(s|d)). Under mild assumptions,
the resulting estimator is given

d̂ = argmax
d

{
1 + β

βP

P∑
p=1

fβ(sp|d)− Const.

}
, (4)

where the constant corresponds to the first and third terms on
the right-hand side of Eq. (3). While the third term does not
depend on d, the first term does not either in practice as we
assume that the shape and the integral of h(·) does not depend
on d over its domain of definition (2d/c is expected to be far
from 0 and T ). Note that f1+β(x|d) depends on divergence
parameter β though.

An interesting link with histogram-based depth estimation
methods and (4) has been discussed in [20] and is briefly
recalled here. If the data in s are represented using y, i.e., a
set photons counts being detected in each of the T time bins,
Eq. (4) can be rewritten

d̂ = argmax
d

T∑
t=1

yth
β

(
t− 2d

c

)
, (5)

which corresponds to maximizing the cross-correlation be-
tween

[
hβ
(
1− 2d

c

)
, . . . , hβ

(
T − 2d

c

)]>
and y.

The depth estimation based on (5) (or (4)) depends on the
divergence parameter β. Two special cases to be mentioned are
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1) when β = 1, where solving Eq. (5) reduces to matched-
filtering the data with hβ(t − 2d

c ), and 2) when β → 0,
where solving Eq. (5) reduces to log-matched filtering the
data with the logarithm of h(t − 2d

c ). In the latter case,
the resulting estimator is the classical ML estimator (the β-
divergence converges to the KL divergence when β → 0).

Solving Eq. (4) instead of maximizing the classical log-
likelihood leads to a pseudo-ML estimation, also referred to
as minimum divergence (MD) estimation.

IV. RESULTS

In this section, we assess the depth reconstruction perfor-
mance of the proposed approach by comparing it to that of
existing pixelwise estimation procedures. We first consider
two IRFs, (depicted in Fig.1 top), i.e., a real asymmetric IRF
measured in [21] and a Gaussian IRF presenting the same
full width at half maximum (FWHM) (28 bins, each bin
representing a 2ps interval) and the same mode. Based on these
IRFs, we generated synthetic data with T = 1500 and added
different types of model mismatch, including constant and
non-uniform background levels and measured peaks broader
than the original IRF, referred to as IRF broadening, as
typically occurs when the surface imaged is not orthogonal to
the beam direction [13]. For all the methods considered, we set
the admissible temporal range to [tmin, tmax] = [101, 1400],
which ensures that the integrals of the IRFs remain constant
over the admissible object range. All the results presented have
been averaged over Niter = 2000 Monte Carlo realizations.
Different scenarios have been reproduced to assess the perfor-
mance of the proposed method through both the mean signal
photon counts (MSC) and the average signal to background
ratio (SBR). The MSC is the number of detected photons
originally emitted by the laser and whose distribution is given
by (1), and the SBR is defined as the ratio of the MSC over the
total number of nuisance detection events. For each scenario,
data have been simulated using different MSCs, ranging from
1 to 103 and SBRs between 102 and 10−4, with the ground
truth depth fixed to correspond to the 620th bin.

Our method is compared to ML and robust estimators for
pixelwise depth estimation. More precisely, we considered
the log-matched filtering (LMF) approach, which is the ML
estimator based on Eq. (2), the robust Huber’s estimator [22],
[23], the Half-sample-mode (HSM) estimator [24]. For all
the simulations, we also considered the Oracle estimator, i.e.,
the ML estimator of the depth based on the true model used
to generate the data, with other model parameters (e.g. SBR
and MSC) being set to their actual values. Note that Huber’s
estimator requires a user-defined hyperparameter to be tuned,
and it has been fixed to 0.4 for the experiments conducted in
this work, aiming to discard 80% of the detected photons prior
to estimating the truncated mean with the remaining data. This
value has been set such that the performance of the estimator
remains satisfactory across a range of SBR values.

To quantify the depth estimation quality, we computed the
probability of accurately estimating the target depth, whereby
a detection is deemed accurate if the absolute error between

Fig. 1. Top: Real asymmetric (red) and Gaussian IRFs used to simulate the
data used for the experiments in Sections IV-A and IV-C. Middle: broadened
IRFs used in Section IV-B, obtained by convolving the IRFs from the top plot
with a Gaussian of standard deviation 20. Bottom: gamma distribution used
to generate non-uniform background detection events in Section IV-C.

the estimated depth and the ground truth is below a threshold
that has been fixed to the IRF FWHM. The curves displayed
in Fig. 2 represent for each SBR the MSC necessary to reach a
probability of accurate detection higher than 85% (the working
region of each method is on the right-hand side of each curve).

A. Constant background level

In this section, we first investigate the robustness of the
selected methods, in the case of constant background levels
corrupting the observations. The main results are presented in
Fig. 2.

Fig. 2. Threshold of accurate detection higher than 85% for different robust
methods, as function of the MSC and SBR. Top: results related to data
generated with the real IRF displayed in red in Fig. 1top. Bottom : histograms
generated with the Gaussian IRF approximation displayed in blue in Fig. 1
top.
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Note first in Fig. 2 that using the real IRF (top) or its
Gaussian approximation (bottom) does not modify the order
of performances of the compared methods. Although the IRF
shape does not seem to affect the relative performance of
the methods considered, it impacts the overall performance as
show in Fig. 2 (bottom) where the symmetry of the IRF seems
to improve the estimation performance. The best estimation
performance is obtained by the proposed MD for β close
to 1, whereas the worst estimation is obtained with Huber.
The performance of the MD is significantly improved when
β is increased, but this tails off when β gets closer to 1.
The detection threshold associated with the MD estimators
converge to that of the Oracle when β tends to 1. Even though
high values of β enhance the depth estimation performance for
low SBR cases, we observe the opposite phenomena when
the SBR is higher than 1. HSM gives on average worse
performance than MD, but performs better than Huber.

B. Broadening of the IRF

In this section, we assess the performance of our method
in situations where the empirical IRF is broader than the
postulated IRF (see Fig. 1 middle). IRF broadening can occur
when surfaces observed that are not orthogonal to direction
of the laser beam and when the size of the laser footprint
on target can no longer be neglected. It can also occur in the
presence of partially transparent materials, whereby part of the
light penetrates deeper into the objects before being reflected
(e.g. forest canopy). For simplicity, the broadened IRFs (see
Fig. 1 middle) are modeled here by convolving the true IRFs
from Fig. 1 top) by a Gaussian kernel whose standard is equal
20 bins.

Fig. 3. Threshold of accurate detection higher than 85% for different robust
methods, as function of the MSC and SBR. Top : results obtained with a
broad version of the real IRF displayed in red in Fig. 1top. Bottom : results
obtained with a broad version of the Gaussian IRF displayed in blue in Fig.
1top.

The main results obtained with broadened IRFs are depicted
in Fig. 3. This figure shows that the estimation performance

of the MD estimators and the LMF remain similarly to that
depicted in Fig. 2. The best performance is still obtained by
the Oracle that gives the SBR bound (for a given MSC) under
which all the other methods provide less than 85% of accurate
detection. The MD estimator for high values of β provides the
most robust reconstructions whereas Huber provides the least
satisfying ones (still relative to the fixed detection threshold).
HSM achieves similar performance than in Fig. 2, and is less
robust than the MD estimators. As in Fig. 2, the symmetry
of the IRF used in Fig. 3 (bottom) enhances slightly the
estimation performance of all the methods. However, the
Huber estimator seems more affected by the asymmetry of
the IRF (Fig. 3 (top)).

C. Non-uniform background

Imaging scenarios in presence of scattering media are re-
ceiving growing interest in underwater and automotive (e.g.
fog and rain) applications. In such cases, the background
temporal profile is expected to follow a non-uniform distribu-
tion. To investigate this issue, we applied our method to data
generated with a gamma background distribution, depicted in
Fig. 1 (bottom). The parameters of the gamma distribution
have been set to 5 bins (shape) and 55 bins (scale) and this
profile is similar to that observed in [7].

Fig. 4. Threshold of accurate detection higher than 85% for different robust
methods, as function of the MSC and SBR. The outliers corresponds to
background photons following a gamma distribution, and the Gaussian IRF
(see Fig. 1 top) has been used to generate and analyze the data.

The estimation performance of the different methods is
assessed in Fig. 4. As in Figs. 2 and 3, the MD method
provides better results as β increases. The worst estimation are
obtained with Huber and HSM performs similarly than LMF
in this case. Note that here, the Oracle performs significantly
better than in Fig. 2, due to the non-uniform nature of the
noise. While the proposed method can mitigate the presence
of uniform background and IRF broadening, its gain here is
more limited. Consequently, using a parametric model (which
accounts for the shape of the background distribution) is more
adapted.

D. Computational complexity

The two pixelwise representations of the photon ToAs
introduced in Section II (involving y or s) play a key role in the
complexity of the proposed estimator. Although the use of y
allows us to retrieve the matched filtering formulation, the best
ToA representation is still user/scenario dependent. While the
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evaluation of the cost function in (5) depends linearly on the
number of (non-empty) histogram bins in y, which is at most
T , the evaluation of the cost function in (4) depends on the
number of detected photons P (assuming the all have different
ToAs). Thus, the most suited representation will depend on the
amount of ToAs acquired.

The quantitative comparison of the different methods used
in this paper in terms of computational complexity is not in-
cluded here as the complexity can be highly platform (sequen-
tial of parallel) and implementation dependent. Nonetheless,
it is possible to qualitatively compare their complexity. The
proposed robust method has roughly the same computational
cost as the standard LMF as it reduces to computing a similar
cross-correlation (LMF uses log(f(·)) while MD uses fβ(·)).
Huber is generally faster than MD and LMF for low photon
counts, but is not well adapted to thousands of photon counts.
Finally, HSM relies on an iterative algorithm whose number of
iterations grows with the number of photons and is not adapted
to large photon counts either (it becomes rapidly slower than
Huber and MD/LMF).

V. CONCLUSION

In this paper, we proposed a new depth estimator for robust
estimation of the range profile from single-photon Lidar data,
in the presence of non negligible background. The proposed
formulation of the problem significantly simplifies the estima-
tion process as it relies on the estimation of a single parameter,
i.e., the depth parameter. To alleviate the robustness issues
of the classical maximum likelihood approach, β-divergences
are used instead of the Kullback-Leibler divergence to quan-
tify the similarity between the empirical data distribution
and the postulated distribution. We compared the estimation
performance of the proposed estimator to that of existing
pixelwise approaches for different observation scenarios, and
demonstrated its potential benefits over the classical pixelwise
log-matched filter. Moreover, the estimation process benefits
from a low complexity, similar to that of log-matched filtering.
Beyond pixelwise estimation, such a robust estimation strategy
can be coupled, as in [20], with prior/regularization terms to
further enhance the estimation performance. However, using
such β-divergences within a Bayesian framework requires
further investigation to better understand and balance the
relative weights of the data fidelity and regularization terms.
Future work include the consideration of alternative families
of divergences or similarity measures. Moreover, it would also
be interesting to investigate if such robust methods could be
used to mitigate dead-time detector limitations [16], [17].
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Abstract—Existing Lipschitz-based provable defences to adver-
sarial examples only cover the `2 threat model. We introduce the
first bound that makes use of Lipschitz continuity to provide a
more general guarantee for threat models based on any `p norm.
Additionally, a new strategy is proposed for designing network ar-
chitectures that exhibit superior provable adversarial robustness
over conventional convolutional neural networks. Experiments
are conducted to validate our theoretical contributions, show that
the assumptions made during the design of our novel architecture
hold in practice, and quantify the empirical robustness of several
Lipschitz-based adversarial defence methods.

Index Terms—Artificial Neural Network, Computer Vision

I. INTRODUCTION & RELATED WORK

The robustness of deep neural networks to adversarial
attack [1] is an increasingly topical issue as deep models
are becoming more widely deployed in practice. This paper
focuses on the problem of ensuring that once a deep network
trained for image classification has been deployed, one can
be confident that an adversary has only a limited ability to
maliciously impact model predictions when they tamper with
the system inputs. Such malicious inputs, so-called adversarial
examples, appear to humans as normal images, but in reality
they have undergone imperceptible modifications that cause a
model to make an incorrect prediction. The majority of research
into adversarial examples is still based on empirical results that
have been shown to be somewhat fragile [2], [3]. In contrast,
we look to the more recent trends in provable adversarial
robustness, where it one is able to compute a certificate for
each prediction made by the model, ensuring that it is robust
to some pre-specified family of attacks, known as the threat
model [4], [5].

There are several papers in the literature on deep learning
that address adversarial robustness through the use of Lipschitz
continuity, but they focus solely on perturbations with bounded
Euclidean norm. Tsuzuku et al. [4] present an efficient method
for determining whether an example could have been tampered
with at test time or, conversely, certify that a prediction has not
been influenced by an adversarial attack. They compare the
prediction margin normalised by the Lipschitz constant of the
network to the magnitude of the largest perturbation allowed
by the threat model, allowing them to determine whether
the input could be an adversarial example. Farnia et al. [6]

show how the adversarial risk can be bounded in terms of
the training loss by adapting the bound of [7] to consider
perturbations to the margin, using a similar technique to [4].
The analysis in this paper takes a similar high-level strategy—
making use of margins and Lipschitz constants—but we extend
this theory to threat models based on arbitrary p-norms, and
provide a simpler proof than previous methods [4]. Huster
et al. [8] demonstrate that current methods for regularising
Lipschitz constants of networks have deficiencies when used
for improving adversarial robustness. Specifically, it is shown
that existing approaches for regularising the Lipschitz constant
may be too restrictive because the bound on the Lipschitz
constant is too loose, resulting in over-regularisation. We take
an orthogonal approach: we provide theoretical and practical
contributions that are compatible with arbitrary bounds on the
Lipschitz constant.

Existing work that aims to provide theory-backed guarantees
for adversarial robustness has resulted in several techniques
able to certify whether a prediction for a particular example
is immune to adversarial attack under a threat model based
on `p-norm perturbation size. [9] propose a method that can
only be applied to networks composed of fully connected
layers with rectified linear units activation functions, and no
batch normalisation. [10] present an approach based on solving
an optimisation problem. While the robustness estimates they
give are considerably tighter than many other certification
methods, they scale very poorly to networks with large input
images or feature maps. In contrast to these methods, our
approach bounds the expected adversarial generalisation error,
has virtually no test-time computational overhead, and can
be applied to arbitrary feed-forward architectures. Bounding
the expected generalisation error enables us to give guarantees
about the level of robustness a model will have once it has been
deployed. Existing approaches to provable robustness do not
come with such guarantees, and can only provide certification
for individual instances.

We begin by extending existing theory addressing the rela-
tionship between Lipschitz continuity and provable adversarial
robustness. Using insights from the resulting bounds, it is
shown how one can adjust network architectures in such a
way that Lipschitz-based regularisation methods are more
effective. Experimental results show that, while having little
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difference in clean performance compared to existing Lipschitz-
based defences, our approach improves the level of provable
robustness significantly.

II. GENERALISATION UNDER ATTACK

Methods for estimating the generalisation performance of
learned models typically assume examples, (~x, y), observed at
both training and testing time are independently drawn from
the same distribution, D. Such methods estimate or bound the
expected risk,

R`(f) = E(~x,y)∼D[`(f(~x), y)], (1)

of a classifier, f , with respect to some loss function, `. The
standard technique for estimating the expected risk in deep
learning is to use an empirical approximation measured on a set
of held-out data. In the adversarial setting one must consider
the expected risk when under the influence of an attacker that
can add perturbations to feature vectors at test time,

R̃`p,t(f) = E(~x,y)∼D

[
max

~ε:‖~ε‖p≤t
`(f(~x+ ~ε), y)

]
, (2)

which is known as the adversarial risk [5]. In contrast to the
expected risk, R̃`p,t(f) cannot be reliably approximated from
data when f is nonlinear, as one must find the globally optimal
setting of ~ε for each data point in the held-out set.

For a hypothesis, f , that produces a vector of real-valued
scores, each associated with a possible class, we define the
margin function as

mf (~x, y) = fy(~x)−max
j 6=y

fj(~x), (3)

where fi(~x) is the ith component of the output of f(~x). Typical
loss functions for measuring the performance of a model via
composition with the margin function include the zero–one loss
and the hinge. These compositions result in the classification
error rate and the multi-class hinge loss variant proposed
by [11], respectively.

Proposition 1. If f is k-Lipschitz with respect to the p-norm
and ` : R→ R+ is a monotonically decreasing loss function,
then

max
~ε:‖~ε‖p≤t

`(mf (~x+ ~ε, y)) ≤ `(mf (~x, y)− 21/qkt), (4)

where q is defined such that ‖ · ‖q is the dual norm of ‖ · ‖p.

Proof. The main idea behind the proof is to show that the
Lipschitz constant of the network controls how much the margin
can be influenced by an adversarial perturbation. Note that
one can express the margin function given in Equation 3 as
mf (~x, y) = mI(f(~x), y), where I is the identity function. The
Lipschitz constant of mI with respect to its first argument
when using the p-norm is max~x ‖∇~xmI(~x, y)‖q [12, p. 133].
The gradient of mI is a vector with all elements set to zero,
except for those corresponding to the largest and second largest
components of ~x. These components of the gradient take the
values of 1 and −1, respectively. Plugging these values into the

definition of vector p-norms, one arrives at a Lipschitz constant
of 21/q . From the composition property of Lipschitz functions,
we can say that mf is (21/qk)-Lipschitz with respect to ~x. The
Lipschitz property of mf can be used to bound the worst-case
change in the output the margin function for a bounded change
in the input, yielding

`( min
~ε:‖~ε‖<t

mf (~x+ ~ε, y)) ≤ `(mf (~x, y)− 21/qkt). (5)

From the decreasing monotonicity of `, we have that

max
~ε:‖~ε‖<t

`(mf (~x+ ~ε, y)) = `( min
~ε:‖~ε‖<t

mf (~x+ ~ε, y)), (6)

which concludes the proof.

This proposition bounds the worst-case change in loss for
a single image in terms of prediction confidence, Lipschitz
constant of the network, and the maximum allowable attack
strength.

The relationship given in Proposition 1 is a more general
form of the bound derived by [4], who consider only the
Euclidean norm.

Proposition 1 can be extended to provide a non-trivial bound
on the expected adversarial risk through the use of a held-out
dataset and a simple application of McDiarmid’s inequality.

Proposition 2. If f is k-Lipschitz w.r.t. the p-norm, ` :
R→ [0, B) is a monotonically decreasing loss function, and
{(~xi, yi) ∼ D}ni=1 is independent of f (i.e., held-out data), the
following holds with probability at least 1− δ:

R̃`p,t(f) ≤
1

n

n∑
i=1

`(mf (~xi, yi)− 21/qkt) +B

√
ln(2/δ)
2n

(7)

where q is defined such that ‖ · ‖q is the dual norm of ‖ · ‖p.

Proof. Constructing a mean over loss terms,

L =
1

n

n∑
i=1

`(mf (~xi, yi)− 21/qkt), (8)

results in a sequence where each term is bounded by B
n ,

allowing McDiarmid’s inequality to probabilistically bound
the deviation from its expected,

P(|L− E[L]| > γ) ≤ 2exp

(
−2nγ2

B2

)
. (9)

Setting δ equal to the right-hand side of Inequality 9 and
solving for γ yields

γ = B

√
ln(2/δ)
2n

. (10)

Thus, we can say with confidence 1− δ that

E[L] ≤ L+B

√
ln(2/δ)
2n

. (11)

Applying Proposition 1 to each term of the summation, L,
concludes the proof.
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Proposition 2 extends the result of Proposition 1 from the
loss on a single instance to the expected risk.

In practice, this means that a practitioner can bound the
worst-case adversarial performance of their model based on its
(non-adversarial) validation-set performance and its Lipschitz
constant, both of which can be measured efficiently. As we show
later, this can lead to non-vacuous bounds on error rate, which
in turn could allow a user to deploy a model with provable
confidence about its performance under adversarial attack—
without the hassle and computational expense of instance-wise
certification at run-time [9], [10].

III. ARCHITECTURES FOR PROVABLE ROBUSTNESS

The analysis in Section II motivates a high-level strategy
for improving the adversarial robustness of neural networks:
maximise the prediction margin while minimising the Lipschitz
constant of the model. Several papers have proposed different
methods for regularising the Lipschitz constant of a network,
with various motivations, including improving robustness to
adversarial exmaples [4], [13] and improving generalisation
performance in the non-adversarial case [14].

We propose a strategy for modifying network architectures
to make them more amenable to Lipschitz-based regularisers:
splitting a single multi-class classification network into a
collection of one-versus-all (OVA) classifiers that each produce
a real-valued score. Unlike the conventional OVA method,
where each component classifier is trained in isolation, the
networks used in our approach are still trained jointly using
a softmax composed with the cross entropy loss function.
There are two requirements for this OVA scheme to have a
benefit: each of the simpler binary classification subproblems
must be solvable by a network with a smaller Lipschitz
constant, and the Lipschitz constant of the multi-classifier
system must grow slowly with the number of classes. [14]
show that the Lipschitz constant is related to model capacity,
so the subnetwork associated with each class should be able to
achieve high accuracy with a smaller Lipschitz constant than a
conventional multi-class classification network. For the second
requirement, consider the vector-valued function,

f(~x) = [f1(~x), f2(~x), ..., fC(~x)], (12)

where C is the number of classes, and fi is ki-Lipschitz. We
have from the Lipschitz property of each fi that

‖f(~x)− f(~x+ ~v)‖p ≤ ‖[k1‖~v‖p, k2‖~v‖p, ..., kC‖~v‖p]‖p
(13)

= ‖~v‖p‖[k1, k2, ..., kC ]‖p, (14)

from which we can deduce that the Lipschitz constant of the
one-versus-all classifier is the `p norm of the vector of Lipschitz
constants corresponding to each binary classifier. In the case
of the ∞-norm, the largest Lipschitz constant associated with
a single binary classifier dictates the Lipschitz constant of the
entire OVA classifier. From this, we can conclude that the
second requirement is satisfied.

A. Lipschitz Regularization Training

We investigate two approaches to controlling the Lipschitz
constant of neural networks. The first approach we use is to
add the bound on the Lipschitz constant as a regularisation
term to the objective function, resulting in

1

n

n∑
i=1

`(f(~xi), yi) +
d∏
l=1

‖Wl‖p, (15)

where d is the number of layers in the network and ‖ · ‖p is
the operator norm induced by the vector p-norm. In the case
where p is two, the operator norm is the largest singular value
of the matrix (i.e., the spectral norm). For p = ∞, it is the
maximum absolute row sum norm [14],

‖W‖∞ = max
i

∑
j

|Wi,j |. (16)

IV. EXPERIMENTS

This section presents the results of numerical experiments
that demonstrate the tightness of the bounds presented in
Section II and provides evidence that the architecture proposed
in Section III is inherently easier to optimise for provable
robustness than conventional network architectures. The models
used in these experiments were implemented using Keras 1, and
the adversarial attacks were performed using the CleverHans
toolkit 2.

A. Tightness of the Bound

The bound given in Proposition 2 provides a way to
estimate the worst-case performance of a model when under
the influence of an adversary. In order to validate this bound
empirically, we train linear support vector machines with
different levels of `2 regularisation on the MNIST dataset of
hand-written digits. In the case of linear SVMs, the optimisation
problem solved by iterative gradient-based attacks, such as the
projected gradient descent method of [5], are convex and can
therefore be solved globally. This means the the empirical
adversarial risk can be computed exactly. Plots indicating the
tightness of the bound for linear SVMs are given in Figure 1.
These were generated by training models on the first 50,000
instances of the training set, using the other 10,000 training
instances as the held-out data required for computing the bound,
and using the PGD attack when evaluating the network on
the test data. These plots confirm that the bound proposed in
Proposition 2 is non-vacuous and has the potential to be useful
in practice.

B. Provable Robustness

We first experiment on MNIST to determining whether our
proposed OVA networks achieve better provable robustness
than conventional convolutional neural networks. To control for
the potentially confounding factor of model capacity, a series
of networks with different widths are trained. We define the
width of a conventional convolutional network as the number of

1https://github.com/keras-team/keras
2https://github.com/tensorflow/cleverhans
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Fig. 1. Plots demonstrating the relationship between the provable upper bound on adversarial risk, and the actual misclassification rate on the test set under
adversarial attack. Linear SVM recognition on MNIST with `2 (top row) and `∞ (bottom row) threat models and regularization strength λ.

feature maps produced by the first convolutional layer. For OVA
networks, the width is the number of feature maps produced
by the first layer in a single binary classifier, multiplied by the
number of binary classifiers. For both network types, the chosen
architectures contain two convolutional layers, the second of
which has twice the number of feature maps as the first. Each
convolutional layer contains 5× 5 kernels, rectified linear unit
activation functions, and is followed by a 2× 2 max pooling
layer. After the convolutional layers are two fully connected
layers: one with 128 hidden units, and another with either
10 units (for conventional networks), or one unit (for OVA
networks).

Figure 2 shows how the number of model parameters impacts
the provable adversarial robustness for threat models based
on the `2 and `∞ norms. The models in these plots are
regularised using the Lipschitz penalty method proposed in
Section III. These figures show that: (1) Regularised OVA
networks exhibit superior provable robustness compared to
regularized conventional CNNs at comparable model sizes, (2)
The magnitude of this margin becomes more pronounced as
model size increases, (3) All methods have low error rate for
unperturbed examples (left plots).

To investigate how well OVANets scale to larger networks
and more challenging datasets, additional experiments are run
on the CIFAR-10 dataset, using VGG-style networks [15]
as the base architecture. The baseline CNN uses the VGG11
architecture, and each subnetwork of the OVANet architecture is
a VGG11 network with half the number of feature maps in each
layer. Table I provides probabilistic (95% confidence) bounds
on the worst-case adversarial error rate using Proposition 2.
Table II shows the corresponding provable robustness results
for SVHN benchmark. From the results we can see that: (1)

TABLE I
BOUNDS ON THE ERROR RATE FOR VGG MODELS TRAINED ON CIFAR-10.

THE BOUNDS WERE COMPUTED WITH PROPOSITION 2 AT THE 95%
CONFIDENCE LEVEL AND THE `2 THREAT MODEL.

Perturbation Size (`2)
Model λ Clean 1/255 2/255 3/255 4/255

VGG11-CNN

0 14.50 100.00 100.00 100.00 100.00
0.0001 14.22 47.61 79.22 95.87 100.00
0.0005 16.00 29.00 42.74 56.49 69.84
0.001 17.64 26.80 35.60 44.75 53.66

VGG11-OVA

0 17.18 100.00 100.00 100.00 100.00
0.0001 15.58 44.54 73.49 93.11 99.99
0.0005 15.86 27.68 39.01 51.85 63.68
0.001 17.09 25.00 32.54 40.35 48.53

Lipschitz penalty training improves the adversarial error rate
for both vanilla VGG11 and VGG11-OVANet (performance
improves with λ); (2) VGG11-OVANet generally has superior
provable robustness compared to vanilla VGG11 for correspond-
ing regularisation strength, especially for strong attacks. (3)
Meanwhile, regularized OVANet achieves comparable results
to a regularized CNN in terms of clean data performance.

V. CONCLUSIONS

This paper presents a p-norm-agnostic theoretical analysis of
provable adversarial robustness via Lipschitz regularisation. A
new architecture, the OVA network, is proposed, motivated by
insights of how Lipschitz constants can be bounded for different
architecture design choices. It is shown that OVA networks
achieve similar empirical performance to conventional neural
networks but, as network size increases, OVA networks are
able to achieve significantly better certifiable robustness. This
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Fig. 2. Comparison of provable adversarial risk for conventional CNN versus OVANet trained with Lipschitz penalty regularization over a range of model
sizes. The `2 (top row) and `∞ (bottom row) Lipschitz constants are used for regularisation and computing the bound. OVANet shows superior provable
robustness, especially at larger model sizes.

TABLE II
BOUNDS ON THE ERROR RATE FOR VGG MODELS TRAINED ON SVHN.

THE BOUNDS WERE COMPUTED WITH PROPOSITION 2 AT THE 95%
CONFIDENCE LEVEL AND THE `2 THREAT MODEL.

Perturbation Size (`2)
Model λ Clean 1/255 2/255 3/255 4/255

VGG11-CNN

0 7.29 100.00 100.00 100.00 100.00
0.0001 7.15 13.16 21.86 33.59 47.10
0.0005 8.46 11.38 14.84 19.33 24.49

0.001 9.41 11.76 14.95 17.76 21.48

VGG11-OVA

0 7.69 100.00 100.00 100.00 100.00
0.0001 7.45 12.10 19.19 28.38 39.17
0.0005 8.25 10.64 13.02 16.11 19.82

0.001 9.02 10.92 12.86 15.05 17.81

is a useful result for practitioners, who can use a Lipschitz
regulariser and our bound in order to train models with a
certifiable level of robustness against adversarial attack.
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Abstract—Generative Adversarial Networks (GANs) are a
powerful methodology and can be used for unsupervised anomaly
detection, where current techniques have limitations such as the
accurate and robust detection of anomalies near the tail of a
distribution. GANs generally do not guarantee the existence of
a probability density and are susceptible to mode collapse, while
few GANs use likelihood to reduce mode collapse. In this paper,
we create a GAN-based tail formation model for anomaly detec-
tion, the Tail of distribution GAN (TailGAN), to generate samples
on the tail of the data distribution and detect anomalies near the
support boundary. Using TailGAN, we use maximum entropy
regularization and leverage GANs for anomaly detection. Using
GANs that learn the probability of the underlying distribution
has advantages in improving the anomaly detection methodology
by allowing us to devise a generator for boundary samples, and
use this model to characterize anomalies. TailGAN addresses
supports with disjoint components and achieves competitive
performance on images. We evaluate TailGAN for identifying
Out-of-Distribution (OoD) data and its performance evaluated
on MNIST, CIFAR-10, Baggage X-Ray, and OoD data shows
competitiveness compared to methods from the literature.

Index Terms—Anomaly detection, Generative models

I. INTRODUCTION

Generative Adversarial Networks (GANs) can capture com-
plex data with applications in computer vision and achieve
state-of-the-art image synthesis performance. Recently, GANs
have been used for anomaly detection (AD) which is critical
in security (contraband detection). GANs succeed convergence
in distribution metrics, but suffer from mode collapse, learn
distributions of low support, and do not guarantee the existence
of a probability density making generalization with likelihood
impossible [1, 2]. Many AD techniques perform well in low
dimensions; however, there is a lack of effective methods for
high-dimensional spaces, e.g. images. Important tasks are re-
ducing false negatives and false alarms, providing boundaries
for inference of within-distribution and Out-of-Distribution
(OoD), and detecting anomalies near low probability regions.
Unsupervised AD is examined since anomalies are not known
in advance. The normal class is learned and anomalies are
detected by deviating from this model. Researchers use the
leave-one-out evaluation, (K + 1) classes, K classes for nor-
mality, and the leave-out class for anomaly, chosen arbitrarily.
This does not use the complement of the distribution support,
and real-world anomalies are not confined to a finite set.

In this paper, we create a GAN-based model, the Tail of
distribution GAN (TailGAN), to generate samples on the low

probability regions of the normal data distribution and detect
anomalies close to the support boundary. Using TailGAN,
we leverage GANs for OoD sample detection and perform
sample generation on the tail using an objective cost function
that forces the generated samples to lie on the boundary
while optimizing an entropy-regularized loss to stabilize train-
ing. The authors of this paper have recently proposed an
invertible-residual-network-based generator, the Boundary of
Distribution Support Generator (BDSG) [5], for AD using
invertible residual networks [6, 7]. In this paper, we include
adversarial training and we create GANs to generate samples
on the low probability regions of the data distribution and
detect anomalies near the support boundary. We create a
model to generate abnormal samples on the boundary of the
normal data distribution. Our contribution is the creation of
a GAN-based boundary formation model and we use GANs,
such as Prescribed GAN (PresGAN) and FlowGAN [9, 10],
that learn the probability of the underlying distribution and
generate samples with high likelihoods. TailGAN improves
the detection of anomalies and GANs that learn the probability
density of the underlying multimodal distribution can improve
the AD methodology by allowing us to create a generator for
boundary samples and use this to characterize anomalies.

II. RELATED WORK ON AD USING GANS

A. GANs Using a Reconstruction-Based Anomaly Score

AnoGAN performs unsupervised learning to detect anoma-
lies by learning the manifold of normal anatomical variability.
During inference, it scores image patches indicating their fit
into the learned distribution [11, 12]. In contrast to AnoGAN,
Efficient GAN-Based AD (EGBAD) jointly learns an encoder
and a generative model to eliminate the procedure of com-
puting the latent representation of a queried test sample [13].
Its anomaly score combines discriminator and reconstruction
losses. GANomaly learns the generation of the data and the
inference of the latent space, z. It uses an encoder-decoder-
encoder in the generator, and minimizing the distance between
the vectors in z aids in learning the data distribution [14].

B. GANs Performing Sample Generation on the Boundary

The GAN loss learns the mass of the distribution but
to perform AD, we look at the boundary. The GAN op-
timization problem is given by argminθθθgdist(px(x), pg(x)),
where the distance metric, dist(., .), takes the specific form
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argmaxθθθd f(D, px(x), pg(x)). For example, dist(x, y) = ||x −
y||∞ = maxi |xi − yi| and x, y ∈ Rd. The GAN loss is

minG maxD Ex[log(D(x))] + Ez[log(1−D(G(z)))] (1)

where z ∼ pz(z) = N(0, I), x ∼ px(x), and G(z) ∼ pg(x).
To generate samples on the distribution tail, MinLGAN uses
minimum likelihood while FenceGAN changes (1). In contrast
to the traditional GAN [17, 18], FenceGAN estimates the
distance between pg(x) and the tail of px(x). Its limitations
are sampling complexity, the parallel estimation of px(x) and
the tail of px(x), and disconnected boundary generation.

III. THE PROPOSED TAILGAN

Section II.B has presented GANs for AD that perform
sample generation on the support boundary of the normal data
distribution. In this section, we present the TailGAN model for
sample generation on the distribution’s tail and for AD.

A. Boundary Generation: Improvement on Leave-One-Out

Before proceeding to explain TailGAN, it is important to
first motivate the need to perform accurate sample genera-
tion on the tail. The leave-one-out evaluation, which can be
restrictive for evaluating AD models, uses the disconnected
components of the underlying multimodal distribution. For any
annotated dataset with K+1 classes, the classification problem
creates clusters and the decision criterion is a boundary for
classification [20]. In high-dimensional spaces, classes form
clusters and are disconnected components. Each cluster can
have more than one modes. The disconnected components
of the underlying distribution are usually known during the
evaluation of the model while the modes of the distribution are
not. Now, we denote a sample generated on the distribution’s
tail by T (z), where z ∼ N(0, I) is the latent space, and using
the lp-norm, ||.||p, the clustering algorithm is given by

k(T (z)) = argmini=1,...,K dist(T (z), xi) (2)

where dist(T (z), xi) = minj=1,...,L ||T (z)− xi,j ||p (3)
R(T (z), k) = minj=1,...,L ||T (z)− xk,j ||p (4)
R(T (z), k) < mini6=k,i=1,...,K minj=1,...,L ||xi,j − xk,j ||p (5)

where we use K clusters from the leave-one-out methodology,
L samples from every class/cluster, and xi,j ∈ Rd is the
j-th sample of class i. With our boundary model, we can
decide support membership to improve AD and also weight
misses and false alarms. We can also generate anomalies,
including adversarial anomalies, and the inequality presented
in (5) states that the model’s generated samples are closer
to the relevant class than any sample from any other class.
Using (4) and (5), our boundary model improves the leave-
one-out evaluation methodology by the margin given by
|R(T (z), k)−mini6=k,i=1,...,K minj=1,...,L ||xi,j − xk,j ||p|.

B. Framework for Sample Generation on the Tail

In this section, we develop our model, TailGAN, to detect
anomalies near the low probability regions of the data distribu-
tion, i.e. strong anomalies. GANs generally do not guarantee

the existence of a probability density and we use the recently
developed PresGAN and FlowGAN models. We leverage such
models for sample generation on the tail using two steps. The
first step is to train either PresGAN or FlowGAN to learn the
“normal” distribution, G(z) ∼ pg(x). The random variable z
follows a standard Gaussian distribution, z ∼ N(0, I), and the
mapping from the latent space, z, to the data space, x ∈ Rd, is
given by G(z). The second step is to train a generator, T (z),
to perform sample generation on the tail by minimizing

Ltot(θθθ, z, x, G) = wpr Lpr(θθθ, z, G) + wd Ld(θθθ, z, x)
+ we Le(θθθ, z, G) + wsc Lsc(θθθ, z)

(6)

where the total cost function, Ltot, comprises the probability
cost, Lpr, the distance loss, Ld, the maximum-entropy cost,
Le, and the scattering loss, Lsc. The total cost in (6) comprises
four terms. The probability cost penalizes probability density
to find the tail of the data distribution while the distance loss
penalizes large distance from normality using the distance
from a point to a set. The maximum-entropy loss is for the
dispersion of the samples [9, 1], and the scattering cost, Lsc,
is defined by the ratio of the distances in the z and x spaces
to address mode collapse. Hence, Ltot in (6) is given by

1

N

N∑
i=1

[
wpr pg(T (zi;θθθ)) + wd

M
min
j=1
||T (zi;θθθ)− xj ||p

+we pg(T (zi;θθθ)) log(pg(T (zi;θθθ)))

+wsc
1

N − 1

N∑
j=1, j 6=i

||zi − zj ||qp
||T (zi;θθθ)− T (zj ;θθθ)||qp


(7)

where we leverage the tradeoff between probability and dis-
tance in the first two terms of the loss, i.e. Lpr and Ld, and
where the model probability, pg(T (zi;θθθ)), is given by

pz(G
−1(T (zi;θθθ))) |det JG(T (zi;θθθ))|−1 (8)

=exp(log(pz(G
−1(T (zi;θθθ))))− log(|det JG(T (zi;θθθ))|))

where log(pz(G
−1(T (z)))) and log(|det JG(T (z))|) are esti-

mated by an invertible GAN model such as FlowGAN.
The parameters of the generator T (z), θθθ, are obtained by

running Gradient Descent on Ltot, which can decrease to zero
and is written in terms of the sample size, M , and the batch
size, N ≤M . The distance term of the loss in (6), Ld(θθθ, z, x),
depends on the training data, x. This distance term could use
G(z) instead of x and in (7), our distance metric is defined
using M by dist(T (zi), x) = minj=1,...,M ||T (zi)− xj ||p.

The loss in (7) uses the lp-norm, ||.||p, and the scattering
loss, Lsc, is based on the lp-norm to power q, ||.||qp, where p
and q are real numbers and p, q ≥ 1. In (7), the weight wpr is
equal to 1 and wd, we, and wsc are hyperparameters. In (6)-
(8), the gradient of Ltot with respect to T (z) is well-defined
and the change of variables formula in (8) has been used in a
signal processing and nonlinear filtering algorithm in [22].

IV. EVALUATION OF TAILGAN
We evaluate the TailGAN model using (i) algorithm conver-

gence criteria such as the value of the objective cost function
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Fig. 1. Generated samples of handwritten digits when we train PresGAN on
MNIST using the PresGAN hyperparameter λ = 0.0002, at 32 epochs.

Fig. 2. Probability of occurence of the generated images plotted against the
disconnected component index using (2) and (3) when PresGAN is trained
on MNIST using leave-one-out evaluation. The anomaly class is digit 2.

in (7) and the value of the distance cost, Ld, which is the
distance from a point to a set and is based on the lp-norm and
the minimum operator, and (ii) the Area Under the Receiver
Operating Characteristics Curve (AUROC) and the Area Under
the Precision-Recall Curve (AUPRC). Experiments are per-
formed on datasets of increasing complexity, MNIST, CIFAR,
and Baggage X-Ray. In contrast to [2], we use the leave-one-
out evaluation methodology and the detection of abnormal
OoD data. The leave-one-out evaluation that uses the leave-out
class as the anomaly leads to multimodal distributions with a
support with disjoint components. The boundary of the support
of the data distribution is defined using the threshold ε.

TailGAN performs efficient sample generation on the tail of
the distribution obviating the rarity sampling complexity prob-
lem, not requiring importance sampling [20]. For distributions
with disconnected components, the TailGAN model achieves
better performance than the convex hull extrema points.

A. Implementation and Training of TailGAN

We implement TailGAN in PyTorch and a vectorized imple-
mentation of the individual terms of the cost function in (7) has
been created. We evaluate TailGAN using p = q = 2 and be-
cause the choice of distance metric is important, p = q = 1 or
p = 2 and q = 1 could be used. We use pg(x) from PresGAN
which computes the entropy to address mode collapse. The
first connection between TailGAN and our chosen base mode
is pg(x) while the second connection is model initialization,
θθθt0 = θθθg , where θθθt0 are the parameters of the generator T (z)
at the start of training and θθθg are the parameters of G(z).

Using θθθt0 = θθθg , T (z) is trained to perform sample genera-
tion on the tail of the normal data distribution by starting from
within the distribution, and this differs from the encoder-based
initialization used in [2]. On the contrary, using random initial-

MNIST Ltot Ld Lsc

MNIST Digits 0-9 4.73 471.96 0.82
Fashion-MNIST 14.91 1489.70 0.82

KMNIST 14.78 1476.81 0.82

TABLE I
EVALUATION OF TAILGAN COMPARING NORMALITY WITH ANOMALY

CASES USING ALGORITHM CONVERGENCE CRITERIA, TOTAL LOSS AND
DISTANCE LOSS. ANOMALY CASES: FASHION-MNIST, KMNIST.

Fig. 3. Leave-one-out evaluation of TailGAN trained on MNIST using Ltot.
The anomaly cases are the leave-out class and data from Fashion-MNIST.

ization for θθθ, T (z) is trained to perform sample generation on
the tail by starting from outside the distribution. To compute
the probability density, pg(x), in (7) from the entropy which is
estimated by PresGAN, we use the Lambert W (.) function and
Newton’s iterations. We evaluate TailGAN by first performing
density estimation and then training T (z) using convolutional
layers with batch normalization, minimizing (6) and (7).

B. Evaluation of TailGAN on MNIST Data

We first train PresGAN on MNIST until convergence using
the leave-one-out methodology and the detection of abnormal
OoD data. Next, we train TailGAN applying the objective cost
function in (7). We examine different values for the batch size,
N , and we use the entire training set for the sample size, M .
We create T (z) using convolutional networks and we examine
different architectures such as feed-forward and residual.

Figure 1 shows the generated samples at 32 epochs when we
train and use a modified version of PresGAN and the PresGAN
hyperparameter λ = 0.0002. As qualitative evaluation and
visual measure, the MNIST canvas with the generated images
in Fig. 1 shows that our chosen base model is trained to create
realistic images of handwritten digits. All the digits from 0 to
9 are present in the canvas. Figure 2 depicts the probability
of occurence of the generated images against the disconnected
component index when PresGAN is trained on MNIST using
the leave-one-out evaluation, when the anomaly class is digit
2. The frequency of the generated data is computed using (2)
and (3) based on the clustering algorithm in Sec. III.A.

The convergence of the values of the proposed cost function
in (7) is examined. We train TailGAN on MNIST image data
until convergence and we observe that all the individual terms
of the proposed objective cost function, i.e. Lpr, Ld, Le, and
Lsc, decrease over training epochs achieving convergence.

For the evaluation of TailGAN, Table I shows the algorithm
convergence criteria in (6)-(8) produced by TailGAN trained
on MNIST data. TailGAN is evaluated using MNIST data as
the normal class and abnormal data originating from Fashion-
MNIST and KMIST. The values of the objective cost function,
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Fig. 4. Evaluation of TailGAN using AUROC on MNIST data.

Fig. 5. Evaluation using AUPRC for AD on MNIST image data.

total loss, and distance loss, Ld, for abnormal OoD data are
higher than the corresponding values for the normal data. The
OoD anomalies are from Fashion-MNIST and KMNIST, and
the total and distance losses are indicators of anomalies.

Using the leave-one-out evaluation on MNIST, we compute
the cost function in (7), the total cost, the distance loss, and the
scattering cost of T (z) of TailGAN. Figure 3 depicts the total
loss, Ltot, for every MNIST digit for three different cases: (i)
without the abnormal digit, (ii) the abnormal digit, and (iii)
Fashion-MNIST. The anomaly cases are the abnormal leave-
out digit and Fashion-MNIST data. The algorithm convergence
criteria, Ltot and Ld, deviate from normality for the abnormal
digits and the OoD cases as they are higher compared to the
corresponding normal case values. Comparing TailGAN to the
GANomaly and FenceGAN baselines trained on MNIST and
evaluated on Fashion-MNIST, the l2-norm distance loss in the
x space is 3.1, 1.7, and 1.1 times as much compared to the
corresponding values for the normal case for TailGAN (i.e.
Table I), GANomaly, and FenceGAN [18], respectively.

Figures 4 and 5 present the AUROC and AUPRC scores,
respectively, for the evaluation of TailGAN on MNIST data.
The performance of TailGAN is examined using the leave-one-
out evaluation methodology. The proposed TailGAN model
is evaluated using the AUROC and AUPRC metrics and is
compared to several baselines, GANomaly, the implementa-
tion of GANomaly (GANomaly Impl.), EGBAD, AnoGAN,
VAE, FenceGAN, WGAN, and BDSG [5]. Compared to the
baselines, TailGAN shows competitive results in AUROC and
AUPRC. For the anomaly score during inference, the TailGAN

Fig. 6. Generated samples when we train PresGAN on CIFAR-10 images.

CIFAR-10 Ltot Ld Lsc

CIFAR-10 2.22 217.72 4.60
CIFAR-100 5.21 516.49 4.60

SVHN 7.76 771.02 4.60
STL-10 5.74 569.21 4.60
CelebA 6.31 626.26 4.60

Baggage X-Ray 51.67 5161.90 4.60

TABLE II
EVALUATION OF TAILGAN COMPARING NORMAL WITH ABNORMAL

CASES USING ALGORITHM CONVERGENCE CRITERIA, TOTAL LOSS AND
DISTANCE LOSS. NORMALITY: CIFAR-10 CLASSES 0-9. ANOMALY
CASES: CIFAR-100, SVHN, STL-10, CELEBA, BAGGAGE X-RAY.

model uses the estimated probability density, the first term of
the objective cost function presented in (7) which addresses if
a sample is within or out of the distribution support, and the
second term in (7) which computes lp-norm distances.

C. Evaluation of TailGAN on CIFAR-10 Data

To scale up the dimensions of the problem, we use the
CIFAR-10 dataset and we hence go from 28× 28 dimensions
of MNIST to 3×32×32 dimensions of CIFAR. First, we train
PresGAN for density estimation until convergence on CIFAR
data and, then, we train TailGAN using convolutional neural
networks with batch normalization. We train TailGAN using
the entire training set for M and our aim is to use TailGAN
to accurately detect atypical, aberrant, abnormal samples.

Figure 6 shows the generated samples when we use a mod-
ified version of PresGAN and the PresGAN hyperparameter
λ = 0.0002. As qualitative evaluation, the CIFAR-10 canvas
with the generated images in Fig. 6 shows that our chosen base
model is trained to create realistic images. All the classes are
present in the canvas. Next, we train the proposed TailGAN
by minimizing the cost function presented in (6)-(8). TailGAN
achieves convergence on CIFAR-10 and Lpr, Ld, Le, and Lsc
in (6) and (7) decrease over iterations, epochs, and time.

For model evaluation during inference, Table II compares
the values of the cost terms for the normal class, CIFAR-10
data, with the corresponding values of the loss terms for the
abnormal OoD data, CIFAR-100, SVHN, STL-10, CelebA,
and Baggage X-Ray. Table II shows that the distance loss
is an indicator of anomalies and of the anomaly score, and
both the total and distance losses are indicators of anomalies.
The distance loss and the cost function values, Ld and Ltot,
are higher for the OoD data than the corresponding values
for normality: Ltot = 2.22 for normal data from CIFAR-10
and Ltot = 6.31 for abnormal data from CelebA. Comparing
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(a) (b)
Fig. 7. (a) Normal class image from the Baggage X-Ray dataset. (b) Anomaly
class image from the Baggage X-Ray dataset containing knives and bottles.

Baggage X-Ray Ltot Ld Lsc

Baggage X-Ray Normal 3.21 319.22 2.83
Baggage X-Ray Abnormal 7.45 741.39 2.83

CIFAR-10 12.77 1274.32 2.83
CIFAR-100 13.14 1309.87 2.83

SVHN 9.87 983.72 2.83
STL-10 17.11 1706.81 2.83

TABLE III
EVALUATION OF TAILGAN ON BAGGAGE X-RAY DATA COMPARING
NORMALITY WITH ABNORMAL OOD CASES USING Ltot FROM (7).

TailGAN with GANomaly and FenceGAN trained on CIFAR-
10 (Normal) and evaluated on CIFAR-100 (Abnormal), the
l2-norm distance loss in the x space is 2.3, 1.1, and 1.1 times
as much compared to the corresponding values for normality
for TailGAN (i.e. Table II), GANomaly, and FenceGAN.

D. Evaluation of TailGAN on Baggage X-Ray Data

In this section, we evaluate TailGAN on Baggage X-Ray
data. Figure 7 shows two example images, one from the normal
class and one from the anomaly class, from the Baggage X-
Ray dataset, where the abnormal image contains 2 knives and
3 bottles. Table III uses Baggage X-Ray data and compares the
values of the losses for the normal class with the values of the
losses for the abnormal OoD data. The distance loss and the
cost function values, Ld and Ltot, are higher for the Baggage
X-Ray abnormal OoD data than the corresponding values for
the normal Baggage X-Ray data, i.e. Ltot = 3.21 for normal
class data and Ltot = 7.45 for abnormal OoD image data.

V. CONCLUSION

In this paper, we have proposed TailGAN to perform AD
and sample generation on the tail of the distribution of typical
samples. The proposed TailGAN uses adversarial training and
GANs, and minimizes the objective cost function in (7). Using
GANs that can explicitly compute the probability density, we
perform sample generation on the tail of the data distribution,
we address multimodal distributions with disconnected com-
ponents, and we also address the mode collapse problem. The
main evaluation outcomes on MNIST, CIFAR-10, Baggage X-
Ray, and OoD data using the leave-one-out evaluation show
that TailGAN achieves competitive AD performance.
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Abstract—Electrical devices unintentionally inject signals onto 
the mains power supply that can be measured using commercially 
available equipment designed for electromagnetic compatibility 
testing. This allows the identification of devices from their current 
time series when switched on or off. This paper outlines 
measurements of several devices and a process for simulating large 
amounts of annotated data based on those measurements. A 
convolutional neural net (CNN) algorithm for classifying signals is 
described. Performance of the CNN is compared to that of 
dynamic time warping (DTW) and correlation algorithms, with 
respect to varying training data set size and noise level. The CNN 
has the best performance for almost all cases considered. 

Keywords—convolutional neural net; dynamic time warping; 
electrical signals; statistical model; time series classification 

I. INTRODUCTION 
Electrical devices unintentionally inject signals onto the 

mains electricity supply. Current time series produced by 
various devices are visually distinct when switched on or off [1] 
and algorithms can classify time series events when devices 
operate individually [2]. Useful information about the “pattern 
of life” of equipment could thus be deduced from the mains 
current and reveal what is happening inside a building, with 
applications for smart metering or intelligence gathering. This 
paper summarizes results of a measurement trial, describes a 
process to simulate large amounts of data, specifies an algorithm 
to classify on/off events, and compares the performance of deep 
learning, dynamic time warping, and correlation classification 
algorithms when applied to devices operating in a noisy 
environment. 

II. ELECTRICAL DEVICE DATA 
Measurements of several devices were made as described in 

[1]. Root mean-square (RMS) current signals were measured at 
a sample rate of 50 Hz. Data was recorded for the cycle: power 
off, power on, power off, or standby, on, standby for devices 
with a standby mode. The signals were recorded with a 
consumer unit typically used with building electrical supplies 
and a 15 m extension lead. These measurements are 
representative of what could be obtained in the field with a 
passive measurement device. The following devices were tested: 
compact fluorescent lamp (CFL), cathode ray tube (CRT) 
television, laptop and charger (two different models of charger), 
power drill, desk fan, filament lamp, flat screen television, 
halogen lamp, light emitting diode (LED) lamp, and Nokia and 
Samsung phone chargers. These devices were selected to cover 
a broad range of characteristics and have significant variability 
in the amount of power consumed. Details about the make and 
model of each device are given in [1]. 

III. GENERATING REALISTIC SIMULATED DATA 

A. Single device simulations 
The above measurements were made for devices operating 

individually on different days to test the consistency of device 
signatures over time. On/off events were manually annotated. 
For analyzing data from devices operating simultaneously, it is 
impractical to annotate the large amounts of data required to 
measure every combination of device. Therefore, a process for 
simulating device signatures based on measurements was 
developed in [2]. This process analyzed the nonlinear variations 
in time exhibited by each signature, as well as local variations in 
signal amplitude, to construct a statistical model that can be used 
to generate signals randomly for each device.  

One issue with the data simulation model in [2] is that 
amplitude and time were both assumed to vary according to a 
multi-variate Gaussian probability distribution. This is a 
reasonable assumption for much of the data but some parts of 
the signals have significantly skewed distributions and a 
Gaussian model is not suitable. This can be seen by comparing 
Fig. 1 and Fig. 2, which show measured data of a switch-on 
event for a CRT TV and data simulated using the Gaussian 
model. At the switch-on time of sample index 100, some 
simulated data examples exhibit significant negative relative 
current values while the real data does not have this feature. The 
distribution of the peak current at sample 106 in the measured 
data is skewed and sometimes has values as large as 0.3 A. In 
the simulated data the peak is symmetrically distributed about a 
value of 0.26 A. These observations motivate the need for a non-
Gaussian distribution.  

A key aspect of the simulated data model is that it 
incorporates correlations between signal values at different 
times. This is necessary to deal with the fact that significant 
correlations exist in the measured data. For most parts of the 
signal, the data is positively correlated – slowly varying signals 
are likely to have a high sample value if the previous sample was 
also high. However, some negative correlations also exist. For 
example, when there is a sharp spike in the data, this often is 
spread over adjacent samples. Since the total energy of the spike 
is approximately constant, if one sample is high then the adjacent 
one will be low. Modelling asymmetric correlated non-Gaussian 
data is not straightforward, as not many suitable probability 
distribution families exist. However, it is possible to model such 
data using copulas. 

Following [3], a ݀-dimensional copula ܥ is a multivariate 
distribution function on the unit hypercube	[0,1]ௗ	with uniform 
marginal distributions for each dimension. 
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Fig. 1. Segments of measured CRT TV data for a switch-on event. 

 

Fig. 2. Segments of CRT TV data simulated using a Gaussian amplitude and 
time-warp model. 

Sklar’s theorem says that if ܪ is an arbitrary multidimensional 
distribution function with one-dimensional marginals ܨଵ, … ,  ௗܨ
then	ݔ)ܪଵ, … , (ௗݔ = ,(ଵݔ)ଵܨ൫ܥ … ,  ,ܥ	൯ for some copula(ௗݔ)ௗܨ
which always exists. Thus, the one-dimensional marginals and 
multivariate dependence structure of a multi-dimensional 
distribution can be separated, with dependence represented by a 
copula. This means that when constructing a model, one has 
complete freedom in choosing different distributions for each 
dimension, including distributions from different families. This 
is important for the signal-modelling task as it allows non-
Gaussian distributions to be assigned to the signal values at each 
time step. The following discussion outlines how these marginal 
distributions are independently defined. Attention is then given 
to choosing a copula dependence model. 

A key observation about the device data is that the 
distribution of different parts of each signal can be symmetric, 
positively skewed, or negatively skewed. While the copula 
model in principle allows an arbitrary distribution to be assigned 
to each sample, it is more convenient in practice to use a single 
distribution family, but with varying parameters. It is therefore 
necessary to select a distribution with enough flexibility to 
model signals with different characteristics, while being simple 
enough that its parameters can be estimated from limited data 
sets. A suitable choice is the four-parameter beta distribution, as 
in addition to being able to vary the skewness it is possible to set 
minimum and maximum bounds on the signal, which prevents 
spurious large or small values being produced. The probability 
density function of the four-parameter beta distribution is: 

(ݔ)݌ = Γ(ߙ + ݔ)(ߚ − ܷ)ఈିଵ(ܮ − ܷ)(ߚ)Γ(ߙ)ఉିଵΓ(ݔ − ఈାఉିଵ(ܮ  (1) 

This definition is valid for	ܮ ≤ ݔ ≤ ܷ, where ܮ is the lower 
bound and ܷ is the upper bound. Outside of this range	(ݔ)݌ =0. The parameters ߙ > 0 and ߚ > 0 are shape parameters and Γ(⋅) is the well-known gamma function.  

Given measured data, it is necessary to estimate parameters 
of the distribution to form a concrete model of how the signal 
varies at each time sample index. Two widely used generic 
methods for parameter estimation are maximum likelihood and 
the method of moments. However, both methods have 
drawbacks when naively applied to the four-parameter beta 
distribution. The global maximum of the likelihood function in 
unconstrained parameter space can correspond to infeasible 
solutions, where the estimated range [ܮ, ܷ] is narrower than the 
range of the data [4]. Useful parameter estimates can be obtained 
at a local maximum, but this is sometimes difficult to locate 
when the sample size is small, which is the case for the data set 
at hand. Direct moment matching can also lead to infeasible 
solutions. A feasibility-constrained moment matching technique 
was developed in [5], where the first four moments of the 
solution only approximately match those of the data. 

To avoid the above issues, a robust modification of the 
hybrid procedure in [6] was implemented. This decomposes the 
problem into two tractable tasks: estimate the lower and upper 
bounds first and then given these bounds, estimate the shape 
parameters. A robust estimate of the bounds is given by: ܮ෠ = min(ݔ) − ݊)/(ݔ)݁݃݊ܽݎ − 1) (2) ෡ܷ = max(ݔ) + ݊)/(ݔ)݁݃݊ܽݎ − 1) (3) 

This guarantees that the data lies within the bounds and sets each 
bound at a distance from its nearest data point equal to the mean 
spacing between all points in the set. In [6], linear interpolation 
on order statistics is used to define different distances for the 
lower and upper bound. However, this method is highly sensitive 
to the spacing of the lowest and highest two data points and, in 
practice, the estimators (2) and (3) have been found by the 
present author to be more robust. Once the lower and upper 
bounds have been set, the data can linearly be rescaled from ൣܮ෠, ෡ܷ൧	to	[0,1]. Maximum likelihood estimation of ߙ and ߚ then 
proceeds as usual for the two-parameter beta distribution, a well-
conditioned problem. 

As an alternative to the above hybrid procedure, a fully 
Bayesian approach to estimating all four parameters of the beta 
distribution using Markov chain Monte Carlo (MCMC) was 
implemented. MCMC represents uncertainty in the parameter 
estimates by a set of samples, which could, in principle, be used 
in the signal simulation process. However, signals simulated 
using the hybrid procedure were found to be of sufficient fidelity 
and it was judged that the extra run time associated with MCMC 
outweighed the benefit gained in more accurate modelling of 
uncertainty. Therefore the results presented in this paper are 
based on the hybrid maximum likelihood procedure. 

The dependence structure of the copula model is now 
defined. A large proportion of the discussion surrounding 
copulas is based on two-dimensional distributions, but the signal 
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simulation task requires models with more than 100 dimensions. 
A convenient copula for large dimension problems is the 
Gaussian copula [7]. This is defined as:  ݑ)ܥଵ, … , (ௗݑ = Φீ(Φିଵ(ݑଵ), … ,Φିଵ(ݑௗ); ܴ) (4)

where Φ is the cumulative distribution function (CDF) of the 
standard normal distribution, and Φீ  is the standard multivariate 
normal distribution with correlation matrix	ܴ. The Gaussian 
copula is flexible as it allows for varying degrees of positive or 
negative correlation for each pair of variables. 

The Gaussian copula parameter ܴ is estimated using a two-
step maximum likelihood technique known as Inference 
Functions for Margins (IFM) [8]. In the first step, parameters of 
the marginal four-parameter beta distributions ܨ௜ for each 
dimension (time sample index) ݅ = 1, … , ݀ are estimated from 
the data using the hybrid procedure described above. The data ݔ௜௝  (for ݆ = 1,… , ݊ with ݊ data points) are then transformed to a 
standard multivariate normal distribution by:  ݃௜௝ = Φିଵ ቀܨ௜൫ݔ௜௝|ߙො௜, ,መ௜ߚ ෠௜ܮ , ෡ܷ௜൯ቁ (5) 

The estimated correlation matrix  ෠ܴ  is simply the covariance 
of	ൣ݃௜௝൧. 
 Data can be generated from the copula model by first 
drawing samples  ෤݃௜௝ from a multivariate Gaussian distribution 
with covariance matrix	 ෠ܴ . The samples from each dimension are 
then transformed using: ݔ෤௜௝ = ௜ିܨ ଵ൫Φ൫ ෤݃௜௝൯|ߙො௜, ,መ௜ߚ ,෠௜ܮ ෡ܷ௜൯	 (6) 

The resulting ݔ෤௜௝  represent a set of constant-length randomly 
simulated beta distribution signals aligned to the same time base.  

 To model temporal variation of the signals, the non-linear 
warp function model described in [2] can be applied. That warp 
model is also based on a multivariate Gaussian distribution. The 
model can be upgraded to use copulas in the same manner as for 
signal amplitudes, as described above. Therefore, a warp model 
using four-parameter beta distribution marginals and a Gaussian 
copula was implemented. 

A copula model for amplitude and temporal variation was 
estimated for each device independently. Each model was then 
used to simulate new device signals.  

  

Fig. 3. Segments of CRT TV data simulated using an amplitude and time-warp 
copula model. 

A subset of simulated data is shown in Fig. 3. Comparing to 
Fig. 1, the generated signals look realistic. Furthermore, 
comparison with Fig. 2 shows that signals generated from the 
copula model have a higher fidelity than those generated using 
the Gaussian model. In particular, the copula model does not 
produce spurious large negative values at the switch-on time of 
sample index 100, and the peak current at sample 106 shows the 
correct amount of skew. 

B. Simultaneous device simulations 
The measured and simulated data described in sections II and 

III-A pertain to single devices operating at a time. This data is 
useful for isolating the effect of each device and determining the 
intrinsic ability of machine learning algorithms to classify the 
data. However, a real system would measure a single long time 
series with multiple signals potentially superimposed on each 
other. It would be necessary to detect and extract relevant signals 
before classification. Detection of an on event is simple as all 
devices either produce a spike or step change in the current. A 
section of the data can then be extracted from 1 s before the event 
to 15 s after it, which covers the transient signal of all devices. 
That section of data is used as input to the classifier. 

The effect of multiple devices operating simultaneously on 
classification performance can be tested in two ways. The first 
is to add zero-mean Gaussian noise with a certain variance. Due 
to the central limit theorem, this is a reasonable approximation 
when a large number of devices are in simultaneous use and their 
noise is additive. The total noise power is related to the steady-
state noise introduced by each device while it is operating.  

The second method for multiple device simulation is to 
simulate individual device signatures, using the procedure from 
section III-A, and superimpose them to produce a composite 
signal. It is assumed that linear superposition applies so that time 
series may simply be added. This has been verified via 
measurement. The signal aggregation process proceeds as 
follows. The initial state of the system is a time series with 
Gaussian noise with a variance defined by the background noise 
power. At a specified point in time, a device is randomly chosen 
and a simulated switch-on signal is superimposed on the 
background noise. Once the transient part of the switch-on signal 
has finished, a steady state model for that device is used to 
persist its signal until a switch-off event for that device is 
simulated or the end of the simulation is reached. The above 
process is repeated for multiple devices, cumulating the signal 
and steady state noise from each device over time. When a 
switch-off event is simulated, the device switch-off transient is 
applied to the aggregate signal and the effect of the steady-state 
model for that device is removed. This method for multiple 
device simulation allows one to test the effect of non-Gaussian 
and structured noise produced during the steady state on period 
of devices. It also facilitates the production of arbitrarily long 
time series with automatic annotation of the time of switch-on 
and switch-off events, along with the label of the device 
associated with each event. This enables the production of large 
amounts of training data, which is required by deep learning 
algorithms [9], and test data to obtain statistically significant 
results. This paper uses the simple Gaussian noise method for 
simultaneous device analysis. The use of simulated super-
imposed signals will be the subject of future work.   
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A steady-state noise model is required to pad short simulated 
signals to constant length. The model was constructed as 
follows. First, steady-state parts of each measured signal were 
extracted in the following manner. All signals for a single device 
were warped to a reference time-base using the dynamic time 
warping (DTW) procedure from [2]. The start and end times of 
the steady state portion of the mean reference signal were 
manually annotated. The inverse of the warp function for each 
signal was then used to transform these reference start/end times 
to actual start/end times for the original signal. These times were 
used to extract segments of steady state noise for each device. 
These segments were concatenated and their mean spectrum 
estimated using the Welch method [10], with an FFT size of 256 
samples (5.12 s). The spectrum was used to filter a white 
Gaussian noise signal of the required length. The mean and 
standard deviation of the colored noise were then adjusted by 
linear scaling to match those of the steady state portion of the 
signal to which the noise was being concatenated. A comparison 
of measured and simulated steady-state noise for a flat-screen 
TV is given in Fig. 4 and Fig. 5. It is seen that the simulation 
correctly captures the time-varying structure of the measured 
data spectrum. 

 

Fig. 4. Spectrogram of measured steady state noise from a flat-screen TV. 

 

Fig. 5. Spectrogram of simulated steady state noise from a flat-screen TV. 

IV. DEEP LEARNING CLASSIFICATION 
Previous work in [2] developed a dynamic time warp 

algorithm for signal classification. While performance was 
shown to be good in noise-free environments, it is likely that 

advances in deep learning could be used to develop algorithms 
with performance that is more robust in a range of scenarios.  

One particular form of deep learning is a convolutional 
neural net (CNN). As with dynamic time warping, this type of 
classifier is robust to linear and non-linear signal variations in 
time, which are present in the data. A CNN classifier was 
implemented with structure shown in Table 1, where ݊௙ is the 
number of filters per layer, ݊௟ is the number of max-pool layers, 
and ݊௛ is the number of hidden nodes in the dense layer. This 
structure is inspired by the VGG-16 image recognition 
architecture [11], but adapted to one-dimensional signals with 
some modifications. At the signal edges, zero padding is applied 
before convolution so that the signal remains the same length. 
The Adam optimizer and a categorical cross-entropy loss 
function were used. All experiments used 100 training epochs, 
which was sufficient for accuracy on the training set to converge. 
In many specific cases, training for fewer epochs would have 
been sufficient. A simple architecture search procedure, which 
assumed the effect of each parameter could independently be 
analyzed, found optimum values of the network parameters to 
be ݊ ௙ = 32, ݊ ௟ = 6, and ݊ ௛ = 32. This results in a network with 
28,364 parameters. It is likely that a more comprehensive search 
could improve the architecture further.  

Layer Type Filter 
size 

#Filters 
or nodes 

Activation 
function 

#Parameters

Conv1D 3 ݊௙ ReLU 128

MaxPool1D 2 N/A None 0

Repeat the above two layers (݊௟ − 1) times 3104(݊௟ − 1)
Dense N/A ݊௛ ReLU 12320

Dropout N/A 0.5 None 0

Dense N/A ݊ௗ Softmax 396

Table 1. Base convolutional neural net structure. The number of devices ݊ௗ is 
fixed at 12. The #Parameters column assumes ௙݊ = 32 and ݊௛ = 32. 

V. PERFORMANCE ASSESSMENT 
The single-device simulation procedure described in section 

III-A produces simulated signals of different lengths, due to the 
temporal variations in the warp model. For input to the 
classifiers, all signals were standardized to be the same length of 
800 samples (16 s). Raw signals longer than this were truncated. 
Signals shorter than this were padded with device-specific 
steady state noise using the Welch filter process described in 
section III-B. Two hundred switch-on event signals per device 
were simulated and the data were split into training (70%) and 
test (30%) sets. For comparison, three classifiers were applied to 
the data: correlation and dynamic time warping (DTW), as 
described in [2], and a CNN, as described in section IV.  

The effect of making measurements with multiple 
simultaneous devices on classifier performance was analyzed by 
adding zero-mean white Gaussian noise with varying standard 
deviation ߪ as described in section III-B. In the initial set of 
experiments, the same amount of noise was added to both the 
training and test data. Experiments were repeated ten times and 
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the mean and standard deviation of classifier accuracy were 
computed from the Monte Carlo runs. The results are shown in 
Fig. 6. All classifiers have perfect performance in a noise-free 
environment and this degrades as the noise level increases. The 
CNN classifier has the best performance for all noise levels. 

 

Fig. 6. Accuracy vs. noise level when test and train noise levels are the same. 

 

Fig. 7. CNN accuracy vs. noise level for different test and train noise levels. 

 

Fig. 8. Accuracy as a function of training data set size, with noise set to 0.1 A. 

A second experiment was carried out to determine the effect 
of testing a classifier where the noise conditions are different to 
those present during training. The results for the CNN classifier 
are shown in Fig. 7. It is seen that performance is generally best 
when test conditions match training conditions. It is further 
noted that there is an asymmetry in Fig. 7 – a classifier trained 
with a certain specified level of noise performs better in noise-
free test conditions than when trained in a noise-free 
environment but tested with the same specified amount of noise. 
Therefore, to be useful in practice, classifiers should be trained 
with multiple levels of noise. 

Increasing training data volume allows classifiers to 
construct a more accurate model. Accuracy as a function of 
training set size is shown in Fig. 8, where a noise level of 0.1 A 

was used for both train and test. Performance increases rapidly 
with training set size, but plateaus once 32-64 training samples 
per class are available. When only one or two training samples 
are available, DTW outperforms the CNN. However, the CNN 
gains the largest benefit from training data and outperforms 
other classifiers with four or more training samples per class. 

VI. CONCLUSIONS 
A sophisticated data simulation process has been designed 

that can generate unlimited amounts of single-device event data. 
This can be used to test classifier performance as a function of 
training data set size or noise level. At least 64 training examples 
per device were required to achieve maximum performance. 
Classifier performance drops with increasing noise levels but the 
CNN classifier maintains a fair accuracy even with Gaussian 
noise levels of 1.0 A. This compares favorably to the DTW and 
correlation classifiers, whose performance is the same or worse 
than the CNN classifier for any given noise level. 

The data simulation process enables the creation of long time 
series with multiple devices operating simultaneously and 
annotated switch-on or off events. This could be used to analyze 
signal detection algorithms, which should be the subject of 
future work. The effect of structured noise on classifier 
performance should also be analyzed. 
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Abstract—Human safety is a major challenge in the modern
world. Bomb blasts and public shooting incidents are on the rise.
Early recognition of such occurrences by detecting corresponding
blaring audio events could help in providing swifter aid and re-
ducing overall devastation. Hence rapid and accurate identification
of related audio events is a crucial task for public safety. In this
paper we propose a novel approach of Multimodal learning for the
automated detection of explosive sounds such as Gunfire, Machine
gun, Fusillade, Artillery Fire, Cap Gun and Explosion sounds for
audio surveillance task. We present a deep feature stacking based
method to classify explosive and non-explosive sounds substantially
outperforming existing methods. We also discuss the challenges
involved in explosive sound detection based on the inferences
observed.

Index Terms—Artificial Intelligence, Audio signal processing,
Explosive sound detection, Multimodal learning

I. INTRODUCTION

The problem of inadequate automated audio surveillance
has been contemplated by the research community recently.
Extreme inhuman events have increased drastically nowadays
such as gunfire in schools, religious and other sensitive places.
A study shows that the number of people killed by gunfire in
USA alone in 2017 was almost 40,000 [1]. Myriads of innocent
lives are lost due to unpreparedness, hence early detection
of explosive sounds can play a vital role in combating with
these situations. Acoustic sensors have been used in battlefields
since World War I to accurately deduce weaponry strength.
Modern world calls for cutting edge technology in audio signal
processing for safeguarding [2] [3].

Explosive sound detection falls under the domain of Audio
Event Detection (AED). AED has a large number of appli-
cations such as Animal care [4], Human disease symptoms
detection [5] [6], audio detection based surveillance [7] [8],
monitoring living beings such as baby crying [9] or pet making
sound, etc. AED can be complementary to video and image
based event detection and on top of that it can be advantageous
in the scenarios where visual signals are not clear or unavailable
such as snowfall, rain or fog.

In this paper, we mainly concentrate on audio surveillance
using explosive sound detection. Explosive sounds have slightly

We would like to acknowledge and thank SRI-Noida for the hardware support

Fig. 1. Representation of sample audio waveform of a gunshot sound.

different amplitude and variant spectral characteristics as com-
pared to the normal audio clips. The main contributions of this
paper are condensed as follows:
(a) A novel multimodal network with deep feature stacking
using deep convolutional neural network accompanied by blend-
ing of features extracted from raw waveform
(b) Method to utilize octave based relative spectral distribution
and average spectral envelop of an audio signal for explosive
sound detection
(c) A state of the art method for feature extraction using
temporal and spectral characteristics of impulsive sound.

II. RELEVANT WORK

Some of the earliest work done in the field of Audio Event
Detection(AED) are content based classification and retrieval
of audio recording [10] [11] [12]. Other relevant work [13]
on Acoustic Event Detection used deeper CNN architecture
and data augmentation [14] [15] to classify 14 classes of
environmental sounds. Recent work [7] in 2018 provides audio
surveillance system for detecting hazardous road incidents such
as tire skidding, car crashes. In [16] authors have classified the
audio clips of Audioset (a dataset of audio events that was
released by Google [17]) into 600 different classes using log
mel spectrogram as input feature. DCASE launches competition
based on audio event classification and detection every year
since 2013 [18] [19] [20].

Subsequent work in relevant area is focused on specific sound
event detection such as gunshot and scream detection [21].
Authors in [22] have used features such as MFCC, 8th order
LPC coefficients etc. and HMM classifier to classify the audio
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excerpts into gunshots and other sounds. Reference [23] utilizes
a sliding window Hidden Markov Model (HMM), it tries to
identify abnormal sounds such as gunshot, glass breaking,
and explosion using different spectral and harmonics features.
Although there are a lot of exploratory research available on
gunshot and impulsive sound detection, but precise results are
still missing.

The paper is structured as follows: Section III describes the
Feature Representation of audio signal used in our Multimodal
network. In Section IV we provide an overview of the dataset
used for training and validation purposes. Section V describes
the deep Multimodal network and in the further sections we
discuss results and observations.

III. FEATURE REPRESENTATION

Audio features are extracted using raw audio waveforms
(Fig.1). Most popularly used audio features are STFT, spec-
trogram, MFCC, LPC etc. Since gunshots and explosions have
variant nature of spectral characteristics hence average spectral
envelope based features are not sufficient for explosive sound
detection [24]. Therefore, we have used relative spectral char-
acteristics along with spectrogram to capture the consolidated
spectral properties of an audio signal (Fig.2). Other audio
features such as MFCC, spectral roll off either closely resemble
or perform poorly in comparison with above said features in
terms of explosive sound detection task.

Fig. 2. Flow of Spectrogram and Spectral Contrast calculation

A. Spectral Contrast

Spectral contrast is a feature which was originally presented
in “Music type classification by spectral contrast feature” [25]
[26] which classifies Music type among different classes such
as baroque, romantic, pop, rock and jazz music. Since it uses
the idea of peak and valley spectrum, it is a representation of
relative distribution in a signal. To the best of our knowledge
this feature has not been used for explosive sound detection.
We have used this feature to capture the relative spectral
characteristics for highly varying nature of explosive sounds
such as gunshots.
Feature Extraction :

For each frame of 2048 samples of an audio signal, FFT
is applied to get spectral components and then divided into
six sub-bands based on octave scale. Let, FFT of k-th sub-
band is {xk,1, xk,2, . . . , xk,N}. After sorting this FFT vector by
magnitude, suppose we get a new vector

{

x′
k,1, x

′
k,2, . . . , x

′
k,N

}

Fig. 3. Spectrogram of a gunshot sound

such that x′
k,1 > x′

k,2 > · · · > x′
k,N . Now, spectral peaks and

valleys are calculated as :

Peakk = log

{

1

αN

αN
∑

i=1

x′
k,i

}

(1)

V alleyk = log

{

1

αN

αN
∑

i=1

x′
k,N−i+1

}

(2)

where α = 0.02 (standard value based on experiments). Spectral
Contrast (SC) is defined as :

SCk = Peakk − V alleyk, where k ∈ [1, 6] (3)

After Log transform on obtained vector, Karhunen-Loeve
transform is applied to eliminate the relativity among different
dimensions. The above mentioned process can be similarly ap-
plied to all the frames obtained from raw audio digital samples
to get complete Octave-based Spectral Contrast representation
for the audio.

B. Log-mel Spectrogram

Mel Spectrogram is used for audio classification primarily
as an input to neural networks [16]. Mel scale is based on the
variant frequency of human ear’s critical bandwidth to capture
important characteristics of speech signal. Notice the peaks
(formants) in the spectrum as shown in Fig.3, sounds can be
identified much better by the Formants and by their transitions.

IV. DATASET

Generating dataset for explosive sounds is difficult as these
are one of the rare events. We have used Audioset [17], a dataset
containing 632 classes of different categories of sounds such as
car engine, dog bark etc. (released by Google in 2017).

Fig. 4. Given containers shows internal distribution of Audioset and the
extracted number of audio files from each sub component.
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Fig. 5. Multimodal architecture for explosive sound detection using spectral contrast, spectrogram and feature extraction using 1D convolutional operations on
raw waveform followed by a fully connected network which outputs the probability of audio signal belonging to explosive sound category

We have filtered the explosive sounds for our task such as
Gunshot, Machine gun, Fusillade, Artillery Fire, Cap Gun and
Explosion from the Audioset. We have used 4510 non-explosive
sounds from the ‘unbalanced train set’ randomly, containing
excerpts from sounds such as speech, music, car engine and
other perceptually similar impulsive sounds such as door slam,
bang, yell etc. to train alongside the mentioned explosive sound
data (Fig.4). These audio excerpts are of less than or equal to
10s in duration, as a result we have around 25 hours of dataset
in total.

UrbanSound8K [27], a dataset for Environmental Sound
Classification also contains gunshot sounds, but it has relatively
smaller number and less variety of gunshot sounds (342 samples
of ≤4 sec each). We have also benchmarked our method on
this dataset achieving substantial improvement as compared
with previous existing methods (CNN and LSTM) [28] while
using five fold cross validation. We have also used convolution
based architectures which are faster in execution as compared
to LSTMs and other memory cell based networks.

V. MODEL ARCHITECTURE

We have used custom made lighter version of ResNet [29]
based convolutional architecture for both baseline and proposed
multimodal network due to its ability to counter vanishing
gradient problem. Although Audioset has comparatively diverse
set of samples of explosive sounds, it has not been utilized
specifically for the explosive sound detection task. Hence, we
also present a baseline model on this dataset using log mel
spectrogram as input feature.

A. ResNet Network using spectral features

Our model contains three Residual blocks where each block
consists of two convolutional layers each accompanied with
batch-normalization and Relu activations (Fig.6). The input of
this network is spectral representation of audio i.e. spectrogram

or spectral contrast and has a binary output denoting explosive
or non-explosive sound.

B. Multimodal Network

The Multimodal network consists of two 2D ResNet networks
and a 1D convolutional network running in parallel. It is a
Multi input one output network (Fig.5). Two of these networks
take spectrogram and spectral contrast as input and the other
network take raw spectrogram as input and extract features
corresponding to the same audio clip using 1D convolutional
neural network consisting of 3 residual blocks same as Fig.6
but replacing 2D convolution with 1D convolutional kernels.

We concatenate the output of intermediate layers of these
three networks. Note that batch normalization before merging
helps in normalization of outputs of all the networks and thus
reduce the chance of adverse impact of one network on the
other. A fully connected neural network is built on the top of
merged layer to learn the feature representation of combination
of these three networks.

Fig. 6. Internal schematic representation of one residual block used in
Multimodal architecture
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VI. RESULTS AND DISCUSSIONS

TABLE I
PERFORMANCE OF DIFFERENT MODELS BASED ON CHANGE IN INPUT OR

ARCHITECTURE

Architecture and dataset Accuracy F1 Score
Spectrogram for Gunshot 85.3 % 0.87
SpectralContrast for Gunshot 89.8% 0.91
Spectrogram for Explosion 86.5% 0.91
SpectralContrast for Explosion 77.9% 0.84
Spectrogram for all data 85.3% 0.86
SpectralContrast for all data 87.9% 0.89
Bi-modal Architecture for all data 90.0% 0.91
Bi-modal with data augmentation 91.2% 0.92
Multimodal Architecture for all data 91.6% 0.92

TABLE II
PERFORMANCE ON URBANSOUND 8K DATASET

Architecture Accuracy F1 Score
CNN architecture NA 0.91
LSTM architecture NA 0.94
Proposed Multimodal 95.9% 0.98

Using individual features : We have captured relative and
average spectral distribution using spectral contrast and log
mel spectrogram with the results as shown in Table I. It is
evident that spectral contrast performs better in case of gunshot
detection due to larger relative spectral variation in gunshot
sounds and spectrogram performs better for explosion sounds.

Using Bi-modal architecture with spectral features: We have
extracted deep features using Multimodal deep feature stacking
network to capture all the spectral variation of explosive sounds
in frequency domain. This bimodal architecture takes spectral
features represented by spectrogram and spectral contrast of
an audio signal as input. We have shown a considerable
improvement in performance metrics by using bimodal network
as compared to the network with only spectrogram as input, as
shown in Table I.

Using Multimodal network: For capturing temporal infor-
mation from raw audio waveform we have extracted features
using custom made ResNet based 1D convolutions. The im-
pressive performance of spectral contrast for gunshot sound
and spectrogram for the explosion sound detection prompted
us to develop a Multimodal network which can account for

Fig. 7. Comparison of loss and accuracy vs epochs

Fig. 8. Difference in spectral distribution as evident from spectrogram in car
beep and explosion sounds

Fig. 9. Difference in relative spectral distribution as evident from spectral
contrast in gunshot and speech sounds

temporal, relative and average spectral distribution for an audio.
Our Multimodal network substantially outperforms the baseline
method as evident from Table II. Model improvement and
convergence is shown in Fig.7.

VII. OBSERVATIONS

1) Spectral contrast being a relative spectral distribution
performs better for gunshot detection (Fig.9) and spectro-
gram performs better for explosion sounds (Fig.8). Fea-
ture extraction using 1D convolutions on raw waveform
captures the basic properties such as amplitude variation
in time domain. Therefore, our Multimodal architecture
captures all the aspect of an audio signal and is able
to classify various kind of explosive sounds with great
precision.

2) Although we have reasonable number of data points for
the explosive sounds, we can generate more quality data
points to improve the accuracy and reduce the error rate.
Artificial data generation using Generative adversarial
networks corresponding to similar scenarios might be one
of the solutions to fulfill data scarcity.

3) Similar architecture and method can be applied for other
impulsive sound detection task such as door slam, glass
cracking etc.

VIII. CONCLUSION

In this paper, we proposed a novel Multimodal Residual
neural network for explosive sound detection using deep feature
stacking. We have shown the importance of relative and average
spectral distribution of an audio signal with blending of features
extracted using 1D convolutions on raw audio waveform for
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explosive sound detection. We have achieved close to accurate
result of 0.98 F1-Score on UrbanSound8k dataset and an
improvement of 6.3% as compared to baseline method on
Audioset. Our Future work will be directed towards applying
the proposed method to different applications such as health
care and audio-visual surveillance.
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Abstract—Interception of radar signals is analyzed. The
waveforms of interest are the Linear Frequency Modulation
(LFM), the Phase-Coded (PC) and multicarrier (MC) wave-
forms. The problematic is to perform detection with real-time
requirement and the possibility to integrate on the longest pulse
width (LFM). The well-known ambiguity function is proposed
as quadratic time-frequency detector which is able to help
waveform recognition among the analyzed set of waveforms.
Its detection performances are evaluated and some estimators
are proposed to facilitate the intrapulse estimation step.

Index Terms—Electronic Warfare, Electronic Support Mea-
sure, detection, radar waveforms.

I. INTRODUCTION

The context of the study is the Electronic Support Measure
(ESM) applied on radar signal. That consists in intercepting
the electromagnetic emissions and to identify the nature of
the intercepted signal to identify the emitting radar [1].
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Fig. 1. General functions architecture of an ESM system.

The general functions of an ESM system are presented
in Fig. 1. We deal with signal processing function and in
particular detection one. The detection has to initiate the

following steps, particularly the waveform (WF) recognition
of interest and intrapulse estimation. To deal with them,
time-frequency (TF) detectors are choosen. Short-time FT or
Fourier-based synchrosqueezing transform (FSST) [2] show
great interest in LPI radar waveform recognition, in particular
with the use of CNN [3]. However, detection has to be
performed. Or the time integration (N samples) of these
TF detectors is limiting to quasi-stationnary WF, forcing to
integrate on subpart of pulse duration. On the other hand,
optimal time-frequency dectector formulation is proposed in
[4], using the cross Wigner-Ville distribution (WVD). The
ambiguity function (AF) is linked to WVD but conservs
causal property [5]. We will show in section II that AF
performs energy concentration of LFM, PC and MC WF
contrary to WVD. Section III will present the detection
performances of the AF.

The set of WF W “ t1:LFM, 2:PC, 3:MCu contains
elementary LPI radar WF from which more complex radar
WF could be designed [6]–[8]. The general expressions are,
for all k P v1, Nw:

x1 rks “ Aei2πf0
k
fs eiϕ0e

iπα k2

f2
s (1)

x2 rks “ Aei2πf0
k
fs eiϕ0

Nm´1
ÿ

p“0

rect
ˆ

k ´ pNsm

Nsm

˙

eiΦrks (2)

x3 rks “
A

a

Nf

ei2πf0
k
fs

Nf
ÿ

p“1

ei2πfp
k
fs eiϕp (3)

Where A is the amplitude, f0 the carrier frequency, fs the
sampling frequency, ϕ0 the origin phase. LFM: α is the slope
of the chirp. PC: Nm is the number of moments of PC signals,
Nsm the number of samples per moment, Φ is the vector of
size 1ˆNm containing the phase codes. MC: Nf is the num-
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ber of subcarriers, the agility frequency fp “

´

p ´
Nf

2

¯

δf

and phase ϕp characterize the pth subcarrier.
The PC expression incorporates all the PC WF. The LFM
and MC expressions are the simpliest expressions of their
own set.

II. AMBIGUITY FUNCTION PROPERTIES ON WAVEFORMS
OF INTEREST

A. Definition and first results of the detector

Let consider N the number of observed samples as even.
NI “ N ´nτ defines the number of integrated samples, with
nτ as delay. The detectector based on AF is:

DW pnτ , fq “

NI´1
ÿ

k“0

xW rk ` nτ s ˆ x˚
W rks e´i2πf k

fs (4)

The AF is implementable with the FFT algorithm and calcula-
tion cost is O

`

N2
I lnNI

˘

. The results of the detector applied
on W are presented in the table I. The entire energy of LFM

TABLE I
MODULUS OF THE DETECTOR FOR THE W SET OF WF

W fm |DW pnτ , fmq|

LFM nτ
α
fs

NIA
2

PC 0 A2

ˇ

ˇ

ˇ

ˇ

ˇ

N ´ Nmnτ ` nτ

Nm´2
ř

k“0

eipϕk`1´ϕkq

ˇ

ˇ

ˇ

ˇ

ˇ

MC 0 NI
Nf

A2

ˇ

ˇ

ˇ

ˇ

ˇ

sin

´

δf
fs

πNfnτ

¯

sin

´

δf
fs

πnτ

¯

ˇ

ˇ

ˇ

ˇ

ˇ

signal is concentrated in a single frequency canal. It remains
true for PC if nτ ! NI . For MC, it is periodically true. More
explanations will be given in the next subsection. Simulations
for the LFM and PC WF are presented in figure 2. The
noise is supposed to be a Complex Circularly Symmetric
Gaussian (CCSG) random variable CN p0, σ2q. We suppose
the integration time to be inferior to the pulse width (PW). A
threshold is added to illustrate the performances (calculation
in section III).

Fig. 2. Output of AF detector of noisy chirp and Barker signal

The estimator of pα is pα “
fs
nτ

max
f
|DW pnτ , fq|. Con-

sequently, all WF with α ‰ 0 is directly recognized at
the output of the detector. More nτ is important, more the
resolution and precision on pα is important.

B. Separate the PC and MC waveforms

The detection of the MC WF needs several calculations
of the AF for different nτ . Simulation is performed for
fm “ 0 in figure 3. The output detector is periodically
above the detection threshold for MC WF. Increasing nτ for
PC deteriorates the performances of the detector. A simple

Fig. 3. Output of AF detector for noisy PC and MC signal - N “ 500

criteria to separate WF based on frequency agility and on PC
consists in verifying that detections occurs or not when nτ

increases. The main drawback of the detector is the necessity
to calculate various nτ contrary to the recognition of LFM.
For the proposed simulation, about 1.55 million of operations
have to be done for the calculation of the detector for a
single nτ . However, thanks to the causal property of the AF,
it is possible to operate the calculation as soon as the sample
arrive in the receiver channel. It can be shown that for a FPGA
with a clock of 100 MHz, several tens of AF are calculable
in parallel in real-time for fs “ 50MHz and N “ 500.

Outside fm “ 0, the MC WF has symmetrical artefacts that
could be detected, due to interferences between subcarriers.
If p

1
‰ p with pp

1
, pq P v1, Nf w2, then:

ˇ

ˇ

ˇ
DW

´

nτ , pp ´ p
1
qδf

¯ˇ

ˇ

ˇ
“

NI

Nf
A2 (5)

The symmetrical property allows to distinguish them from
potential LFM signals.

C. Estimation of the carrier and subcarrier frequency

The detector DW is complex. Analytical calculations onW
show that the arguments of the detector allow the estimation
of frequency (cf. table II).

TABLE II
ARGUMENT OF THE DETECTOR FOR THE W SET OF WF

W fm =DW pnτ , fmq

LFM nτ
α
fs

2π
´

f0 ` N
2

α
fs

¯

nτ
fs

PC 0 2πf0
nτ
fs

MC 0 2π
´

δf
2

pNf ´ 1q ` f0

¯

nτ
fs

Let notice that a single measure DW for a unique nτ

is non-sufficient to unwrap the phase without ambiguity. To
estimate the frequency, the detector DW must be reiterated
several times. The FT with nτ as variable of integration
could be proposed. We define the set S12 in which the
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|DW pnτ , fmq| for each nτ is superior to the detection
threshold. The carrier frequency estimator is, for LFM and
PC signals:

pf0 “ max
η

ˆ

FT
ˆ

DW pnτ , fmq P S12
|DW pnτ , fmq| P S12

˙

pηq

˙

´
N pα

2fs
(6)

For the MC WF, the estimation of δf could be done with
two methods. The first one consists in using the symmetrical
artefacts seen in equation (5), but this is possible only if they
could be detected. The second method uses only the detection
on fm “ 0 thanks to the periodic maxima of the detector
in function of the nτ . On a periodical detection, several
detections could be performed (1, 2 or 3). The maximum
of each periodical detection is collected in the set called S3.

xδf “ max
η‰0

`

FT
␣

|DW pnτ , 0q| P S3
(˘

pηq (7)

The estimation of Nf is performed through several hypothesis
of Nf . A final FFT gives the estimation of f0.

pf0 “ max
η

`

FT
␣

DW pnτ , 0q P S3
(˘

pηq ´
xδf

2
pxNf ´ 1q (8)

The estimation of the MC parameters requires several pe-
riodical detections to work. Contrary to estimation of LFM
and PC carrier frequency which could be performed with 10
calculations of AF, 30 to 40 AF calculations are required.

D. Integrate on longer duration

To evaluate the impact of the increasing of the time
duration for ESM receivers, the calculation on the Signal to
Noise Ratio (SNR) is useful, since the following steps will
need a minimal SNR to work. Assuming that the integration
time is equal to the pulse width and centered on it, the SNR
at the output of the detector is equal to:

SNRout “
NI SNR2

in

2SNRin ` 1
(9)

where SNRin “ A2

σ2 . Considering that integration is superior
to the PW with NI,signal ă NI , we have:

SNRout “
pN2

I,signal SNR2
in

pNI ` 2NI,signal SNRin
q

NI,signal “

Z

NI

NPW,sample.rdc

^
(10)

where rdc is the duty cycle and NPW,sample is the number of
samples constituting the pulse width of the signal of interest.
The formula is illustrated in figure 4.

Each break line characterizes the beginning or the ending
of a pulse. In this example, to obtain the SNRout of 17 dB that
will be reached if the integration time is equal to the pulse
width NPW,sample and synchronizes with it, we need to increase
the integrated samples from NI “ 100 to about NI “ 10000
integrated samples for a duty cycle rdc “ 0.10.

Fig. 4. Graph representing the variation of the output SNR in function of
the choosen number of integrated samples, in function of the duty cycle rdc
with given number of sample for coding for a single pulse signal NPW,sample.

E. Multisignal detection

Increasing the time integration implies that several signals
could be present in the receiver channel. If the signals are
LFM, it could be easily showned that they are separated
with any interference if their slope are different and could
be distinguished. Their carrier frequency is measured with
the previous method. Multi-PC signals could be detected
thanks to the apparition of symmetrical artefacts that allow
to estimate the number of superposed signals in fm “ 0.
The multisignal case with the presence of one or several
MC WF could be resolved thanks to the estimation of the
δf . This requires more calculations with different hypotheses
(symmetrical artefacts of PC waveforms, one MC, several
MC).

F. Synthesis of the detector

The detector based on AF is able to detectW WF. Two cal-
culations of AF for nτ Ñ 1 and nτ P vN

4 ,
N
2 w provide the PC

and LFM detections and the LFM recognition with adequate
precision and resolution on the slope conjoint estimation.
To be able to separate PC and MC WF and estimations of
carrier and subcarrier frequencies, the AF detector has to
be performed on tens of nτ . These calculations could be
done in parallel. Estimations are based on FT calculation,
which is efficient estimators for the complex exponentials.
Knowing that PC WF have rdc „ 0.1 and relative short
PW compared to LFM and MC, the increase of the time
integration benefits for that last two WF. In order to perform
at least equal performances in detection with PC, the time
integration has to be set with the longest expected PC PW
and with its minimal expected rdc. The multisignal detection
could be implemented in an algorithm which demands more
computations and so moves off real-time requirement.

III. DETECTION PERFORMANCES

This section focuses on the detector performances on W
WF.
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A. Detection problematic of a single signal

Let suppose a single noised received signal. We suppose
that the thermal noise is the main noise of the ESM receiver
and that it could be modeled by a CCSG r.v. nrks ∼

CN p0, σ2q where k P v1, NIw. n is supposed to be identically
and independantly distributed. The signal is deterministic
with unknown parameters. Under all these assumptions, the
detection problematic consists in choosing between:

H0 : yrks “ nrks

H1 : yrks “ xW rks ` nrks
, k P v1, NIw (11)

To evaluate detection performances, the probability of false
alarm PFA and the probability of detection PD expressions
are required.

B. PFA and PD expressions and analyses

The detector |DW | is applied on the received signal y.
Thanks to the definition presented in equation (4), we have:

d “ |DWpnτ , fq| “

ˇ

ˇ

ˇ

ˇ

ˇ

NI´1
ÿ

j“0

y1rjsy˚
2 rjs

ˇ

ˇ

ˇ

ˇ

ˇ

(12)

where y1rjs “ yrj `nτ s and y2rjs “ yrjsei2πf
j
fs . Let begin

with the hypothesis H0.
1) PFA calculation:

a) Exact analytical calculation: Analytical calculations
could be done in the H0 hypothesis, since the random variable
d could be recognized as a marginal probability of the off-
diagonal elements of the Wishart distribution. The PDF for
hypothesis H0 is [9]:

pH0pdq “
4dNI

Γ pNIqσ2
d

KNI´1

ˆ

2d

σ2
d

˙

(13)

The PFA is then derived from the PDF thanks to the Mathe-
matica software:

PFApuq “

ż `8

u

pH0
pxqdx “

2uNI

ΓpNIq
KNI

ˆ

2u

σ2
d

˙

(14)

Where:
– Kν is the modified Bessel function of second kind of

order ν
– Γ is the gamma function

– σ2
d “

NI

2σ4

However, the calculus consoms time to be performed, and
for NI higher than some hundreds, ΓpNIq and KNI

are huge
numbers, with for instance:

Γp1000q » 103428 K1000p0.1q » 103865 (15)

Consequently, to be closer to real-time application, a com-
paraison is proposed between tables of exact PFA expression,
calculated thanks to Mathematica software, and the approx-
imate based on the modulus of the Central Limit Theorem
(CLT) for d.

b) CLT approximate: The CLT applied on the detector
DW gives a complex Gaussian distribution. Then, in H0 case,
the modulus of that zero-mean complex Gaussian distribution
|DW | is the well-known Rayleigh distribution:

ppd |H0q “
d

σ2
d

e
´d2

2σ2
d (16)

Then, the PFA is:

PFApuq “ e
´ u2

2σ2
d (17)

We propose a comparative simulation with the exact ex-
pression with the following characteristics, when effectively
calculable:

‚ NI “ r20, 50, 100, 250, 500, 1000, 2000s

‚ The PFA of interest, called PFA,target, is equal to the
vector PFA,target “ r10´5, 10´4, 10´3, 10´2, 10´1s.

‚ The number of draws Nd is 30 millions.

That number of draws allows to have at least about 300 draws
in the histogram area of interest, for the smallest PFA of
interest, in order to allow a quite reasonable approximation of
the PDF and then of the cumulative density function (CDF).

Fig. 5. Probability of false alarm calculated with exact expression (solid
line), CLT approximate expression (dashed line) and results of the five
simulated PFA represented by points, in function of the output of the detector
/ threshold.

The exact expression is then verified by the simulation (cf.
Fig. 5) , and error with the approximate expression are visible.

The CLT could be considered as a valid approximation if
the relative error made on the PFA is acceptable. For instance,
if we accept a relative error of 10%, then for an expected
PFA of 10´5, it is possible to integrate on the interval NI P

v1000,8v (cf. Fig. 6).
2) PD calculation:

Any exact expression is proposed for PD, since the required
precision on the detection probability is not as important
as false alarm. Indeed, 0.8, 0.90 or 0.99 could be accept-
able values for detection probability. However, as we have
a functional simulation, we will propose to evaluate the
error introduce by the modulus of CLT approximate versus
simulation PD.
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Fig. 6. Evaluation of the PFA error in function of the integrated sample N

The modulus of a non-zero-mean complex Gaussian dis-
tribution is the well-known Rician distribution:

ppd |H1q “
d

σ2
d

e
´

pd`µq2

σ2
d I0

ˆ

µd

σ2
d

˙

(18)

Where µ “ E p|y1|q “ E p|y2|q. Consequently, the PD is:

PDpuq “ Q1

ˆ

µ

σd
;
d

σd

˙

(19)

Where Q1 is the Marcum Q-function.
Using the previous parameters of the simulation, (9) given

in property 3 and the same relative error for detection
probability this time, we obtain Fig. 7.

Fig. 7. Graph representing the relative error on the detection probability
calculus in function of the expected SNR at the output.

The SNR at the input is calculable using (9). The relative
error on the detection probability remains under several
percent. Consequently, the approximate detection probability
could be used without any restriction on NI in ESM context.

C. Receiver Operating Characteristic (ROC)

The ROC graph of the detector is drawn in Fig. 8 thanks
to the previous calculations.

If the requirements specification are limited by the detector,
then the ROC and Fig. 8 is used to define the minimal number
of integrated samples to obtain required maximal false alarm
with consequent detection probability.

Fig. 8. ROC of |DW | with the input SNRin (solid line for SNRin = -6dB
and dashed line for SNRin = -3dB) and the number of integrated NI as
parameters (colors)

CONCLUSION

This work is done in ESM context. The ambiguity function
was chosen as quadratic time-frequency detector to perform
detection on LFM, PC and MC waveforms. AF is choosen
for its properties for allowing WF recognition. Conjoint
estimation of the slope parameter is very useful for LFM
recognition, and could be done on a single calculation.
However, to go further, several AF calculations are required.
Estimations of carrier and subcarrier frequencies could be
done thanks to the argument of the detector. Real-time
computation could be performed since the AF calculation
for the required delays could be done in parallel and at the
arrival of each sample thanks to the causal property of AF.
AF detector allows to increase the time integration and the
conservation of its properties on the analyzed waveforms. In
multisignal case, the AF detector is able to distinguished the
analyzed waveforms in detriment of the real-time omputation.
Detection performances of the detector are analyzed.
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Abstract—This paper presents an accurate source number
detection method for array antennas or MIMO (Multi-Input
Multi-Output) radars. DOA (Direction of arrival) estimation is
one of the significant techniques in high-speed wireless commu-
nication and radar imaging. Most of the representative DOA
estimation methods requires the source number information in
advance, however the classical methods AIC or MDL are often
used. Those methods often fails to estimate source number in
severe environments like low SNR or large transmission power
difference. Recall that received signals are often bandlimited or
narrowband signals, the proposed method first applies denoising
preprocessing by removing undesired components, and compare
the original and denoised signal information. Performance of the
proposed method is evaluated through computer simulation.

Index Terms—source number detection, array antenna, MIMO
radar, DOA estimation

I. INTRODUCTION

DOA (Direction of arrival) estimation is one of the key
techniques in high-speed wireless communication and radar
imaging [1] – [3]. Array antenna and MIMO (Multi-Input
Multi-Output) are key techniques which need to know wave
propagation environment for estimating DOAs, and to suppress
interference waves in order to establish high-speed wireless
communication technology. For array antenna techniques, high
resolution DOA estimation algorithms like MUSIC (MUltiple
SIgnal Classification) method [4] or ESPRIT (Estimation
of Signal Parameters via Rotational Invariance Techniques)
method [5] have attracted attention because of their brilliant
properties in estimating DOAs. However there exists an inher-
ent problem that those methods require a correct number of
arrival signals in advance, and they give wrong directions if
the number is incorrect.

As for estimation algorithms of the number of arrival
signals, AIC (Akaike Information Criterion) [6] and MDL
(Minimum Description Length) [7] are regarded as classical
estimation algorithms which are still effective, meanwhile the
bootstrap method based on statistics [8] and PDL (Predictive
Description Length) method based on information theory [9]
have been recently studied for better estimation. Bootstrap
method aims at obtaining more accurate data by resampling
observed signals but it does not always give accurate estimates
in spite of long computation time; indeed it takes quite long
time for resampling itself and evaluating the accuracy of
resampled data. PDL method aims at approximating time-
varying wave propagation environment by smoothing param-

eter. But this method will be corrupted by some sudden
occasional data like impulse due to the PDL principle com-
posed by the successive sum of its log-likelihood functions
from the past. We have already presented a source number
estimation method using pre-estimated signal subspace [10],
but its computational cost is still large due to beamformer
processing and eigendecomposition. That is why AIC and
MDL methods are still often used for source number detection
problem. In fact their computation procedures are simple and
therefore source numbers are estimated within a very short
time, but the estimation accuracy of them becomes worse in
severe communication environment like lower SNR, smaller
number of snapshots, or closely spaced sources. We desire an
accurate and robust estimation algorithm while preserving low
computational cost.

Recall that we often deal with bandlimited or narrowband
signals in array antenna or radar applications or FMCW
(Frequency Modulated Continuous Wave) signals for radar
applications, and assume wideband noise environments like
AWGN (Additive White Gaussian Noise) or Random noise
which cover wide frequency range. There will be a difference
between the original and denoised signal information if we
apply denoising preprocessing by removing undesired compo-
nents. Such difference could be more clearly observed if we
modify the signal information in the covariance matrix and its
eigenvalues.

In this paper, we develop an accurate and robust source
number detector for array antenna and FMCW-MIMO radars.
We first apply denoising preprocessing by removing undesired
frequency components by bandpass filtering, and then compare
the original and denoised signal information through the
covariance matrix and its eigenvalues. Then we detect the
number of arrivals based on the difference of the eigenvalues.
The proposed method is evaluated through computer simula-
tion for various environments of snapshots, SNR and incident
waves from closely spaced sources in comparison with the
conventional methods.

II. PRELIMINARIES

This section prepares mathematical models and representa-
tions of signals, vectors and spaces.
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A. Signal Model

Assume that K incident waves are impinged from the
direction θk (k = 1, 2, . . . ,K) and received by M -element
uniform linear array (ULA) under an AWGN environment.
Using the input signal xm(t) for the m-th element at the time
t, the input signal vector x(t) = [x1(t), x2(t), ..., xM (t)]T can
be written as

x(t) =
K
∑

ℓ=1

a(θℓ)sℓ(t) + n(t)

= As(t) + n(t), (1)

where a(θℓ), sℓ(t) and n(t) denote the array steering vector
of k-th incident wave, the complex waveform of k-th wave,
and the noise vector whose elements are with zero mean,
respectively. The array steering matrix A and the waveform
vector s(t) in (1) are given as

A = [a(θ1),a(θ2), . . . ,a(θK)],

s(t) = [s1(t), s2(t), . . . , sK(t)]T ,

where [·]T denotes the transpose of vectors or matrices. The
covariance matrix Rxx of x(t) is given by

Rxx = E[x(t)xH(t)]

= AE[s(t)sH(t)]AH + E[n(t)nH(t)]

= ASAH + σ2I,

where [·]H denotes the conjugate transpose of vectors or
matrices, S

△
= E[s(t)sH(t)], E[·] denotes the statistical

expectation, σ2 is the noise power, and I is the identity matrix.
The covariance matrix Rxx is an Hermitian matrix, and its
eigenvalues λxk

are defined to satisfy the following inequality:

λx1
≥ λx2

≥ . . . ≥ λxK
> λxK+1

= · · · = λxM
= σ2.

B. Conventional Source Number Estimation Methods

As the representative source number estimation methods,
AIC [6] and MDL [7] are formulated in this subsection.

The cost function of AIC is given by

AIC(k)

= −2N log







(

M
∏

i=k+1

λi

)/(

1

M − k

M
∑

i=k+1

λi

)(M−k)






+k(2M − k). (2)

The AIC estimate for the number of sources is the value of k
when (2) takes the smallest value.

In a similar manner, MDL gives its estimation value k when
(3) takes the smallest value.

MDL(k)

= N log







(

M
∏

i=k+1

λi

)/(

1

M − k

M
∑

i=k+1

λi

)(M−k)






+
k(2M − k)

2
logN. (3)

III. PROPOSED METHOD

This section explains the proposed source number estima-
tion method for the cases of general narrowband and FMCW
signals.

A. Case of Narrowband Signals

First we assume the case of K narrowband sources. As
prepared in Section II, we have the input signal vector x(t),
its covariance matrix Rxx and its eigenvalues λxk

. We try to
denoise the input signal xm(t) of m-th element into ym(t) by
the following frequency domain filtering procedure.

Xm(f) = FFT[{xm(t)}Nt=1], m = 1, 2, . . . ,M,

Ym(f) = BPF[Xm(f)], m = 1, 2, . . . ,M,

ym(t) = IFFT[{Ym(f)}Nf=1], m = 1, 2, . . . ,M,

where FFT[·] and IFFT[·] denotes the fast Fourier transform
(FFT) and the inverse FFT operators, respectively. BPF[·] is
a band-pass filtering operator which extracts only desired fre-
quency components while suppressing undesired components.
The denoised array input vector y(t) and its covariance matrix
Ryy are respectively written as

y(t) = [y1(t), y2(t), ..., yM (t)]T ,

Ryy = E
[

yyH
]

≃ 1

N

N
∑

i=1

yyH .

where N denotes the number of time snapshots. The eigenval-
ues λyk

of the matrix Ryy are defined to satisfy the following
inequality:

λy1 ≥ λy2 ≥ . . . ≥ λyK
> λyK+1

= · · · = λyM
.

Comparing the eigenvalues λxk
and λyk

, they take almost the
same signal eigenvalues for k = 1, 2, . . . , L but take different
noise eigenvalues for k = L+1, . . . ,K because of denoising.
Figure 1 shows an example distribution of the eigenvalues.
We see from Fig. 1 that the signal eigenvalues are almost the
same but the noise eigenvalues are different. Based on this
observation, we define δm as the ratio of the eigenvalues, i.e.,

δm =
λxm

λym

, m = 1, 2, · · · ,M, (4)

which will be almost one for m = 1, 2, . . . ,K because the
signal eigenvalues are almost the same, but will be more
than one for m = K + 1,K + 2, . . . ,M because the noise
eigenvalues are different between λxm and λym . Furthermore,
we prepare the ratio of the parameters δm+1 and δm as

γm =
δm+1

δm
, m = 1, 2, · · · ,M − 1, (5)

which will be more than one when m is equal to the source
number, but will be almost one when m is not equal to the
source number. Therefore, we can estimate the source number
by m where the γm in (5) takes the maximum value.
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(a) The eigenvalues λxm and λym

(b) δm and γm

Fig. 1. Example of (a) the original eigenvalues λxm and the denoised
eigenvalues λym , and (b) the parameters δm and γm as a function of m, in
case of M = 6 and K = 3.

B. Case of FMCW Signals

In case of FMCW signals used for radar modules, the source
number estimation procedure is different from the case of
narrowband cases. We employ a downsampling scheme as
follows. Note that we assume to use the annihilating filter
(AF) [11] for DOA estimation.

First we prepare the downsampled version x̃m(t) of the
original input xm(t) at the m-th element, i.e.,

x̃k(t) = [xm(t)]↓W = xm(Wt), m = 1, 2, . . . ,M,

X̃m(f) = FFT [{x̃m(t)}N/W
t=1 ], m = 1, 2, . . . ,M,

where W is the downsampling rate, and [·]↓W denotes the W -
times downsampling operator. After that we extract the target
distance bin f0 by the spectrum peak search of Xm(f). Collect
the peak values Xm(f0) for m = 1, 2, . . . ,M , we formulate

the (M −K)× (K + 1) matrix C as

C =











XK+1(f0) XK(f0) · · · X1(f0)
XK+2(f0) XK+1(f0) · · · X2(f0)

...
...

. . .
...

XM (f0) XM−1(f0) . . . XM−K(f0)











,

Applying the singular value decomposition (SVD) to the
matrix C, we have the singular values

λx1
≥ λx2

≥ . . . ≥ λxK
> λxK+1

= · · · = λxK̃
,

where K̃ = max{M −K,K + 1}.
On the other hand, we denoise the original input xm(t)

similarly to the case of narrowband signals:

Xm(f) = FFT[{xm(t)}Nt=1], m = 1, 2, . . . ,M,

Yk(f) = BPF[Xm(f)], m = 1, 2, . . . ,M,

yk(t) = IFFT[{Ym(f)}Nf=1], m = 1, 2, . . . ,M.

Then the denoised signal ym(t) is downsampled, i.e.,

ỹm(t) = [ym(t)]↓W = ym(tW ), m = 1, 2, . . . ,M,

Ỹm(f) = FFT[{ỹm(t)}N/W
t=1 ], m = 1, 2, . . . ,M.

Similarly to the noisy vase, we extract the target distance bin
f0 by the spectrum peak search of Ym(f). Collect the peak
values Ym(f0) for m = 1, 2, . . . ,M , we formulate the (M −
K)× (K + 1) matrix C̃ as

C̃ =











YK+1(f0) YK(f0) · · · Y1(f0)
YK+2(f0) YK+1(f0) · · · Y2(f0)

...
...

. . .
...

YM (f0) YM−1(f0) . . . YM−K(f0)











.

Applying the singular value decomposition (SVD) to the
matrix C̃, we have the singular values

λy1
≥ λy2

≥ . . . ≥ λyK
> λyK+1

= · · · = λyM̃
.

Similarly to the narrowband case, we can estimate the
number of sources by using δk in (4) and γk in (5).

IV. NUMERICAL EXAMPLES

A. Simulation Specifications

The proposed source number detection method is evaluated
through computer simulation of FMCW signals. Radar module
and targets are located as in Fig. 2(a). Multiple targets are
placed on a circle arc, which are at the same distance from
the radar module.

Specifications of simulation is as shown in Table I. We
assume 3×4 FMCW-MIMO radar system which is equivalent
to 3× 4 = 12 element ULA as in Fig. 2(b). The first target is
used as the reference to SNR, and the other targets are with
the radar cross section (RCS) difference as in Table I.
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(a) Radar module and targets

(b) Tx and Rx antenna configuration

Fig. 2. Simulation model.

TABLE I
SPECIFICATIONS OF SIMULATION.

Scenario #1 #2 #3 #4
Number of Tx elements 3
Number of Rx elements 4

Carrier frequency 79 GHz
Frequency bandwidth 3.16 GHz
Rx element interval 0.5λ
Distance to targets 1.0 m

Sampling frequency 2.75 MHz
Downsampling rate 32

Number of snapshots 128
Number of trials 1,000

Number of Targets 2 4 2 5
∆RCS [dB] 0 to 30 10 30
SNR [dB] −10 −20 to 0

DOAs [deg] (K = 2) −32, 38
DOAs [deg] (K = 4) −51,−28, 14, 56
DOAs [deg] (K = 5) −44,−25,−8, 14, 26

B. Source Number Estimation Accuracy

Figure 3 shows the behavior of the estimation success rate in
case of the scenario #1 and #2 for various values of ∆RCS. We
see from Fig. 3 that the proposed method gives almost 100%
success rate while the conventional AIC and MDL methods
often fail to estimate source number in severe conditions. AIC
can accurately estimate in the scenario #1 but does not work
well in the scenario #2.

Figure 4 shows the behavior of the estimation success rate in
case of the scenario #3 and #4 for various values of SNR. We

(a) Case of scenario #1

(b) Case of scenario #2

Fig. 3. Behavior of the estimation success rate as a function of ∆RCS.

see from Fig. 4 that the proposed method gives almost 100%
success rate in high SNR, and holds more than 90% success
rate in low SNR environments. The conventional AIC and
MDL methods works well in high SNR but usually fails in low
SNR environments. We overall confirmed that the proposed
method gives much higher success rate than the conventional
methods.

V. CONCLUDING REMARKS

We proposed a robust source number estimation method
based on denoising preprocessing. The proposed method
achives much higher estimation accuracy in severe environ-
ments like large ∆RCS or low SNR, where the conventional
methods often fails to estimate. further enhancing the estima-
tion accuracy by more minute denoising remains as one of
future studies.
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(a) Case of scenario #3

(b) Case of scenario #4

Fig. 4. Behavior of the estimation success rate as a function of SNR.
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Abstract — Learning Entropy (LE) was initially introduced as
a measure for sample point novelty by unusually large learning
effort of an online learning system. The key concept is that LE is
based  on  pre-training  and  further  online  learning,  and  the
novelty measure is not necessarily correlated to the prediction
error. Most recently, the idea of LE was revised as a novel non-
probabilistic, i.e., machine-learning-based information measure.
This measure is high when a learning system is not familiar with
a given data point, so the learning activity to learn novel data
points  is  unusual  (regardless  of  the prediction error),  i.e.,  the
learning increments display unusual patterns during adaptation.
In this paper, we propose concepts of the learning state and the
learning  state  space  so  that  LE  can  be  approximated  via
neighbourhood analysis in the learning space. Further, two novel
clustering-based techniques for approximation of sample point
LE are proposed. The first one is based on the sum of K nearest
neighbour  distances.  The  second  one  is  based  on  multiscale
neighbourhood  cumulative  sum.  Also,  we  preprocess  the
learning space with dimensionality reduction that is promising
for research of LE even with neural networks and potentially
with  deep  neural  networks.  The  performance  of  novelty
detection  with  the  clustering-based  sample  point LE  with
dimensionality reduction is compared to the original algorithms
of LE, and its potentials are discussed.

Keywords — novelty detection, unsupervised anomaly detection,
time series, adaptive filters, dynamic detection scheme, clustering

 1 INTRODUCTION

Novelty detection has gained severe importance in all areas
where  sensor  signals  are  measured  and  evaluated.  E.g.,  in
vibration  analysis  for  structural  anomaly  and  construction
damage detection, predictive maintenance, network or device
intrusion detection, biomedical  data analysis, i.e.,  in sensor
measurements and data processing from dynamical  systems
in general. Also, instant novelty detection may be important
when tracking and prediction depend on actual sensor data.

The unsupervised anomaly detection  methods, i.e.,  where
the type of anomaly is not known and where the anomaly can
not  be annotated  before  its  detection, can  be  distinguished
according  to  many  various  principles  and  types  of
applications.  Statistical  methods, e.g.,  [1]–[3] or  machine
learning methods,  e.g., [4], [5],  or their variations, e.g., [6],
can be utilized. Also, the environments are non-stationary and
complicated,  so  dynamical  detection  schemes  need  to  be
utilized as it has been apparent for the last decades, e.g., [6]–
[8].  

In this paper,  we introduce a significant extension to the
Learning  Entropy  (LE),  i.e.,  the machine-learning  based
anomaly  detection  for  adaptive  filters,  [9]–[13] and
references  therein.  The  new  extension  consists  of
dimensionality  reduction  and  clustering  in  learning  state
space  for  the  estimation  of  LE.  Thus,  the  concept  of
clustering for the estimation of LE is proposed, and this also

makes LE estimation better suitable for neural networks and
deep networks than the originally proposed algorithms.  

The paper  is  organized  as  follows.  Section  2 recalls  the
original  concept  and  algorithms  of  LE  in  connotation  to
adaptive  predictors  (filters)  in  general.  Subsection  3.1
introduces  the  concepts of  learning state and learning state
space.  Subsections  3.2 and  3.3 present  two  clustering
methods for simpler predictors with a low number of adaptive
parameters such as for linear or polynomial adaptive filters.
Then, subsection  3.4 proposes  dimensionality  reduction  as
pre-processing for more complicated learning systems with a
large number of adaptive parameters, i.e., such as for neural
networks and deep learning. Section 4 presents typical results
on novelty detection performance on a dynamical system and
on respiration time series.

In  mathematical  notations,  as  in   stands  for  the
discrete index of time that  is  dropped unless necessary for
clarity, i.e. , vectors are in small bold, matrices are in
capital bold, and   generally denotes the count of elements
such as  stands for the count of elements of , etc.

The  full  term  Approximate  Individual  Sample  Point
Learning Entropy (AISLE as in  [11]) is shortened further as
the sample point LE or just the LE in this paper. 

 2 RELATED BACKGROUND

The  main idea  behind  LE  is  to  detect the  novelty  of
individual data samples by quantification how unusual is the
actual  learning behaviour of a learning system. The typical
learning  systems  can  be  incrementally  learning  adaptive
filters, e.g., via gradient descent (LMS, NLMS, e.g.  [14]) or
Kalman  filter  based  update  rules  (RLS  [15]).  Also,  the
learning system can be a more complicated model, such as a
neural network. 

In this paper, a learning system is an adaptive filter that can
be written as a predictor of a general form as 

, (1)  

where  stands for the predicted value,   is the discrete time
index  (for  constant  sampling),   is  the  prediction  horizon
[samples],   represents a vector of all adaptive parameters
(weights) whose count is  , and   is the input vector to a
mapping function . The general incremental learning is the
adaptation of the parameters  as follows

, (2)  

where  represents the vector of all learning increments
at sample time ,  is the length of , and  can
be  calculated  by  some  applicable  incremental  supervised
learning algorithm.
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Originally in  [10], [11], LE was practically approximated
via  a  cumulative  count  of  unusually  large  magnitudes  of
weight  increments  over  all  adaptive  parameters  and  over
various detection sensitivities (because practically its optimal
value is unknown) as follows

, (3)  

where   denotes  the  sample  point  LE
approximated by original algorithm in [10], [11] (i.e. AISLE),

 is a scalar from the user-proposed vector of real positive
detection  sensitivities   ,   is  the  length  of
vector  ,   is  the  recent  average  magnitude  of  
weight increment over its recent -sample history, and  is
a binary detection function so that

  and  . (4) 

Later  in  [12],  the  alternative  approximation  of  LE  was
proposed directly via Z-scoring of weight update magnitudes
and their cumulative count over multiple biases (similarly to
detection sensitivities) as follows

  , (5) 

where  is the sample point LE approximated by the
direct  z-scoring  algorithm,   is  one  instance  of  detection
biases  that  are  heuristically  defined  by  vector   of  real
positive biases, i.e.  ,  denotes the z-scoring
operation where the mean and standard deviation are drawn
from the recent -sample long learning history , and  is
according to (4). 

We  kindly  refer  interested  readers  to  see  work  [11] for
details  on AISLE (3)  and  to  see  [12] for  details  on  direct
algorithm (5).  Further,  novel  approaches  based  on  nearest
neighbours for the approximation of LE are introduced and
investigated  as  they  allow  us  for  evaluation  of  more
complicated patterns of learning intensity. 

 3 PROPOSED METHOD

 3.1 Learning State Vector and Learning State Space 
Arising  from  the  original  concept  of  Learning  Entropy,

which is the measure of how unusually large is the learning
activity at sample time  , we propose to extend the concept
by defining the learning state (vector) and the learning (state)
space as follows

 (6)  

where   is the learning state (vector),   denotes the  -
dimensional  learning  (state)  space of  non-negative  real
values and   is the  -sample long vector of absolute
values of actual weight updates for the last measured sample
point at time . Generally and according to (6), the learning
engine displays high learning activity when  , the
low learning activity is when , and because of the
proposed  clustering,   can  represent  a  universal  basis  for
estimating LE via neighbourhood analysis in  . Thus, we
focus on the fundamental definition of the learning state as
given in (6), which is our new proposal for LE estimation via

the clustering of  unusual  learning intensity  patterns  in  this
paper.

Further, let us define the contemporary learning history  
of  previous data samples in -dimensional learning state
space  as follows 

, (7)

where   is the adjustable length of contemporary learning
history,  so the contemporary learning history   is  
matrix of non-negative real values.

In  further  subsections,  two  novel  techniques  for  the
estimation  of  LE,  i.e.,  a  K-NN  based  technique  and  a
multiscale neighbourhood analysis technique, are introduced
utilizing  and .

 3.2 Approximation of Sample Point LE by K-NN Distances

For learning systems with a low number of neural weights
such as linear adaptive filters,  LE can be estimated according
to the location of the learning state   directly in the  -
dimensional  learning  (state)  space   according  to  the
contemporary learning history . Naturally, the location of the
actual  learning  state   is  the  more  distinctive  the fewer
neighbours have the learning state within radius  in the -
dimensional  learning  state  space  within  the  contemporary
history of learning  . In principle, we may think of an  -
dimensional heat map based on , where its hot spots would
represent  unusual  patterns  of  learning  intensity  (high  LE),
and  its  cold  spots  would  represent  usual  learning  patterns
(low LE).

To avoid building a full heat map in n-D, we propose to
utilize K-NN based efficient algorithms, e.g., KD tree, to find
the nearest neighbours of  in . Thus, we can estimate LE
via a function whose argument is the sum of distances from K
nearest  neighbours  to  the  actual  learning  state  .  The
principle of the method is sketched in Fig.1,  and the most
straightforward  function  for  approximation  (estimation)  of
LE is then as follows

Fig. 1: : The principle of K-NN based approximation of sample
point LE (a simplified sketch in 2-D); the actual learning state s (the cross)
on the left side is more unusual (higher LE) than the actual state  s on the
right side (lower LE), and f() denotes a function in general.

 ;  , (8)

 

1[/]
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where   denotes the approximated sample point  LE
by  summation  of   nearest  neighbours  and   is  the
distance  to  i-th  nearest  neighbour  from  state   within  the
contemporary learning history  at sample time .

 3.3  Approximation of Sample Point LE by Multiscale 
Nearest Neighbour Count

Alternatively  to  K-NN based  technique  as  introduced  in
Subsection  3.2, we propose to quantify the unusual location
of learning state in learning space via multiscale technique
(based  on  our  original  research  in  [16]).  This  technique
explores neighbourhood of the actual learning state   along
with the set of radii in learning space and cumulatively counts
the neighbours within the given radii. This naturally resolves
the issue of otherwise practically unknown optimal radius ,
and also, the distribution of neighbouring points is considered
(see Fig. 2). 

Fig. 2: : The principal sketch of multiscale nearest neighbours based
approximation of sample point LE (a simplified sketch in 2-D); the actual
learning state  s (the cross sign) on the left side is more unusual  (higher
LE) than the  actual  state  s on the  right  side  (lower  LE),  and  denotes  a
function in general.

, (9)

where , i.e. also , is the count of learning
states that are neighbours with the actual learning state  
within  the  actual  radius   in  the  contemporary  learning
history  , and   is the cumulative count of neighbours over
the whole set of the nearest radii at actual sample time .

Thus  we  propose  a  straightforward  formula  for  the
approximation of LE for individual point samples as follows

   ; , (10)

where  denotes the approximated sample point LE by
multiscale nearest neighbours, and the cumulative neighbour
count   is  sketched  in  Fig.2 and  given  in  (9).  The lowest
value  of  estimated  LE  (10)  depends  on  user-defined
configuration parameters as follows 

, (11)

where  M  is length of contemporary learning history (7) and
 is the number of user defined nearest radii (e.g.  in

Fig.2).  Further,  we  can  apply  min-max  normalization  as
follows

, (12)

so we obtain the final  standardized estimated sample point
LE via multiscale nearest neighbours as follows

  ;  . (13)

and these novel sample point LE estimations, i.e.,  in
(8) and  in (13), are the funding contributions of this
paper. 

Furthermore,  due  to  the  clustering  principle,  the  LE
estimation  becomes  more  suitable  for  more  complicated
predictors  and  tracking  learning  systems,  such  as  neural
networks and potentially deep ones, and this is introduced in
the next subsection.   

 3.4  LE with Dimensionality Reduction for Deep Learning

The  above-introduced  clustering  techniques  of  LE
estimation are mainly intended and investigated for adaptive
linear  filters  and  for  nonlinear  polynomial  filters,  whose
mathematical structure is rather simple and where the number
of adaptive parameters is low. 

In  this  subsection,  we  propose  to  apply  dimensionality
reduction preprocessing via classical methods such as PCA or
SVD  for  learning  systems  where  the  number  of  adaptive
parameters is high. Thus, the LE can become more suitable
for research with neural networks and possibly also with deep
neural networks.

The  idea  of  this  learning  state-space  dimensionality
reduction is straightforward as follows. At every sample time
during detection, the count of  columns of learning history

 in (7) can be reduced to a smaller number of columns
via some dimensionality reduction technique. Let’s denote

   or  , (14) 

where  is the total number of learning weights, i.e., it is the
dimension of original learning space  , and   or

 are new dimensions of the learning state-space after
dimensionality  reduction  via  PCA  or  SVD,  respectively.
According  to  the  applied  reduction  technique,  the  actual
learning state   is then also reduced to the corresponding
dimension. Then, the clustering estimation of LE, as proposed
in the above subsections, can be applied in the same way.

The main objective of this paper is the clustering concept
for  practical  estimation  of  LE;  the  proper  investigation  of
dimensionality reduction techniques that would focus sparsity
and  other  aspects  of  learning  systems  and  learning  states
exceeds  the  scope  of  this  paper.  Furthermore,  other
dimensionality  reduction  techniques  can  be  investigated,
including auto-encoders in the future. 

Experiments with adaptive filters and LE estimation with
PCA  and  SVD  dimensionality  are  also  included  in  the
following experiments in the next section.

68



Fig.  3:Anomaly detection in a closed-loop dynamical system (15)(16) via LE, where the gain   suddenly changes at   (top axes);  this sudden
perturbation is not immediately apparent in plant output (top axes), nor in the actual error of the adaptive filter (second axes from top), nor it is so
apparent via adaptive weight increments (middle axes); the original LE algorithms (3)(5)(second from bottom axes)  detect the anomaly later than the
new clustering based techniques with dimensionality reduction (bottom axes). 

Fig. 4: Respiration motion time series (top row plots, blue...measured, green...adaptive filter (linear learning predictor by online least mean squares, ,
sampling 6 s.p.s.) with a significant anomaly (details in left column plots); the normalized multiscale neighbour technique  (12) is more robust
and detects clearly more significant anomalies for this time series; here, the K-NN based technique  (8) is more sensitive and also detects less
significant anomalies for this data (and this predictor, its learning, and the particular setups). See Fig.5 for details of the anomaly around .

input 
change
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0
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 4  EXPERIMENTAL ANALYSIS

 4.1 Anomaly Detection in a Dynamical System
First,  the  performance  of  the  proposed  methods  was

examined by the anomaly detection in a single-input single-
output linear oscillating dynamical system that was defined as
follows 

 , (15)

, (16)

where  was the periodic step input (top axes in Fig.3),  was
the plant  output,  and   was the proportional  gain of  a  P-
controller. The closed loop (15)(16)  was simulated with an
ODE solver, i.e., as a continuous-time dynamical system. The
only measured variables were input  and output , and
these were  sampled with a  constant  sampling interval.  The
anomaly was caused by a sudden change of a proportional
gain   , i.e.,   suddenly changed at   (see the top
axes in Fig.3). The real-time learning predictor was a linear
(FIR) adaptive filter whose input vector  in (1) involved step
delayed values of  and step delayed outputs . Fig. 3 shows
already the performance of the converged filter; however, its
output error does not converge to zero (second top axes in
Fig.  3),  perhaps  due  to  imperfect  filter  configuration  and
learning  setups.  As  the  learning  rule,  the  normalized  least
mean squares rule [14] was applied, i.e., the gradient descent
with normalized learning rate. Then, the bottom axes in Fig. 3
show that the new method from subsection 3.3, and even with
dimensionality  reduction  via  PCA or  by  SVD,  detects  the
anomaly  in  the  dynamical  behaviour  earlier  than  the  non-
clustering techniques (3) and (5). 

 4.2 Time Series and Anomaly Detection
In  this  experimental  subsection,  the  two new clustering-

based methods from subsections  3.2 and  3.3 were mutually
compared on novelty detection in nonstationary biomedical
data,  i.e.,  in  the  lung-tumour  motion  time  series  during
patient  respiration1.  Again,  the  weights  of  linear  (FIR)
adaptive filter with NLMS incremental learning were used for
anomaly detection via LE. The results are shown in Fig. 4. In
this  case,  the  normalized  multiscale  neighbour  technique

 (12) is more robust and detects clearly only the most
significant anomalies (at  ,  for this time series,
while  the  K-NN  based  technique   (8)  is  more
sensitive and detects also less significant anomalies  in this
data (and for  this predictor,  its  learning,  and the particular
setups).  The detail  of  the detected anomaly at   is
shown in Fig.5.

 5 CONCLUSIONS

The estimation of  Learning  Entropy for  anomaly detection
was  proposed  with  the  dimensionality  reduction  and
clustering  techniques  in  learning  state  space.  The
combination of the approaches appeared suitable for novelty
detection  with  adaptive  filters,  and  it  can  outperform  the
original non-clustering algorithms of LE.  Further, the new
techniques open new frontiers of LE for more complicated
learning systems, such as neural networks and deep learning.
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Abstract—Due to the increased deployment of low probability
of intercept radar systems, recognition and classification of low
probability of intercept signals has developed an increased im-
portance for electronic warfare systems. Recent results showed
that combining time-frequency transformations such as Choi-
Williams distribution with convolutional neural networks yield
high accuracy. Since training convolutional neural networks is
a time consuming task, we propose to use transfer learning
on pre-trained convolutional neural network architectures. Fur-
thermore, we compare these retrained neural network to the
neural network trained with randomly initialized weights. We
will demonstrate that the required training time for the transfer
learning method is significantly shorter. Moreover, classifying
time-frequency images based on Choi-Williams distribution
achieves for both weight initialization methods an accuracy of
over 99%.

I. INTRODUCTION

One of the functions of an electronic support system is to
analyze surrounding radar emitters which may pose a threat.
To avoid detection, some radar systems have been designed
to use low probability of intercept (LPI) waveforms [1]. In
order to separate radar emitters, electronic support performs
deinterleaving, which tries to sort unknown radar pulses.
This method can be improved, if apriori knowledge about
the received pulses is available. Thus classification of LPI
signals is essential to separate threats and to perform signal
deinterleaving. Due to the nature of LPI signals, finding a
highly reliable efficient solution to the classification problem
of LPI waveforms is non-trivial. Approaching this problem
is the focus of this paper.

The key to creating efficient LPI signals is to use pulse-
compression based on intrapulse modulation. Pulse compres-
sion simultaneously yields a reduction of the radar’s peak
effective radiated power and a large time-bandwidth product
[1]. Different pulse compression techniques induce different
LPI waveforms. In this paper twelve LPI waveforms are
considered (see subsection II-C for details).

In the literature several LPI waveform recognition tech-
niques are analyzed [1]. In particular, the Choi-Williams
distribution (CWD) is widely used [2]–[6]. Hence, utilizing
CWD to convert the raw data into a 2D time-frequency image
is appropriate. In order to classify the images the idea of
convolutional neural networks (CNNs) is applied. Recent
results in visual recognition competitions demonstrated the
efficiency of CNNs. The well-known ImageNet Large Scale
Visual Recognition Competition proves the quick develop-

ment and great success of CNNs [8]. Due to computational
limitations of computers it is reasonable to transfer pre-
trained CNNs and adapt them for a different classification
task [15]. This method is known as transfer learning. It works
for CNNs pre-trained on ImageNet [9], which is also used
in this paper.

A model-based transfer learning was already analyzed in
[4]. Model-based transfer learning does not retrain the pre-
trained weights. In [4] it was shown that ResNet-152 with
support vector machine as a classifier reaches an overall
recognition rate of 97.8%. In [2] and [5] the LPI signals
are classified on a CNN, which is trained in both articles
without transfer learning. In [2] the CNN achieves an overall
performance of 93.58%, when the SNR is -6 dB. In [5] clas-
sification is optimized with Tree-based Pipeline Optimization
Tool and an overall recognition rate of 94.42% is reached,
when the SNR is -4 dB. Note, that the parameter space
for sample generations in all mentioned articles are different
from each other, preventing a direct comparison.

In this paper, we initialize the weights from the pre-
trained CNN architecture on ImageNet. We then retrain the
entire CNN, which differs from the model-based transfer
learning approach in [4]. Retraining the entire CNN ar-
chitecture is reasonable, since the images from ImageNet
and the time-frequency images clearly differ from each
other and a huge amount of time-frequency images are
generated. For comparison we also train the CNNs with
randomly initialized weights instead of using the pre-trained
weights from ImageNet. Sophisticated CNN architectures
have been carefully studied and are easily accessible, thus we
also investigate several CNN architectures, such as VGG16,
ResNet50, InceptionResNetV2, DenseNet and MobileNetV2.
We use two fully connected dense layers as a classifier in
addition to the convolutional base. As expected, the transfer
learning method is less time-consuming than the method with
randomly initialized weights. Moreover, our classification
method reaches an averaged accuracy of over 99%, when
the SNR ranges from -6 dB to 2 dB, for all considered CNN
architectures and for both weight initialization methods.

This paper is organized as follows. In Section II an
overview of the simulation model is provided. This includes
a detailed explanation of sample creation and preprocessing
methods. The idea of CNNs with transfer learning and
implementation details for training the CNNs is discussed
in Section III. Section IV presents the simulation results for
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the time-frequency images based on CWD. In addition, a
conclusion and an outlook are drawn in the Section V.

II. LPI TIME-FREQUENCY IMAGES GENERATION

A. Framework
The received modulated LPI waveform is of the form

s(t) = x(t) + n(t), (1)

with x(t) being some modulated waveform and n(t) being
additive white Gaussian noise. The preprocessing commences
with applying the CWD to transform the signal s(t) to a
2D time-frequency image. In addition, the 2D time-frequency
images are resized with area interpolation to match the input
size of the neural network.

We consider nine SNR levels for each of the twelve LPI
waveform classes, ranging from −6 dB to 2 dB. For each
SNR level 700 signals per LPI class were randomly gener-
ated. We train on 70% percent of the generated data, leaving
15% for validation and 15% for testing. After preprocessing,
the architecture of a convolutional base is loaded. In this
paper we propose two weight initialization methods. The
classification results of the two different methods will be
compared in Section IV. One method uses pre-trained Ima-
geNet weights, whereas the other method initializes random
weights (see Section III for more details). On top of the
convolutional base a dropout layer and two dense layers are
used (see Fig. 1).

CWD image
128x128 pixels

Convolutional base
ImageNet vs. randomized weights

Dropout

1024 Neurons
Dense fc, ReLu

12 Neurons
Dense fc, Softmax

Fig. 1. This Figure displays the structure of the CNN.

B. LPI radar waveforms
In this subsection we briefly discuss the mathematical

model of LPI radar signals. The transmitted signal can be
written as

x(t) = Aejθ(t), (2)

θ(t) is the instantaneous phase modulation and A is the
amplitude [1]. In this paper we fix A = 1. In regard of
equation (1) and by discretizing, we obtain

s(kT ) = Aejθ(kT ) + n(kT ), (3)

where k ∈ N and T is the sampling interval. Note, that
the instantaneous phase θ can be written as the sum of the
instantaneous frequency fk and the phase offset φk:

θ(kT ) = 2πfkkT + φk. (4)

In this paper there are two different types of LPI wave-
forms, frequency modulated and phase modulated wave-
forms. For the frequency modulated signals fk is not constant
and φk is constant. Vice versa, for the phase modulated
signals φk is not constant and fk is constant.

C. Sample Creation
In order to train the CNN properly it is important to

generate randomized data. Table I shows the twelve LPI
waveforms which are considered for classification.

The sampling frequency for all waveforms is set to
fs = 8000 Hz. The carrier frequency is denoted by fc. With
m, cpp we denote the number of code phases and the number
of cycles per phase respectively. For the polytime codes
T1, . . . , T4 we define k as the number of stepped frequency
segments. In order to parametrize the deterministic part of
the signal model given above fc,m, cpp, k are uniformly
sampled from real-valued sets. The binary phase shifting
keys (BPSKs) are based on Barker codes. The length of
the Barker code B is uniformly chosen at random from
{7, 11, 13}. The Costas arrays C are uniformly chosen from
the set CA =
{{3, 2, 6, 4, 5, 1}, {5, 4, 6, 2, 3, 1}, {2, 4, 8, 5, 10, 9, 7, 3, 6, 1}}
at random, where the unit of C is given in kHz. Furthermore
tp denotes the duration in milliseconds of a sub-period
for Costas waveforms. For the triangle linear frequency
modulated (TLFM) waveforms we denote the bandwidth by
∆f . The waveforms are generated with Matlab (R2017b). A
detailed description of the waveforms can be found in [1].

D. CWD transformation
After waveforms s(t) are generated we proceed in Matlab

to transform s(t) into a 2D time-frequency image by using
the CWD transformation as it is defined in [1]. The CWD
is a triple integral of the Cohen’s class over the time and
frequency space.

Cx(t, ω, φ) =
1

2π

∫
R3

ei(ξµ−τω−ξt)φ(ξ, τ)Ax(µ, τ)dµdτdξ,

(5)
where

Ax(µ, τ) = x(µ+ τ/2)x∗(µ− τ/2) (6)

with kernel function

φ(ξ, τ) = e−ξ
2τ2/σ, (7)

where σ > 0 denotes a scaling factor. In this paper we set
σ = 1. The resulting image is resized to 128×128 pixels by
using area interpolation in order to suit the input size of the
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TABLE I
PARAMETERS FOR SAMPLE GENERATIONS

# LPI signal Parameter Uniformly sampled
from

0 BPSK B {7, 11, 13}
fc [1/5fs, 1/7fs]

cpp {1, 2, 3}
1 Costas C CA

tp [1, 4]

2 TLFM fc [1/16fs, 1/6fs]

∆f [1/20fs, 1/16fs]

cpp {3, 4, 5}
m {4, 5, 6, 7, 8}

3 Frank fc [1/7fs, 1/5fs]

cpp {3, 4, 5}
m {4, 5, 6, 7, 8}

4, 5 P1,P2 fc [1/7fs, 1/5fs]

cpp {3, 4, 5}
m {4, 5, 6, 7, 8}

6, 7 P3, P4 fc [1/7fs, 1/5fs]

cpp {3, 4, 5}
m {16}

8− 11 T1-T4 fc [1/7fs, 1/5fs]

k {4, 5, 6}
m {2}

neural network (see Fig. 1). Samples of the resulting images
of the twelve LPI waveforms are depicted in Fig. 2.

III. CNN AND TRANSFER LEARNING

CNNs are composed of a convolutional base and a clas-
sification part, which consists usually of fully connected
dense layers followed by a softmax layer. The purpose of
the convolutional base is to extract complex features from the
input image. This is done by combinations of convolution,
padding and pooling.

However, training CNNs on a large set of images, e.g.
ImageNet, requires huge resources, in terms of GPUs and
time. For example in [10] it is stated that training ImageNet
on four NVIDIA Titan Black GPUs lasted two to three weeks
for some CNN architecture.

To avoid time consuming training, this paper proposes the
popular method of transfer learning. Since the images from
ImageNet differ from the images here (Fig. 2) and since we
generated a large data set of images, it is reasonable to retrain
the pre-trained weights from ImageNet, but using the pre-
trained weights as a starting point to save time.

In this paper we investigate different convolutional pre-
trained bases, which are:

VGG16 [10], ResNet50 [11], InceptionResNetV2 [12],
DenseNet [13] and MobileNetV2 [14].

The entire CNN structure is implemented in Python 3.6 with
Keras. We stored the complete training data set and validation

set into the memory of the GPU to accelerate the process of
training. We performed the training on a NVIDIA GeForce
GTX 1080 Ti with 11 Gb memory.

TABLE II
PARAMETERS FOR TRAINING THE CNNS

Name Parameter Value

SGD Learning rate 0.001

Decay 10−6

Momentum 0.9

Early Stop Monitoring Validation loss
Min. change 0.00001

Patience 25 epochs

Other Batch size 32
Epochs 150
Dropout 0.5

Validation data size 15% of shuffled data
Test data size 15% of shuffled data

Moreover, the initialization with random weights is based
on the Xavier uniform initializer (see [16]). We remark that
the hyperparameter space was explored (based on validation
data) until reasonable parameters were found. The parameters
from Table II worked sufficiently well for all considered CNN
architectures. The results in Section IV are based on this
implementation.

IV. SIMULATION RESULTS

We start this Section by first discussing the transfer learn-
ing results. Then we discuss the difference between the
transfer learning approach to training the CNNs with the
Xavier uniform initializer.

A. Classification with transfer learning
The result of the classification when using different CNN

architectures and transfer learning can be found in Table III.
T tr
A, T

tr
L, t

tr and Etr denote the accuracy of the test data, loss
on the test data, duration in hours for the entire training
session and best epoch with respect to the loss function on
the validation set.

All considered CNN architectures have similar accuracy
and loss values on the test data set, with exception of Incep-
tionResNetV2 having a slightly higher loss. More precisely,
the test loss function monotonically decreases with each
epoch for all considered CNNs, except for InceptionRest-
NetV2, until the values are in the order of 10−3. Then the
test loss function remains constant with small fluctuation (see
Fig. 3). Since InceptionResNetV2 has the highest loss, we
will disregard it from further classifications analysis. Fig. 4
depicts the t-SNE plot for VGG16. It can be seen that all
classes can be well separated. Similar results are obtained
for the other considered architectures. The confusion matrices
of all architectures show that most missclassifications occur
between Frank, P1, P3 and P4 waveforms (see Table IV),
this is possibly explainable due to the similar shape of these
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Costas BPSK

TLFMFrank

P1 P2

P3 P4

T1 T2

T3 T4

Fig. 2. LPI waveforms transformed by Choi-Williams distribution

Fig. 3. This Figure displays the accuracy and loss values on the training
and validation data set for VGG16 with the transfer learning method. The
accuracy/loss plots for ResNet50, DenseNet and MobileNetV2 are very
similar to this Figure.

Fig. 4. This Figure displays the VGG16 t-SNE plot in the 13th epoch
evaluated on the test set. The enumeration is according to Table I, e.g. 0
correspond to BPSK.

time-frequency images as can be seen in Fig. 2.
The classification performance of all investigated CNN

architectures, except for InceptionResNetV2, are similar to
each other with an accuracy above 99% and loss value
around 10−3. DenseNet has the best performance values.

TABLE III
RESULTS FOR TRAINING WITH TRANSFER LEARNING

Architecture T tr
A T tr

L/10−3 ttr Etr

VGG16 99.76 8.58 2.17 13

ResNet50 99.79 8.22 4.58 31

Inception-
ResNetV2

99.70 16.45 11.50 31

DenseNet 99.89 4.64 9.40 22

MobileNetV2 99.83 9.39 5.61 46

The training time required is lowest for VGG16, thus it is
reasonable to work with VGG16 for future work.

TABLE IV
NUMBER OF MISSCLASSIFIED IMAGES

Architecture Confusion between
Frank, P1, P3, P4

Other
confusions

Total

VGG16 23 4 27

ResNet50 17 6 23

Inception
ResNetV2

28 5 33

DenseNet 11 2 13

MobileNetV2 17 2 19

B. Comparison to classification without transfer learning
The results of the comparison can be found in Table V,

where we use following notations. We set ∆TA = T tr
A− T 0

A,
where the superscript in T 0

A denotes the method without
transfer learning, i.e. with randomly initialized weights. In the
same fashion we define ∆TL,∆t,∆E to be the difference
of the loss on the test data, training time and best epoch
from the transfer learning method to learning the CNNs with
randomly initialized weights.

The performance, i.e. the loss values and accuracy, on the
classification task without transfer learning are very similar
to the performance with transfer learning. This means that
the transfer learning approach does not yield significantly
better CNN models for LPI classification. The loss on the
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test data is not significantly different for both methods and
for all considered CNN architectures (see Table V), except
for InceptionResNetV2. For InceptionResNetV2 the method
with randomly initialized weights yields much better results
than the transfer learning method. Furthermore, the confusion
matrices in both methods do not differ significantly for
all considered CNN architectures. A difference of the two
proposed methods can be examined from the time difference
column, given by ∆t in Table V. Since clearly ∆t < 0 for all
considered CNN architectures, the transfer learning method
has a big advantage when time is considered to be a resource.
Training the CNNs on randomly initialized weights vary the
results. To show empirically that transfer learning has a time
benefit, we run 65 training sessions on VGG16 with randomly
initialized weights. In all test runs the method with transfer
learning required less training time (examine Table VI for
details). The performance is on average better by a very small
margin, which can be seen by comparing Table VI to the first
row of Table III. We empirically show that using pre-trained
weights significantly shortens the time needed to train the
classifier compared to using the Xavier uniform initializer.

TABLE V
DIFFERENCE FROM THE TRANSFER LEARNING METHOD TO LEARNING

THE CNNS WITH RANDOMLY INITIALIZED WEIGHTS

Architecture ∆TA ∆TL/10−3 ∆t ∆E

VGG16 ≈ −10−4 1.74 −1.13 −22

ResNet50 ≈ 10−5 −2.6 −1.83 −25

Inception-
ResNetV2

≈ −10−3 11.99 −8.03 −31

DenseNet ≈ 10−4 −0.78 −15.4 −5

MobileNetV2 ≈ −10−4 3.89 −1.11 −8

TABLE VI
65 TRAINING SESSIONS ON VGG16 WITH RANDOMLY INITIALIZED

WEIGHTS

Mean Variance Min Max

t0 3.36 0.48 2.23 5.37

T 0
L/10−3 8.5 3.91 · 10−3 4.77 15.0

T 0
A 99.78 2.96 · 10−7 99.62 99.88

V. CONCLUSION

In this paper we investigated the classification task of
LPI signals with several CNN architectures and two dif-
ferent weight initialization methods. We demonstrated that
the transfer learning method yields much faster convergence
compared to the method when the CNNs are trained with
randomly initialized weights.

In terms of performance both methods do not differ
significantly from each other. The CNNs VGG16, ResNet50,
DenseNet and MobileNetV2 performed equally well on the
classification task. In terms of required training time VGG16

is the fastest network to train. Hence our future research on
classifying LPI waveforms with CNNs will be focused on
VGG16 with transfer learning.

In electronic warfare processing large amount of data
should be analyzed in real time. In our proposed classifi-
cation method the CWD transformation is a computationally
expensive operations which may hinder the use of the method
in real-time. Thus an investigation into computational opti-
mization of the CWD transform or its replacement without
a loss of performance is necessary.
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Abstract—LASSO MPC is a popular method for solving optimal
control problems within a receding horizon. It is, however, chal-
lenging to deploy LASSO MPC on resource constrained systems,
such as embedded platforms, due to the intensive memory usage
and computational cost as the horizon length is extended. By
exploiting a reduced precision, approximation technique applied to
Proximal Gradient Descent (PGD), we demonstrate an implemen-
tation on a resource constrained, reconfigurable device, such as a
Field Programmable Gate Array (FPGA). Our experiments show
equivalent performance to a high-precision optimisation solver,
but with significant improvements to both logic cost and memory
bandwidth, up to 60% and 80% reduction respectively, with up
to 70% power savings.

Index Terms—MPC, LASSO, Proximal Gradient Descent, Ap-
proximate Computing, FPGA

I. INTRODUCTION

Model Predictive Control (MPC) is a popular technique
to solve optimal control problems in discrete time. Its ro-
bustness, stability, and theoretical guarantees have made it
widely adopted by industry [1]. Given a dynamic model of
a system and an estimate of its current state, MPC computes
the next states and necessary control inputs by minimizing a
cost function that balances the achievement of a desired state in
a predefined time-horizon with the energy required. As energy
is often expressed in a quadratic form, MPC typically entails
the application of (nonzero) input signals to the system at all
time steps.

To reduce the number of times that inputs are applied, the
work in [2] proposed LASSO MPC which, inspired by results on
sparsity, regularizes the energy term with an `1-norm penalty.
This leads to sparse input signals. Despite many desirable
features, (LASSO) MPC requires an iterative procedure to solve
an optimization problem at each time step. This not only makes
execution in real-time challenging (as the number of required
iterations is unknown a priori), but also demands significant
memory and computation, which can be limiting on resource-
constrained systems, such as embedded hardware.

In such systems, one often has to trade-off accuracy for
power savings by using approximate computing (AC) tech-
niques [3]. One example is reduced precision (RP), in which
data is represented with fewer bits than desired throughout the
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entire computational stack. As arbitrary precision arithmetic is
not supported in many modern processors, a flexible hardware
architecture enabling RP, such as reconfigurable platform using
an FPGA, is demanded.

Our goal. We aim to implement an efficient solution to
LASSO MPC and deploy it on an FPGA with the goal of
achieving real-time performance [4]. Our optimization algo-
rithm of choice is proximal gradient descent (PGD) [5]. This
is sufficiently tractable to allow us to analyze the effects
of different RP strategies on accuracy, logic and memory
resources, and power consumption.

Contributions. We summarize our contributions as follows:
• We apply PGD to LASSO MPC which, to the best of

our knowledge, has never been done, and analyze its
performance. The application of accelerated versions of
PGD [5] should be immediate.

• We introduce an Approximate Core (AC) synthesis infras-
tructure.

• Using our infrastructure, we then conduct a detailed study
of the effects of the AC strategy on our algorithm.

II. BACKGROUND

We briefly explain MPC, LASSO MPC, and then review
different number representations and their use in RP computing.

State-space models. We consider state-space representations
of linear time-invariant (LTI) discrete systems. At each time, t,
such systems are completely described by a state vector x[t] ∈
Rn, which is known to evolve as

x[t+ 1] = Ax[t] +Bu[t] , t = 0, 1, . . . , (1)

where A ∈ Rn×n and B ∈ Rn×m are given matrices (assumed
known), and u[t] ∈ Rm is the set of inputs at time t.

Model predictive control (MPC). Given a finite time-
horizon T ∈ N, a desired final state xf ∈ Rn, and an estimate
of the current state x0 ∈ Rn, MPC attempts to compute a
minimal energy state-trajectory such that the final state x[T ]
is as close as possible to the desired one, xf . This can be
formulated as an optimization problem:

min
x,u

F (x[T ]) +
∑T−1
t=0 `(x[t], u[t])

s.t. x[t+ 1] = Ax[t] +Bu[t] , t = 0, . . . , T − 1
x[0] = x0 ,

(2)
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where (x, u) := ({x[t]}Tt=0, {u[t]}T−1t=0 ) ∈ Rn(T+1) × RmT is
the optimization variable, F : Rn → R a function that penalizes
deviations of the final state x[T ] from the desired one, and
` : Rn × Rm → R a function that measures “energy” at each
time instant. Notice that the first set of constraints is exactly (1),
and the second set reflects the current state.

The functions F and ` are often quadratic forms. An example
assuming xf = 0 would be

F (x) = x>Px (3a)

`(x, u) = x>Qx+ u>Ru , (3b)

where P,R � 0 are positive definite matrices and Q � 0 is
positive semidefinite. With this choice, the variable x in (2) can
be eliminated. To see why, first write (1) as [6, Ch. 8]

x[0]
x[1]

...
x[T ]


︸ ︷︷ ︸

=:x

=


In
A
...
AT


︸ ︷︷ ︸
=:A

x0 +


0 · · · 0
B · · · 0

AB
. . . 0

AT−1B · · · B


︸ ︷︷ ︸

=:B


u[0]
u[1]

...
u[T − 1]


︸ ︷︷ ︸

=:u

,

(4)

where In is the identity matrix in Rn. Placing the resulting
equation into the cost of (2) and manipulating, we obtain

minimize
u

1

2
u>
(
B
>
QB +R

)
u+ (B

>
QAx0)

>u , (5)

where R := IT ⊗ R, and Q is the diagonal concatenation of
IT ⊗Q and P (⊗ denotes the Kronecker product). Problem (5)
is unconstrained quadratic, and thus has a closed-form solution.
In MPC [6], whenever (5) is solved, only the first input u[0] is
applied to the system, the resulting state is measured, and (5)
is solved again using x0 as the current state.

LASSO MPC. Although (5) has a closed-form solution,
it typically yields dense (i.e., non-sparse) inputs, which can
lead to over-actuated systems. To encourage sparse inputs, [2]
proposed LASSO MPC which adds an `1-norm penalty λ‖u‖1,
with λ > 0, to (5) [or, equivalently, λ‖u‖1 to (3b)]. Noticing
that the objective of (5) can be written as 1

2‖Hu−y‖
2
2− 1

2‖y‖
2
2,

with H := (B
>
QB + R)1/2 and y := −H−1B>QAx0, the

resulting problem is

minimize
u

1

2
‖Hu− y‖22 + λ‖u‖1 , (6)

which has format of LASSO [7]. However, the matrix H in (6)
is square. So, instead of regularizing the problem as in classical
LASSO, the `1-norm term enforces sparse inputs at the cost of
possibly not reaching (or delaying) the desired state. Notice
also that because we eliminated the state variable x from (2)
to (5), the system dynamics are always (implicitly) satisfied.

Reduced precision (RP). Some platforms require repre-
senting arithmetic numbers with short binary codes, thereby
reducing their accuracy. There are three main categories of rep-
resentation: floating point [8], Q fixed point [9], and universal
numbers (Unum) [10].

The IEEE 754 floating point arithmetic standard [11] rep-
resents a number by using three elements: a sign (1 bit), an
exponent (n bits), and a mantissa (m bits). That is,

sign×mantissa× 2exponent . (7)

The Q fixed point format uses instead a fixed number of bits
to represent the integer and the fractional parts of a number.
Specifically, a number is represented by its sign (1 bit), its
integer part (t bits), and its fractional part (k bits):

sign× (2integer + 2−fraction) . (8)

Unum arose as an alternative to IEEE 754, and there are
several versions. For example, Type III Unum, Posit, represents
numbers by their sign (1 bits), regime (g bits), exponent (p bits),
and fractional part (c bits):

sign× (22
p

)regime × 2exponent ×
(
1 +

fraction
2c

)
. (9)

Each of these representations has a different dynamic range.
And different dynamic ranges affect not only the performance
of the algorithm by limiting the type of operations that can be
performed, but also their embedded implementation.

III. ALGORITHM AND IMPLEMENTATION

We now explain the algorithm we use to solve LASSO MPC
and its implementation on resource-constrained systems.

A. Proximal Gradient Descent

We consider the LASSO problem in (6) and apply the
proximal gradient descent (PGD) algorithm with fixed step
size [12]. PGD solves problems of the form

minimize
u

f(u) := g(u) + h(u) , (10)

where g : Rq → R is convex, differentiable, and its gradient
is Lipschitz-continuous, i.e., there exists L > 0 such that
‖∇g(u) − ∇g(v)‖2 ≤ L‖u − v‖2, for all u, v. The function
h : Rq → R ∪ {+∞} is assumed convex and closed. Given a
stepsize α ≤ 1/L and an initial point u0, PGD solves (10) by
iterating (on k)

uk+1 = proxαh
(
uk − α∇g(uk)

)
, (11)

where the proximal operator of a convex, closed function φ at
a point u is defined as

proxφ(u) := argmin
v

φ(v) +
1

2
‖v − u‖22 . (12)

It is well known that the iterates produced by PGD satisfy [12]

f(uk)− f(u?) ≤ αL‖u0 − u?‖22
2k

, (13)

where u? is a solution of (10), i.e., PGD converges sublinearly.
Application to LASSO MPC. As problem (6) has the format

of (10) with g(u) = (1/2)‖Hu − y‖22 and h(u) = λ‖u‖1,
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the application of PGD is immediate and yields the soft-
thresholding algorithm. Specifically, (11) becomes

uk+1 = Sλ
(
uk − αH>(Huk − y)

)
= Sλ

((
Iq − αH>H

)
uk + αH>y)

)
, (14)

where the soft-thresholding operator Sλ(u) applies to compo-
nent i, for i = 1, . . . , q, the following nonlinearity:[

Sλ(u)
]
i
=

 ui − λ , ui > λ
0 , −λ ≤ ui ≤ λ
ui + λ , ui < −λ .

(15)

Parameters and precomputations. PGD (11) and the asso-
ciated convergence result in (13) apply whenever the stepsize
α satisfies α ≤ 1/L, where L is a Lipschitz constant of ∇g. To
compute it, we can estimate the maximum eigenvalue of H>H ,
λmax(H

>H), e.g. by Lanczos’s method, or use the structure
of H and the matrices that define it:

Lemma 1. Let H = (B
>
QB + R)1/2, where B, Q, R

are defined in (4)-(5). Also, partition B vertically into B1 ∈
RnT×mT , which contains the first nT rows of B, and into
B2 ∈ Rn×mT , which contains the last n rows of B. Then,

λmax(H
>H) ≤ λmax(Q)λmax

(
B1B

>
1

)
+ λmax(P )λmax

(
B2B

>
2

)
+ λmax(R) . (16)

The proof uses the subadditivity of λmax(·), and the prop-
erties of the Kronecker product; it is omitted for brevity. The
matrices P , Q, and R encode the objective of MPC [cf. (3)],
and the matrices B1 and B2 encode the system dynamics
through their dependency on A and B [cf. (1)]. Although
the matrices B1 and B2 have a lot of structure, namely B1

is block Toeplitz and B2 is the controlability matrix with
permuted columns, it is not immediate to obtain a bound on
λmax

(
B1B

>
1

)
and λmax

(
B2B

>
2

)
as a function of A and B.

These quantities can be accurately estimated via Lanczos’s
method.

Once α is set to the inverse of right-hand side of (16), the
matrix Iq − αH>H and the vector H>y = B

>
QAx0 in (14)

can be precomputed before the iterations of the algorithm. We
stop the algorithm whenever a maximum number of iterations
kmax is reached or when |f(uk+1) − f(uk)| < ε, for some
defined ε.

B. Approximate Core Synthesis

Simulation
Kernel (.cpp)

Approximate 
Linear 

Algebra 
Library

Mex 
Compilation

Approximation 
Evaluation

Synthesis

High-Level 
Synthesis

VHDL Core 
Generation

Kernel (.hdl)

Kernel (.hdl)

Kernel (.hdl)

Kernel (.hdl)

Kernel (.hdl)

Kernel (.hdl)

Fig. 1: Approximate kernel synthesis.
We now describe a proof-of-concept infrastructure that gen-

erates an approximate optimizer for (5) on a reconfigurable
device. Fig. 1 shows the workflow of this infrastructure. The

optimizer kernel is a user-defined C++ function based on an
approximate linear algebra library, which defines basic algebra
operations such as addition, multiplication, inversion, and de-
composition, for matrices and vectors. We have developed that
algebraic library for arbitrary precision representations.

We solved LASSO MPC using different precisions using
an integrated environment with the Matlab MEX API. By
compiling the MEX files with the proposed kernel, we can
evaluate the functionality and algorithmic performance of the
algorithm. After checking the correctness of the kernel via
functionality simulation, the kernel is synthesized using high-
level synthesis tools, and the approximate core is generated in
VHDL.

IV. EXPERIMENTS

We now describe experiments using LASSO MPC to control
the attitude of a spacecraft [13] by ACADO [14]. Fig. 2 shows
the state parameters for attitude control using reaction wheels.
The state vector, corresponding to x in (1), is defined by
[roll, pitch, yaw, ωω, ω1, ω2, ω3] in Fig. 2. The control voltages
for the reaction wheels that steer the spacecraft, [τ1, τ2, τ3, τω],
are considered as the components of the input vector, u, in (1).
In our experiments, the dynamic matrices A and B in (1) and
the cost matrices P , Q, and R in (3) were set exactly as in [13].

x

y

z

ωω

ω1

ω3

ω2

Roll

Pitch

Yaw

Fig. 2: Attitude Control [13]: seven states are considered here,
Roll, P itch, Y aw, ω1, ω2, ω3, ωω , where Roll, P itch, Y aw de-
scribe the rotating angles of the body frame relative to the orbit
frame, ω1, ω2, ω3 are the corresponding angular velocities, and
ωω is the angular velocity along the spin axis. The wheels are
controlled by the input voltages, τ1, τ2, τ3, τω .

Experimental setup. We considered three different time
horizons T : 1, 5, and 10. To assess our implementation of
PGD, we compared its solution with the one returned by
CVX [15], and used the sum of the absolute differences,
D = |ukRP − ucvx|1 for kth iteration, of the control input
vector, [τ1, τ2, τ3, τω], as the performance metric. For example,
Dk
Float−10 = |ukFloat−10 − ucvx|1 is the solution between

floating point using 10 bits and CVX at the kth iteration,
where ukFloat-10 is the solution of (6) using a 10 bit floating
point representation, and ucvx is the solution returned by CVX.

A. RP Approximation Performance

We implemented the framework described in section III-B
with different number representations, each with its own preci-
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Fig. 3: Convergence performance of approximate PGD (14) between the baseline 32-bit floating point (FP) and reduced precision
(RP) implementations using (a) Floating Point (FP), (b) Fixed Point (FXP), and (c) Unum Posit (UP).

sion. Fig. 3a shows the baseline, single precision floating point
(32 bits) simulation using CVX as the Lasso MPC solver, com-
pared against our reduced precision implementations described
in paragraphs (a), (b), and (c) below. Due to limited space,
we only consider T = 10 here. Similar phenomena happen for
T = 1 and T = 5.
(a) Floating Point (FP): In Fig. 3a RP floating point solu-

tions are presented for PGD from 6-bit to 16-bit. As
shown, performance with 8 to 10 bits is much worse
compared to single precision float. However, from 12
bits the performance is considerable, which is similar
to single precision floating. Hence, 12-bit floating point
approximation is considered as a viable candidate for
approximate FP implementation.

(b) Fixed Point (FXP): In Figure 3b, RP fixed point is pre-
sented for PGD from 20-bit to 32-bit. As shown, proper
convergence does not occur for 20 or 24 bit approxima-
tion, while similar performance is obtained using 32 bits.
Hence, 32-bit fixed point is considered as a candidate for
approximate FXP implementation.

(c) Unum Posit (UP): In Fig. 3c, the RP unum posit is consid-
ered for PGD from 8 to 16 bits. Compared to the single
precision float, similar performance is obtained from 14
bits which makes it the candidate of RP approximate PGD
as well.

Fig. 4 shows the comparison of the the control state in an
open-loop simulation with different RP techniques. As shown in
Fig. 4b-4d, compared to the CVX solution using the baseline 32
point FP precision solution of Fig. 4a, the approximate solver
shows very similar control process and performance to CVX
over time. For example, in Fig. 4b, the PGD optimized input
using 12 bits FP exhibits slightly larger variance on than CVX,
while the PGD optimized output for Euler and Angular control
takes about 1.5s to converge rather than about 1.1s with CVX.
However, an approximation with over-reduced precision causes
instability in the spacecraft attitude is shown in Fig. 4e.

B. Cost Evaluation

Choosing the closest MPC performance of each RP approxi-
mation to CVX across the different precisions shown in the last
section, the corresponding costs are evaluated by implementing
the PGD kernel on an Xilinx Ultrascale+ ZCU106 device as

shown in Table I. The single 32-bit FP precision implemen-
tation is considered again as the baseline against which other
representations are compared. All costs are estimated from high
level synthesis using the Xilinx Vivado design tool 2019.2.

Across different horizon lengths, the approximate fixed point
implementation (FXP-24,28,32) consumes the least logic area,
which is about 30% of the baseline (FP32) in each case.
Accordingly, the power consumption is reduced to 2̃5% when
the horizon length is 1, and <50% when the horizon length
is 5 or 10. As the problem size increases with horizon length,
the number of bits for fixed point arithmetic grows from 24
to 32 to maintain a performance similar to the single precision
implementation. This is due to the fact that the dynamic range
of linear algebra, numeric computations is larger as the size
increases.

The (FP-12, 16,14) implementation does not save as much
logic area as fixed point, but as the horizon length increases, up
to 40% reduction in the use of LUT is achieved. Accordingly,
up to 2̃0% power reduction is introduced, but only within a very
limited time horizon, T − 1. However, the least number of bits
are adopted compared to fixed point implementations, enabling
significant saving in communication bandwidth to 14.06% of
FP-32.

The approximate unum posit (UP-12,14) is based on high
level synthesis of SoftPosit [16]. It consumes significantly
larger logic area comparing to floating point and fixed point
implementations, although similar savings on communication
bandwidth are made due to the low number of representative
bits.

Hence, if power and area are of most concern on a resource
constrained system, the fixed point (FXP) lean PGD does pro-
vide significant savings compared to the full, single precision,
FP-32 implemnetation. However, if communication is of the
most concern in a resource constrained system, such as a mesh
network with edge devices, the FP floating point variations
show the largest bandwidth savings.

V. CONCLUSIONS

In this work, an approximate proximal gradient descent is
applied to solve Lasso MPC with fixed step size. By adopting
the reduced precision technique, a considerable optimization
performance is achieved compared to high-precision solver
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Fig. 4: LASSO MPC Simulation: [τ1, τ2, τ3, τω] is the control (input) vector in V olt while [roll, pitch, yaw, ωω, ω1, ω2, ω3] is
the state (output) vector. roll, pitch, yaw are measured in Degrees and ωω, ω1, ω2, ω3 are measured in Rad/s. The simulation
shows all input and output states changing over 2s with a 0.1s step interval.

TABLE I: RP Cost Comparison with Different Horizon Length (T)
T=1 T=5 T=10

Precision FP-32 FP-12 FXP-24 UP-12 FP-32 FP-16 FXP-28 UP-14 FP-32 FP-14 FXP-32 UP-14
LUT (×103) 3.31 2.99 1.21 19.4 3.17 2.16 1.24 10.9 4.01 2.42 1.46 10.6

DSP48E1 30 0 11 12 20 6 10 4 20 6 16 4
BRAM 0 0 0 0 2 2 4 0 5 5 5 8

Clock (MHz) 482 465 443 393 434 401 403 382 370 384 379 382
T (M Inst/sec) 0.42 0.48 0.46 0.41 0.45 0.41 0.42 0.39 0.38 0.39 0.39 0.39

Power (mW) 273 199 68 248 219 220 110 152 250 254 113 148
Bandwidth 100% 14.06% 56.25% 14.06% 100% 25% 76.56% 19.14% 100% 19.14% 100% 19.14%

(CVX). An approximate core synthesis infrastructure is devel-
oped for fast prototyping the computational kernel of proximal
gradient descent on reconfigurable device, FPGA. The results
show up to 60% in logic cost reduction, 80% in memory
bandwidth saving, and 70% in power reduction, which is very
promising for deploying LASSO MPC on resource constrained
system considering computing and communication cost. The
future work includes further exploring the approximation ef-
fects against different MPC applications as well as different
optimization algorithms.
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Abstract—The space-time covariance matrix derived from
broadband multichannel data admits — unless the data emerges
from a multiplexing operation — a parahermitian matrix eigen-
value decomposition with analytic eigenvalues and analytic eigen-
vectors. The extraction of analytic eigenvalues has been solved
previously in the discrete Fourier transform (DFT) domain; this
paper addresses the approximation of analytic eigenvectors in the
DFT domain. This is a two-stage process — in the first instance,
we identify eigenspaces in which analytic eigenvectors can reside.
This stage resolves ambiguities at frequencies where eigenvalues
have algebraic mulitplicities greater than one. In a second stage,
the phase ambiguity of eigenvectors is addressed by determining
a maximally smooth phase response. Finally, a metric for the
approximation error is derived, which allows us to increase the
DFT length and iterate the two stages until a desired accuracy
is reached.

I. INTRODUCTION

For broadband multichannel data collected by M sensors in

a time series vector x[n] ∈ C
M with discrete time index n,

second order statistics are captured by the space-time covari-

ance matrix R[τ ] = E
{

x[n]xH[n− τ ]
}

, with E{·} represent-

ing the expectation operator, {·}H the Hermitian transposition,

and τ a lag parameter. This space-time covariance matrix

generalises the narrowband or instantaneous covariance matrix

R[0] to the broadband case, and leads to simple formulations

of broadband problems analogous to their narrowband equiv-

alent. To solve narrowband problems, factorisations of the

covariance matrix, particularly its eigenvalue decomposition

(EVD), are key. Hence, in the broadband case a similar

factorisation is desired to generalise the utility of the EVD

from the narrowband case.

The diagonalisation of R[τ ] for all lags τ , or equiva-

lently of its z-transform, the cross-power spectral density

(CSD) R(z) =
∑

τ R[τ ]z−τ for all values of τ , has been

investigated in [1]–[3]. Since R[τ ] comprises auto- and

cross-correlation sequences, R(z) is parahermitian, such that

R
P(z) = R

H(1/z∗) = R(z), where the parahermitian opera-

tor {·}P imposes a time reversal and Hermitian transposition.

If the data x[n] is generated by causal and stable systems [4],

then R(z) is analytic in z. If there is no temporal multiplexing

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1 and the MOD
University Defence Research Collaboration in Signal Processing.

of the data involved, then such an analytic R(z) admits a

parahermitian matrix EVD (PhEVD) [2], [3],

R(z) = Q(z)Λ(z)QP(z) , (1)

with an analytic and unitary Q(z) and analytic, diagonal,

and parahermitian Λ(z). The diagonal elements of Λ(z) are

referred to the analytic eigenvalues of R(z), and the columns

of Q(z) their corresponding analytic eigenvectors.

In the past, a number of algorithms have targetted decompo-

sitions similar to (1). In the McWhirter or polynomial matrix

EVD (PEVD) [1] with R(z) ≈ U(z)Γ(z)UP(z), a parau-

nitary matrix U(z) achieves an approximate diagonalisation

with spectrally majorised eigenvalues, i.e. the latter appear

strictly in descending order at every frequency. Algorithms

to accomplish this, such as the second order sequential best

rotation (SBR2, [1]) or the sequential matrix diagonalisation

(SMD, [4]) algorithms encourage or can even be shown to con-

verge towards spectral majorisation [5]. If diagonal elements

in Λ(z) intersect on the unit circle, then Γ(z) will converge

towards a non-differential and hence non-differentiable per-

mutation of Λ(z). Similarly, U(z) will converge towards a

permuted, and hence discontinuous version of Q(z). There-

fore, the factors Γ(z) and U(z) typically require significantly

higher order polynomials for similar approximation error as

achievable with analytic Λ(z) and Q(z).
In order to obtain lower-order approximations of the analytic

factors in the PhEVD in (1), a first attempt has been reported

in [6], where for a fixed DFT size, the eigenvectors where used

to re-establish the coherence across bins that is otherwise lost

when calculating EVDs independently in different frequency

bins. To base this coherence on the eigenvectors can lead to

robustness problems: eigenvectors are typically more strongly

perturbed than eigenvalues [7]; in particular, at algebraic mul-

tiplicities C > 1 of eigenvalues, the associated eigenvectors

can form an arbitrary C-dimensional basis and hence will not

necessarily yield a smooth and therefore analytic continuation

of eigenvectors across these algebraic multiplicities.

Therefore, we previously have based the association of

eigenvalues across frequency bins on the better conditioned

eigenvalues instead of the eigenvectors [8], [9]. We use the

result of this association in this paper to also extract an

approximation for the analytic eigenvectors. This raises two

challenges. First, continuous 1-d subspaces have to be woven

978-1-7281-3810-7/20/$31.00 ©2020 IEEE 81



through C-d subspaces at algebraic multiplicities. Secondly,

the arbitrary phase function of eigenvectors must be selected

as maximally smooth in order to approximate the analytic

eigenvectors with a low approximation error. This second step

has e.g. been addressed in [10], which uses a gradient tech-

nique driven by a smoothness metric that is to be minimised.

Thus, in Sec. II, we highlight the general approach, address

smooth 1-d subspaces in Sec. III and propose phase smoothing

similar to [10] in Sec. IV. Finally, Sec. V assess the overall

approximation error, and Sec. VI provides some results.

II. ANALYTIC PARAHERMITIAN MATRIX EIGENVALUE

DECOMPOSITION AND GENERAL APPROACH

A. Properties of the PhEVD

We assume that the space-time covariance matrix

R[τ ] ◦—• R(z) is not derived from multiplexed data, such

that the PhEVD of R(z) = Q(z)Λ(z)QP(z) exists with

analytic factors Λ(z) and Q(z). From [2], [3] we know that

for these factors, Λ(z) is unique up to a reordering. We further

assume that there are no identical eigenvalues, i.e. that with

Λ(z) = diag{λ1(z), . . . , λM (z)}, there are no functions such

that λm(z) = λµ(z), m 6= µ holds for all values of z within

the region of convergence. Due to the uniqueness theorem of

analytic functions, λm(z) and λµ(z) for m 6= µ can only share

a finite number of crossing points, i.e. when evaluated on the

unit circle, the eigenvalues λm(ejΩ), m = 1, . . . ,M will only

possess algebraic multiplicities at a finite number of values

Ω ∈ [0, 2π).

The matrix of eigenvectors, Q(z) = [q1(z), . . . , qm(z)],
is not uniquely defined, and each eigenvector qm(z), m =
1, . . .M , can be modified by an arbitrary allpass function as a

generalisation of the phase ambiguity of eigenvectors for the

standard EVD of constant Hermitian matrices [12].

B. Evaluation on the Unit Circle

By working in the DFT domain, we evaluate R(z) in K
equispaced bins along the unit circle, such that ideally

R(ejΩk) = Q(ejΩk)Λ(ejΩk)QH(ejΩk) (2)

with Ωk = 2π
K
k, k = 0, . . . , (K− 1). However, by working in

isolated frequency bins, the coherence is lost, and in the kth

bin we obtain

R(ejΩk) = QkΛkQ
H
k , (3)

where the r.h.s. factors are without direct equivalence to the

terms on the r.h.s. of (2).

In the kth bin the eigenvalues may appear randomly re-

ordered. As a fixture, we assume the Λk is majorised. There-

fore

Λ(ejΩk) = PkVkΛkV
H
kP

T
k , (4)

where Pk is a permutation matrix that reorders the otherwise

spectrally majorised eigenvalues in each bin, such that they

correspond to the analytic ones. The unitary Vk is a block

diagonal matrix

Vk = diag{Vk,1, . . . , Vk,Lk
} , (5)

where Lk is the number of distinct eigenvalues in the kth

bin, and Vk,ℓ ∈ C
Qk,ℓ×Qk,ℓ , ℓ = 1, . . . , Lk, is unitary with

a dimension equivalent to the algebraic multiplicity Qk,ℓ of

the corresponding eigenvalue. Note that
∑Lk

ℓ=1Qk,ℓ = M . In

case of Lk =M distinct eigenvalues, Vk is a diagonal matrix

imposing phase shifts only.

Therefore, for the matrix of eigenvectors, we have

Q(ejΩk) = QkV
H
kP

T
k . (6)

From the extraction of analytic eigenvalues in [8], [9], we

know the permutation matrices Pk, and the dimensions of the

unitary subblocks Vk,ℓ, but not their values.

C. Problem Statement and Approach

A number of problems remain in extracting analytic eigen-

vectors:

P1 (subspace alignment): In case of algebraic multiplicities,

where at least some of the subblocks Vk,ℓ exceed dimension

one, we need to weave continuous one dimensional subspaces

across these multiplicities.

P2 (phase alignment): The phase shift in individual frequency

bins need to be aligned to provide an overall analytic function

— and therefore achieve minimum support in the time domain.

P3 (approximation error): Regarding the number of frequency

bins, from [8], [9] we know the value for K that guarantees

an extraction of eigenvalues that approximates the analytic

functions with a predefined accuracy. For the approximation

of eigenvectors, a different, and potentially higher number of

sample points, can be required. We therefore need a criterion

that can determine whether the number of sample points (and

therefore the approximation order) for the eigenvectors is

sufficiently high.

In contrast to the only previous algorithm for the extraction

of smooth eigenvectors in [6], which addresses problem P2 for

a fixed and predetermined order K, below we tackle problems

P1 to P3 in Secs. III to V, respectively.

III. EXTRACTION OF SMOOTH 1-D EIGENSPACES

A. Rationale

In case of a C-fold algebraic multiplicity of eigenvalues,

with C > 1, the corresponding eigenvectors can form an

arbitrary basis within a C-dimensional subspace. However,

to estimate analytic eigenvectors, we first need to weave

smooth 1-d eigenspaces through such a manifold. Based on the

assumption of non-identical eigenvalues and supported by the

uniqueness theorem of analytic functions, we know that this

can only occur at a finite and isolated number of frequency

points.

Let Ωk0 be a frequency bin where the eigenvalues

λm(ejΩk0 ) = . . . = λm+C−1(e
jΩk0 ) share a C-fold algebraic

multiplicity. Since we know the analytic eigenvalues to a

predefined accuracy, we can find frequency points Ωk0 − ∆
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and Ωk0 + ∆ where ∆ ≪ 2π/K and the C eigenvalues are

sufficiently distinct. Let Qk0− and Qk0+ be the (appropriately

ordered, using Pk0− and Pk0+) matrices of eigenvectors for

R(ej(Ωk0
−∆)) and R(ej(Ωk0

+∆)). We first align phases across

Qk0− and Qk0+, before interpolating through the appropriate

C-dimensional subspace of Qk0
.

B. Phase-Alignment Across Algebraic Multiplicities

Let qm,k0− and qm,k0+ be the mth eigenvectors in the

columns of Qk0− and Qk0+. W.l.o.g., we retain Qk0− as it

is, but change the mth eigenvector at Ωk0+∆ by a phase term

ϑm,k0 that satisfies the optimisation problem

ϑµ,k0,opt = arg min
ϑµ,k0

‖qµ,k0− − ejϑµ,k0qµ,k0+‖22 ,

µ = m, · · · ,m+ C − 1 . (7)

By differentiating w.r.t. ϑµ,k0 and setting the gradient to zero,

we obtain

ϑµ,k0,opt = arctan
Im

{

qH
µ,k0−qµ,k0+

}

Re
{

qH
µ,k0−qµ,k0+

} . (8)

With these phase shift angles ϑµ,k0,opt, µ = m, . . .m+C−1,

the eigenvectors at Ωk0 −∆ and Ωk0 +∆ that are associated

with the C-fold algebraic multiplicity in bin k0 become

aligned as closely as possible in the least squares sense.

C. Smooth Eigenspace Selection in Algebraic Multiplicities

Within bin k0, there is an ambiguity of eigenvectors w.r.t. an

arbitrary unitary matrix Vk0 ∈ C
C×C , such that with eigen-

vectors

Uk0 = [qm,k0 , qm+1,k0 , . . . , qm+C−1,k0 ] , (9)

the columns of U′
k0

= Uk0V
H
k0

also represent valid eigenvec-

tors. We want to solve the constrained problem

min
Vk0

‖Vk0U
H
k0
Uk0− − IC‖2F + ‖Vk0U

H
k0
Uk0+Θk0 − IC‖2F

s.t. VH
k0
Vk0 = I , (10)

where Uk0− ∈ C
M×C and Uk0+ ∈ C

M×C contain the cor-

responding eigenvectors at the angular normalised frequencies

Ωk0 − ∆ and Ωk0 + ∆, respectively. The diagonal matrix

Θk0 = diag
{

ejϑm,k0 , . . . , ejϑm+C−1,k0

}

performs the phase

alignment described in Sec. III-B. The latter is necessary such

that a single unitary matrix Vk0 can be used to compare bin

k0 to both the preceding and subsequent bins in (10).

To solve the constrained problem (10), [13] offers a number

of approaches. This requires an expression for the cost, here

denoted as ξk0 , which can be written as

ξk0 = ‖Vk0U
H
k0
Uk0−−IC‖2F+‖Vk0U

H
k0
Uk0+Θk0−IC‖2F

= tr
{

(Vk0U
H
k0
Uk0− − IC)(Vk0U

H
k0
Uk0− − IC)

H
}

+ tr
{

(Vk0U
H
k0
Uk0+Θk0 − IC) ·
·(Vk0U

H
k0
Uk0+Θk0 − IC)

H
}

. (11)

Using matrix-valued differentiation [14] and Wirtinger calcu-

lus [15], we obtain as derivative ∇ξk0 =
∂ξk0

∂Vk0

∇ξk0 = UH
k0
(Uk0−U

H
k0− +Uk0+U

H
k0+)Uk0V

H
k0
−

−UH
k0
(Uk0− +Uk0+Θk0) . (12)

Starting from an initial guess Vk0
(0), this enables an iterative

gradient search akin to [13], where in the ith iteration

V
(i−1/2)
k0

= V
(i−1)
k0

− µ∇ξk0(V
(i−1)
k0

) (13)

is no longer necessarily a unitary matrix. Therefore, (13)

alternates with a projection

V
(i)
k0

= Π(V
(i−1/2)
k0

) (14)

onto the Stiefel manifold of unitary matrices in C
C×C . The

operation B = Π(A) that finds the unitary matrix closest to

A ∈ C
C×C in the least squares sense is based on the SVD

A = UΣVH; in fact we have Π(A) = UVH [12].

Thus, to solve the subspace alignment problem across alge-

braic multiplicities we first obtain Θk0 via (8), and thereafter

iterate (13) and (14) based on (12).

IV. PHASE ALIGNMENT WITHIN 1-D EIGENSPACES

A. Cost Function

If qm,k is the kth bin of the m eigenvector, with m =
1 . . .M and ℓ = 0 . . . (K − 1), then although it now resides

in a smooth eigenspace, we can still define an arbitrary phase

shift ejϕm,k for every such vector, such that qm,ke
jϕm,k also is

a valid mth eigenvector in the kth frequency bin. These phase

shifts must be selected such that each component of qm,k can

be interpreted as a sample point of a smooth function that is

interpolated across the K bins. For each of the M components,

µ = 1 . . .M , these sample points can be organised into a

vector um,µ ∈ C
K ,

um,µ = Qm,µa (15)

where

Qm,µ = diag{qm,µ[0] . . . qm,µ[k] . . . qm,µ[K − 1]} (16)

aTm =
[

ejϕm,0 , . . . ejϕm,k , . . . ejϕm,K−1
]

(17)

and qm,µ[k] is the µth component of qm,k. With these quanti-

ties, the smoothness of the interpolation of the mth eigenvector

— and thus the smoothness of the alignment in phase in

the different bins — can be assessed by a weighted inner

product which measures the power in a pth derivative of the

interpolation via a weighting matrix Cp defined in [11], [16]

χm =

M
∑

µ=1

uH
m,µCpum,µ (18)

= aHm

M
∑

µ=1

QH
m,µCpQm,µam = aHmDp,mam . (19)

The substitution Dp,m =
∑M
µ=1 Q

H
m,µCpQm,µ permits to

express this smoothness metric directly in terms of the vector

of phase shifts am for the mth eigenvector.
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Fig. 1. Cost function value χ1 in dependency of ϕ1,0 and ϕ1,1.

B. Gradient-Based Iterative Optimisation

The minimisation of χm is accomplished by appropriately

tuning the phase in every frequency bin, assembled into a

vector ϕm = [ϕm,0, . . . , ϕm,K−1]
T ∈ R

K ,

ϕm,opt = argmin
ϕm

aHmDp,mam = argmin
ϕm

χm . (20)

An example of the cost function χ1 for M = 2 and

[q1(z) q2(z)] =
1

2

[

1 + z−1 1− z−1

1− z−1 1 + z−1

]

(21)

is shown in Fig. 1 in dependency on phase shifts in the two

frequency bins for K = 2. Since this cost function appears

difficult to solve in closed form, we attempt an iterative

gradient approach, such that ϕm depends on an iteration index

n, and

ϕm[n+ 1] = ϕm[n]− µ
∂χm
∂ϕm

. (22)

Since am[k] = ejϕm,k , we can define

∂

∂ϕm
=
∂aHm
∂ϕm

∂

∂a∗m
+

∂aTm
∂ϕm

∂

∂am
(23)

= −jΦ∗
m

∂

∂a∗m
+ jΦm

∂

∂am
, (24)

with

Φm = diag
{

ejϕm,0 , . . . , ejϕm,L−1
}

. (25)

Note that Φm1 = am. Therefore

∂χm
∂ϕm

= −jΦ∗
mDp,mam + jΦmDT

p,ma∗m (26)

= 2Im{Φ∗
mDp,mΦm1} . (27)

This defines the iterative update scheme.

C. Fast Newton Approach

The convergence of the iterative approach in (22) can

be enhanced using a fast Newton approach [17] based on
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Fig. 2. Convergence curves for phase adaptation with different power of
derivatives considered.

the Hessian matrix H = 2Re{Φ∗
mDΦm} derived similarly

to [10]. The resulting Newton update H−1, such that

ϕm[n+ 1] = ϕm[n]− µ H−1 ∂χm
∂ϕm

. (28)

Example. For a K = 64-point DFT of q1[n] ◦—• q1(z)
in (21), the phase is altered randomly. Thereafter, the above

iterative updating schemes are used to calculate the phase.

The results against the optimum attainable smoothness metric

of χ = 1
2 for an undisturbed phase are shown in Fig. 2.

The iterative gradient algorithm in (22) converges slowly,

particularly if the power in the derivatives are taken at higher-

order, such as p = 5, with faster adaptation for lower p.

In constrast, the fast Newton update significantly reduces the

number of iterations, reaching machine precision after around

12 iterations as seen in Fig. 2.

While the update (28) can converge faster when the term

H−1 is included, it may be attracted to critical points [13].

From Fig. 1 we know that the cost function can include saddle

points and local minima. This can cause problems, which

can be overcome by a modulation applied to Φm after initial

convergence, and re-checking whether an enhanced solution is

attained. For lack of space, this is not further elaborated here.

V. APPROXIMATION ORDER AND APPROXIMATION ERROR

Any approximation error will make itself felt by a lack of

paraunitarity. While the eigenvectors qm(ejΩ), m = 1 . . .M ,

are orthogonal at the sample points Ω = Ωk = 2πk/K, k =
0 . . . (K − 1), and therefore Qk = [q1(e

jΩk), . . . , qM (ejΩk)]
unitary, the continuous trigonometric or Dirichlet interpola-

tions Q̂(ejΩ) through Qk, k = 0, . . . , (K−1) may not satisfy

unitarity. The interpolation Q̂(ejΩ) will only be unitary for all

Ω ∈ R if the arbitrary phase at every frequency value does

not affect orthogonality. We can measure therefore

ǫK =
1

2π

π
∫

−π

‖Q̂(ejΩ)Q̂H(ejΩ)− I‖2FdΩ , (29)

where ǫK is the error linked to the approximation order K.
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To evaluate ǫK , we expand (29), to obtain the trigonometric

interpolation q̂µ(e
jΩ) of qm(ejΩk),

ǫK =
1

2π

π
∫

−π

M
∑

m=1

(

M
∑

µ=1

|q̂H
m(ejΩ)q̂µ(e

jΩ)|2−

− 2q̂H
m(ejΩ)q̂m(ejΩ) + 1

)

dΩ . (30)

For the second term in (30) we have based on Parseval

1

2π

π
∫

−π

M
∑

m=1

q̂
H
m(ejΩ)q̂m(ejΩ)dΩ =

1

K

K−1
∑

k=0

‖Qk‖2F =M .

For the first term in (30),

1

2π

π
∫

−π

M
∑

m=1

(

M
∑

µ=1

|q̂H
m(ejΩ)q̂µ(e

jΩ)|2dΩ =

= 1
2K

2K−1
∑

κ=0

‖ÔH
κ Ôκ‖2F , (31)

where Ôκ is a twofold oversampled version of Qk, with a

trigonometric interpolation such that for κ ∈ Z

Ô2κ = Qκ and Ô2κ+1 =

K−1
∑

k=0

αkQκ+k+1 .

Working with sample points on the unit circle implies a cyclic

wrap-around of the coefficients Qk for k ≥ K. It can be

shown that the interpolation filter possesses the coefficients of

a Dirichlet kernel for even K [18].

Since the Qk are unitary, ‖Qk‖2F =M . Therefore, (31) can

be split into two sums, one for odd and one for even values

of κ, and the cost ǫK simplifies to

ǫK =
1

K

K−1
∑

κ=0

‖
K
∑

k=0

αkQκ+k+1‖2F −M . (32)

Thus, the error in paraunitarity can be precisely measured from

a simple two-fold trigonometric interpolation of the sample

points, and if required, K can be doubled with a repeat of P1

and P2 until a desired accuracy has been reached.

VI. SIMULATION AND RESULTS

As an example to simulate the proposed approach,

we build R(z) from the example in [2] with Λ(z) =
diag

{

z+3+z−1, jz+3− jz−1
}

. With q1(z) and q2(z) from

(21), we perturb a sampled version of Q(ejΩ) for K = 8 via

Qk = Q(ejΩk)diag
{

ejψ1,k , ejψ2,k
}

Vk (33)

with random, uniformly distributed angles ψm,k, m = 1, 2,

k = 0, . . . (K − 1). Initially, Vk = I ∀k. For an ensemble

of 1000 randomisations of {ψm,k}, we recover Q̂(z) with

an average ǫK = 2.54e-16±2.67e-15 using the proposed

approach or equivalently the methods in [6], [10].

If additionally a random unitary subspace perturbation Vk

occurs at the algebraic multiplicities of Ω1 = π
4 and Ω5 = π

5 ,

then [6] fails to recover eigenvalues and eigenvectors indepen-

dent of how large K is selected. In the proposed approach,

the eigenvalues can be recovered using [8], [9], and with

K = 8 and ∆ = 2−8 2π
K

in P1, the proposed method finds the

correct eigenvectors with ǫK = 5.78e-13±1.83e-11. Because

the ground truth has finite order, no iteration via P3 is required.

VII. CONCLUSION

This paper has targetted a method for extracting approxi-

mations of analytic eigenvectors from analytic parahermitian

matrices. Operating in the DFT domain, this requires (i)

to re-establish coherence and find the correct association

across frequency bins. This is a byproduct of the previous

extraction of analytic eigenvalues in [8], [9], which is robust

w.r.t. algebraic multiplicities of eigenvalues greater than one.

Thus, the proposed approach concentrates on (ii) subspace and

(iii) phase alignment of eigenvectors across bins. Particularly

(ii) adds robustness over existing approaches in [6], [10].

Additionally, a simple error metric in the DFT domain allows

us to iterate the approach by increasing the DFT length until

a sufficient accuracy has been reached.
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Abstract— In this emerging era of great power competition, 

the goal of outpacing potential adversaries in the development of 

military technology takes on a new urgency. Evolving capabilities 

in sensing and automation are driven by a trade space that 

includes range and lethality versus close engagement and 

survivability; finders versus hiders; centralized 

command/control versus asset independence/dispersion; and 

planning and judgement versus reaction and autonomy. This 

paper explores this trade space first by describing sensing and 

automation innovations demonstrated during the 1990/1991 Gulf 

War and shortly thereafter, followed by discussion on current 

and emerging game-changing technologies. Capabilities 

projected for near and far term advantage include: weapons 

systems ensuring long-range lethality; unmanned cooperative 

networks of offboard systems; artificial intelligence and machine 

learning; and exploitation of advanced materials and quantum 

technologies. These will play a vital role in realizing a networked 

force of manned and unmanned systems with the ability to sense, 

comprehend, communicate, predict, plan, and take appropriate 

action in the future maritime environment. 
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I. INTRODUCTION 

In this emerging era of great power competition, the goal of 
outpacing potential adversaries in the development of military 
technology takes on a new urgency. As emphasized by the late 
Shawn Brimley in his strategic analysis “While We Can,” 
recent history teaches that each lead in technological capability 
is fleeting at best. The U.S. experienced roughly a decade of 
advantage during the early nuclear era, and arguably, several 
decades during the evolution of precision-guided weapons – 
what defense analysts refer to as the first and second offset 
strategies. Today’s trends are not conducive to the preservation 
of the decisive, undisputed edge historically experienced, as 
the rapid proliferation of technology in the global marketplace 
will continue to compress the time during which any new 
military technology provides advantage. It is not unreasonable 
to assume that the emergence of any new disruptive military 
technology will be matched within a decade [1,2]. 

Evolving capabilities in sensing and automation are driven 
by a trade space that includes range and lethality versus close 

engagement and survivability; finders versus hiders; 
centralized command/control versus asset 
independence/dispersion; and planning and judgement versus 
reaction and autonomy. This paper explores this trade space by 
describing sensing and automation innovations demonstrated 
during the 1990/1991 Gulf War – and how they impacted and 
evolved for subsequent conflicts (Section II). This follows with 
a description of current and emerging game-changing 
technologies forecast to impact the future maritime battlespace 
(Section III). The final section summarizes the significance of 
these developments toward a third offset strategy for maritime 
superiority.  

II. EARLY 21
ST

 CENTURY BATTLESPACE 

Following on the heels of the Soviet Block’s collapse, the 
1990/1991 Gulf War can be considered the first engagement of 
the 21st Century Battlespace. While one-sided, involving a 
U.S.-led international coalition crossing swords with a 
technologically less sophisticated regional power, it was the 
largest-scale U.S. war since Vietnam, and provided lessons 
learned in weapons, sensing and automation that would 
resonate across the next 30 years.  

Perhaps the most memorable event was the lightning 
advance of U.S. and Coalition armored divisions across the 
Arabian Desert during Operation Desert Storm. This was, of 
course, the terminal phase of a protracted, often times “hot,” 
conflict, with joint Army, Air Force, Navy and Marine Corps 
forces cooperating in land and sea operations. From a sensing 
and automation perspective, there are five areas that stand out 
in their impact on the war: Smart Weapons; Electromagnetic 
Warfare; Multi-Sensor Fusion; Mine Warfare; and Unmanned 
Systems. Table 1 collates some of these notable capabilities 
and systems (and shortfalls), as well as their implications for 
future conflicts, which include: the 1990s Balkan Wars; the 
2001 Afghanistan War/Operation Enduring Freedom; the 2003 
Iraq War; and the Libyan and Syrian Civil Wars of the 2010s 
[3-11].  

A. Smart Weapons 

Though “smart weapons” have been around since the mid-
20th century, with the advent of radio-guided bombs and 
sonar-homing torpedoes in WWII, a new generation of 
precision-guided weapons played a significant role in the Gulf 
War and the conflicts that would follow. These include laser-

978-1-7281-3810-7/20/$31.00 ©2020 IEEE 86



guided bombs that detect illumination from an aimed laser to 
guide a munition to that target.  Tomahawk Land Attack Cruise 
Missiles (TLAM), launched from naval vessels, could 
autonomously navigate long distances for precision strike, via a 
low-altitude, radar-avoiding flight path. This was made 
possible through onboard navigation systems combining 
altimeters for Terrain Contour Mapping (TERCOM) and 
imaging sensors with Digital Scene Mapping Area Correlation 
(DSMAC) capabilities. Throughout the conflict, the threat from 
Iraqi missiles were significantly reduced through the use of 
High-speed Anti-Radiation Missiles (HARM) that homed in on 
a missile battery’s radar transmitter. The utility of these smart 
weapons exceeded expectations and, following the Gulf War, 
larger inventories were procured. The incorporation of, and 
advances in, inertial navigation, Global Position System (GPS) 
receivers, mapping/scene correlators, and sensors for terminal 
homing, would make these weapons more abundant and more 
lethal in future conflicts. 

B. Electromagnetic Warfare 

Electronic warfare was not new; however, control of the 
electromagnetic spectrum during the Gulf War played a vital 
role in ensuring Coalition command and control of the 
battlespace/communications, and superiority in gathering 
intelligence and conducting surveillance/reconnaissance – a 
composite capability typically abbreviated C3ISR. From the 
onset of the Coalition buildup (Operation Desert Shield) 
following the August 1990 Iraqi invasion of Kuwait, to the 
commencement of Desert Storm hostilities in January 1991, 
satellites provided high-fidelity terrain maps that were used by 
TLAMs for their eventual precision strike operations. Target 
detection radars, synthetic aperture (active and inverse) radars, 
and infrared imagers were used on a variety of platforms so 
that Coalition assets could detect and target Iraqi weapons 
systems, before they themselves could be detected. 
Electromagnetic jamming was used by Coalition aircraft to 
blind Iraqi radars. Airspace management was greatly facilitated 
by Air Force/Navy Airborne Warning and Control Systems 
(AWACS) and Identify Friend or Foe (IFF) interrogators, 
while ground target battle management was largely 
orchestrated by the Army/Air Force Joint Surveillance and 
Target Attack Radar Systems (JSTARS). Lessons learned after 
the war would lead to expansion of satellite remote sensing and 
communications capabilities, improvements in all-weather 
sensors, and universal adoption of IFF capabilities across the 
services. 

C. Multi-Sensor Fusion 

The utility of fusing multiple sensors and sensor types to 
gain tactical understanding of the battlespace, and for 
calculating targeting solutions, was manifest by the large 
variety of sensing modalities used during the Gulf War. Putting 
this into practice would be combat pilots and air traffic 
operators, as well as ship-tracking data fusion centers at 
Central Command (CENTCOM) and stateside. During the war 
the Aegis Combat System (ACS), integrated on Ticonderoga-
class guided-missile cruisers and representing the most 
sophisticated afloat system of its type, protected Coalition 
naval forces and conducted strikes using computer-controlled 
anti-air warfare and missile launch systems. The ACS would 
expand to additional platforms, and continue to evolve with 

integration of TLAMs, advanced electronic support and 
counter measures, helicopter-borne sensors, and sophisticated 
Anti-Submarine Warfare (ASW) sonars. The Gulf War 
demonstrated the need for timely assimilation of multiple 
sources of data and intelligence. This, and improvements in 
faster/distributed computing, would lead to developments of 
network-centric warfare capabilities for threat assessment, 
strike planning, fire support, and battle damage assessment. 

D. Mine Warfare 

During the Gulf War Coalition forces controlled the sea 
lines of communication through air, surface and undersea 
superiority. This was not, however, the case for the seaward 
approaches to the Kuwait shoreline. Iraqi minefields laid in the 
Northern Persian Gulf – some by naval forces, others by 
clandestine means – tied up American and British mine 
countermeasures (MCM) vessels employing 
shipborne/airborne mine-hunting and mine-sweeping gear. 
This compromised allied abilities to bring expeditionary forces 
ashore, hindered naval gunfire support, and resulted in mine-
strikes on two U.S. warships. Eleven nations would participate 
in a year of postwar cleanup that cleared over 1200 sea mines. 
The Gulf War was a wakeup call that lead to emphasis on 
mine-laying reconnaissance (“left of splash”) and advances in 
faster, unmanned, and platform interoperable (i.e. “organic”) 
MCM gear. Minefield reconnaissance would be effectively 
used to interdict clandestine mine laying operations during the 
2003 Iraq War. This conflict would also see the first 
involvement of unmanned undersea vehicles (UUV) in a 
combat environment, as they were used for mine and harbor 
clearance following the Battle of Umm Qasr. 

E. Unmanned Systems 

The use of military drones was not new – radio-controlled 
planes were flown for special missions in WWII, and “drone 
boats” were used for riverine reconnaissance during the 
Vietnam War. The Gulf War, however, provided an in situ 
laboratory for developing newfound capabilities in unmanned 
systems: using advances in electronics, computer 
hardware/software, and small vehicle technology. This would 
foster continued improvements in machine sensing, perception, 
and autonomy, leading to expanded use of these systems in 
future conflicts and development of new concepts for 
unmanned warfare. During the Gulf War unmanned aerial 
vehicles (UAV) were used for targeting, battle damage 
assessment, and as decoys. In the time since: multiple classes 
of UAVs have been developed for surveillance, 
reconnaissance, targeting, and as weapons platforms; multiple 
classes of UUVs have been fielded and are under development 
for MCM, intelligence preparation of the operational 
environment, and for long-endurance 
surveillance/reconnaissance; and multiple classes of Unmanned 
Surface Vehicles (USV) have been fielded and are under 
development for MCM, patrol duties, surveillance, and for 
logistics support. 

F. Information Control 

Regardless of operational scale, the 1990/1991 Gulf War 
and follow-on wars were conflicts marked by an imbalance of 
military capability. Studying these engagements provides solid 
clues regarding the future of warfare – but also false leads, 
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especially for large-scale conflicts involving high-capacity, 
technologically sophisticated powers on each side. From a 
sensing and automation perspective, what is sure is that robust 
capabilities in command and control, communications, 
navigation, intelligence, surveillance, reconnaissance, 
targeting, and ultimately the control of information, will be key 
to holding a force together and for controlling the battlespace.  

III. GAMECHANGERS: NEAR & FAR 

Today’s trends are not conducive to the preservation of that 
decisive, undisputed edge experienced during the Gulf War and 
early 21

st
 Century conflicts, as the rapid proliferation of 

technology in the global marketplace compresses the time 
during which any new military technology provides advantage. 
For example, with widespread use of GPS and the emergence 
of competing global navigation satellite systems, less affluent 
nations can build smart weapons – and (though more 

expensive) alternative methods of guidance are being 
incorporated for when satellite networks are compromised. 

In “The Operational Environment, 2035-2050: The 
Emerging Character of Warfare,” the U.S. Army Training and 
Doctrine Command (TRADOC) categorizes the development 
of future weapons systems, many with relevance to the 
undersea domain, for example, range and lethality vs. close 
engagement and survivability; finders vs. hiders; centralized 
command/control vs. asset independence/dispersion; planning 
and judgement vs reaction and autonomy [12,13]. These areas 
and their implications for future technology development are 
explored in the sections that follow [14-26]. 

A. Range-Lethality and Finders vs. Hiders 

Active sensors, with the advantage that comes with 
illuminating targets but the drawback of revealing the emitter’s 
position, will continue to have utility, depending on the degree 
of battlespace control and adversarial sophistication. 

TABLE I.  GULF WAR (1990/1991) ADVANCES IN SENSING & AUTOMATION, AND IMPLICATIONS FOR FUTURE CONFLICTS 
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An exception to the range-lethality paradigm is the ability 
to employ survivable (hardened, concealable) or expendable 
assets that operate forward and in contested environments 
without requiring full control of the physical space or 
sensing/communications spectrum. With respect to finders vs. 
hiders, in future land and air engagements, concealment will be 
very difficult, although that advantage will likely be 
maintained for the mid-term in the undersea domain – given 
the cost of operating in harsh conditions, opacity to 
electromagnetic radiation, and challenges to acoustic 
reconnaissance/surveillance that include high clutter and 
propagation ambiguity. Eventually, for offboard platforms to 
remain concealed, passive-only sensing, combined with 
artificial intelligence-based autonomy and information 
processing, will be key enablers. 

Persistent Littoral Undersea Surveillance 

An example of advances in distributed autonomy is the 
U.S. Office of Naval Research (ONR) initiative of the 2000s: 
Persistent Littoral Undersea Surveillance network (PLUSNet), 
as described in the monograph “Naval Innovation for the 21st 
Century.” This initiative developed and demonstrated the 
concept of using inexpensive undersea unmanned systems that 
were quiet, perceptive (with sensors), and had long endurance. 
Autonomous Ocean Gliders were the robotic systems of 
choice, as they can transit for months using minimal power 
(gliding forward through the water column by regulating 
changes in buoyancy) – using the reserve for: instruments that 
measure ocean quantities influencing sonar propagation; 
passive sonars (vector sensors) that measure both target-
radiated signal strength and direction; and Iridium satellite-
based communication links. This initiative, along with ONR 
demonstrations of unmanned undersea mine-hunting systems 
of the decade prior, would influence emerging approaches to 
naval undersea warfare worldwide. A legacy of this research is 
the standing up of a Glider Operations Center at the U.S. Navy 
Oceanographic Office. 

B. Cooperative Offboard Networks 

Cooperative networks of offboard systems will be essential 
to future battlespace operations – and this is where the final 
two TRADOC categories come into play. The trade space 
between maintaining control with full communications, and 
accepting the risk of acting without (or with limited) 
communications, will evolve in response to inherent challenges 
of operating in specific domains. In coming decades, networks 
of unmanned vehicles will be introduced in the ground, air, and 
surface domains. These will likely see their effectiveness and 
efficiency (i.e., ability to produce intended effects at an 
acceptable expenditure of resources) maximized when they can 
be used en masse, employing low-cost expendable units that 
are self-organized into swarms.   

Centralized control of these networks in the challenging 
maritime environment will rely heavily on improvements in 
communications range, resilience, and bandwidth; while game-
changing modes of independent operation will be enabled by 
advances in navigation, perception, and autonomy. Until high-

bandwidth communications are realized, this likely will evolve 
more slowly in the undersea domain. Pioneering systems, e.g. 
legacies of PLUSnet, will alternate between 
connected/centralized and disconnected/decentralized 
operational modes – a developmental stage that can be termed 
cooperative autonomy, as a prelude to true swarming 
capability. 

As indicated in the previous subsection, feedback from 
cooperative systems (e.g. gliders) will facilitate composition of 
a common undersea picture that includes surveillance 
(detection, tracking, and targeting) and environmental 
characterization. Accurate characterization of the environment 
is key to optimizing sensor capabilities, and to setting bounds 
on how well these systems are expected to perform. The 
revolution in artificial intelligence that will facilitate operation 
of undersea networks, is already affecting sensing capabilities 
– with machine learning techniques (ML) being combined with 
physics-based models and expanding data sets to characterize 
sound speed structure and propagation (Figure 1), as well as 
the development of automated target recognition for sonar and 
other sensors. 

 

Fig. 1. Acoustic insight can be improved by leveraging the strengths of both 
physical and ML-based, data-driven models. Analytic physical models (lower 

left) give basic insights about physical systems. More sophisticated models, 

reliant on computational methods (lower right), can model more complex 
phenomena. Whereas physical models are reliant on rules, which are updated 

by physical evidence (data), ML is purely data-driven (upper left). By 

augmenting ML methods with physical models to obtain hybrid models 
(upper right), a synergy of the strengths of physical intuition and data-driven 

insights can be obtained. (From Bianco et al. [18], with permission.) 

Ultimately, the control and effective use of these offboard 
systems will require the processing of large, incomplete, and 
rapidly changing stores of information, as well as the ability to 
automate key decision processes. 

C. Advanced Materials & Quantum Technologies 

Developments in new materials and quantum technologies 
are predicted to have game-changing impacts on the ability of 
manned and robotic systems to sense and interact with the 
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environment – for situational awareness, threat tracking and 
targeting, navigation, and communication. Nanomaterials are 
man-made substances crafted at the nanometer, molecular scale 
(e.g. a DNA strand is roughly two nm across), allowing them to 
support unique quantum and/or surface properties affecting 
optical, magnetic, and electrical behavior. These are some of 
the building blocks for quantum devices, as well as for the 
broad category of metamaterials (from the Greek work “Meta” 
meaning “beyond”) that exhibit properties not typically found 
in nature, and which are beginning to impact sensing, 
computing, and communications electronics worldwide.  

The oft-hailed disruptive/revolutionary potential of 
quantum technology takes advantage of the paradoxical 
principles of quantum mechanics – such as computing bits (or 
“qubits” in quantum parlance) being in multiple states at once 
(i.e. quantum superposition) leading to exponential increases in 
processing efficiency over conventional computers; and 
particles (e.g. photons) sharing a single quantum state (i.e. 
quantum entanglement) such that a change in the state of one 
particle influences a change in another – even if they are 
separated by vast distance.  

TABLE II.  EMERGING CAPABILITIES FROM ADVANCED MATERIALS 

AND QUANTUM TECHNOLOGIES 

 

Table 2 lists a selection of emerging capabilities from 
advanced materials and quantum technologies that are relevant 
to maritime sensing/automation; where,  for example: Quantum 
illumination radars can be used to match quantum-entangled 
photons scattered from low cross-section targets to reference 
photons held at the receiver – more effectively distinguishing 
target backscatter from high levels of background noise; 

Quantum magnetometers, gravimeters, and inertial 
measurement units can be combined to provide accurate 
estimates of vehicle position and motion-state (independent 
from external navigation signals); and light/sound refracting 
materials show promise of camouflaging objects constructed 
with them. A key feature for the majority of devices listed, is 
that they are high-precision, fine-resolution, and economic in 
size, weight and power. While some of these applications are 
more realized than others, their continued development over 
the next decade will produce new capabilities in sensing and 
automation that significantly impact the maritime battlespace. 

IV. SUMMARY 

This paper analyzed new sensing and automation 
capabilities demonstrated during the 1990/1991 Gulf War, and 
which evolved to influence subsequent military engagements. 
This includes developments in Smart Weapons, 
Electromagnetic Warfare, Multi-Sensor Fusion, Mine Warfare, 
and Unmanned Systems.  

Competition to assure (or deny) maritime access in the 21
st
 

Century maritime battlespace will continue to accelerate as 
global and regional powers develop capabilities that include: 
long-range guided munitions and battle networks; advanced 
anti-ship and anti-air missiles; space, cyber and electronic 
countermeasures; and new undersea attack capabilities – 
capabilities that are facilitated by a global marketplace of rapid 
technology innovation.  

The formulation of a “third offset strategy” for maritime 
superiority will be highly reliant on evolutionary and 
revolutionary progress in sensing and automation. Game-
changing technologies projected for near and far term 
advantage include: weapons systems ensuring long-range 
lethality; unmanned cooperative networks of offboard systems; 
artificial intelligence and machine learning; and exploitation of 
advanced materials and quantum technologies. These will play 
a vital role in realizing a networked force of manned and 
unmanned systems with the ability to sense, comprehend, 
communicate, predict, plan, and take appropriate action in the 
future operational environment. 
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