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SSPD 2016

Dear Colleagues,

We warmly welcome you to this year’s SSPD Conference in the Royal College of Surgeons,
Edinburgh. This event is the 6th conference of the Sensor Signal Processing for Defence series and
provides a chance to present, listen to and discuss the latest scientific findings in signal processing
for defence.

Itis with great pleasure we welcome our two keynote speakers, Geert Leus from the Delft University

of Technology, Netherlands, and Philip Perconti from the U.S Army Research Laboratory, as
well as our invited speakers Antonio De Maio from the University of Naples Frederico II and
Danl0I0I000rom OI00I0INOI0NTOO000000. A welcome also extends to our industrial and[[ilitary
speakers who will be presenting their Signal Processing Challenges and the presenterslof scientific
papers presenting their novel research through oral presentations and poster sessions. We look
forward to some interesting debate and discussion throughout the conferenceland into the evening
at the SSPD Wine Reception and Dinner held in Prince Philip Building,/Royal College of Surgeons.

We would like to take this opportunity to thank the speakers, reviewers, session chairs and the
technical committee for their contribution to this event.

We hope you enjoy our conference.
Mike Davies
Jonathon Chambers

Paul Thomas

Chairs, SSPD 2016

Technical sponsorship is provided by the IEEE Signal Processing Society and the IEEE Aerospace
and Electronic Systems Society. Proceedings will be submitted to the Xplore Digital Library.
The conference is organised by the University Defence Research Collaboration (UDRC) in
Signal Processing, sponsored by the Defence Science and Technology Laboratory (Dstl) and the
Engineering and Physical Sciences Research Council (EPSRC).

: m

“..
Technical Co-Sponsor F
EFE / ¥27/2 . -

Sinal Processing Sociely 7 I

d 'l A EPSRC

Researeh Cownl






SSPD 2016 Thursday 22nd September 2016

8:30 Registration and Refreshments

9:00 Welcome and Opening
Mike Davies, University of Edinburgh / Jonathon Chambers, Newcastle University

9:10 Plenary Keynote: Sparse Sensing for Statistical Inference
Geert Leus, Delft University of Technology

Session 1: Tracking and Detection

10:10 1.0 —OI0ez0ATOTO —O10E20AOCA) 40AAEETC 4AAETENOAD £T0 3DAAA 3E00ACETTAT ¥ <AOATAGO
DaniAl #IA0E, (AOET0Z 7 A00 STEOAOOEOU

10:40 1.1 An Adaptive Receiver Search Strategy for Electronic Support

Sabine Apfeld?, Alexander Charlish?, Wolfgang Koch?, 'Fraunhofer, 2Fraunhofer/University of Bonn

11:05 Refreshments

11:30 1.2 New environmental dependent modeling with Gaussian particle filtering
based implementation for ground vehicle tracking

Miao Yu?!, Yali Xue?, Runxiao Ding’, Hyondong Oh?’, Wen-Hua Chen’, Jonathon Chambers?, Loughborough
University!, Newcastle University?

11:55 1.3 Robust Detection of micro-UAS drones with L-band 3-D Holographic Radar
'Mohammed Jahangir, 'Chris Baker, Aveillant Ltd!

12:20 1.4 Direction Finding Antenna Arrays with Improved Accuracy and Reduced
Complexity and Size
'Houcem Gazzah, University of Sharjah?

12:45 Lunch

Session 2: Signal Processing Challenges - Industrial Perspective - Chair, Paul Thomas, Dstl

13:40 Industrial Speakers and Panel Discussion

Session 3: Poster Session

14:40 Posters and Refreshments available

Session 4: Radar and Lidar

16:10 4.0 Invited Speaker: Transmit Adaptivity in Radar
Antonio De Maio, University of Naples Federico Il

16:40 4.1 Experimental Study on Full-Polarization Micro-Doppler of Space Precession
Target in Microwave Anechoic Chamber
Jin Liu!, Qihua Wu, Xiaofeng Ai', Feng Zhao!, Jian’an Chen?, !National University of Defense Technology

17:05 4.2 Fractional Fourier Transform Based Co-Radar Waveform: Experimental
Validation

Domenico Gaglione?, Carmine Clemente?!, Adriano Rosario Persico!, Christos V. Ilioudis?, Ian Proudler?,
John ] Soraghan?, 'University of Strathclyde, 2L.oughborough University

17:30 Close and End of Day 1
19:30 Wine Reception and Meal (Prince Philip Building, Royal College of Surgeons)
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SSPD 2016 Friday 23rd September 2016

8:45 Registration and Refreshments

9:15 Welcome to day 2
Mike Davies, University of Edinburgh / Jonathon Chambers, Newcastle University

9:25 Plenary Keynote: Taming the Torrent: Future Military Signal Processing and
Information Fusion
Philip Perconti, US Army Research Laboratory

Session 4 cont.: Radar and Lidar

10:25 4.3 Discriminating Underwater LiDAR Target Signatures using Sparse Multi-
spectral Depth Codes

Puneet S Chhabra!, Aurora Maccarone?, Aongus McCarthy?, Andrew M Wallace!, Gerald
Buller?,'Heriot-Watt University

10:50 4.4 Efficient Range Estimation and Material Quantification from Multispectral
Lidar Waveforms

Yoann Altmann?, Aurora Maccarone!, Abderrahim Halimi’, Aongus McCarthy?, Gerald Buller?, Steve
McLaughlin?, "Heriot-Watt University

11:15 Refreshments

Session 5: Signal Processing Challenges - Military User Perspective - Chair, Paul Thomas, Dstl

11:45 MOD Speakers and Panel Discussion

12:45 Lunch

Session 6: Synthetic Aperture Imaging

14:00 6.1 GMTI in circular SAR data using STAP

Emiliano Casalini’, Daniel Henke?, Erich H. Meier?, 'University of Zurich

14:25 6.2 Digital Elevation Model Aided SAR-based GMTI Processing in Urban
Environments

Di Wu', Mehrdad Yaghoobi’, Mike Davies?, 'University of Edinburgh

14:50 Refreshments

15:10 6.3 A Multi-Family GLRT for Detection in Polarimetric SAR Images

Luca Pallotta’, Carmine Clemente?, Antonio De Maio!, Danilo Orlando?, 'University of Naples Federico

I1, 2Strathclyde University, *Niccolo Cusano University

15:35 6.4 A Novel Motion Compensation Approach for SAS
Salvatore Caporale’, Yvan Petillot?, 'Heriot-Watt University

16:00 Close

Vi
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P12

Spectral Library Clustering Using a Bayesian Information Criterion
Jonathan Piper?, John Duselis?, 'Dstl, 2AFRL

Detection of manoeuvring low SNR objects in receiver arrays,
Kimin Kim!, Murat Uney?, Bernard Mulgrew?, 'University of Edinburgh

A Modified Spectral Line Camera for Low Cost Anomaly Detection
Oscar Somsen!, INetherlands Defense Agency

Bistatic Micro-Doppler Characteristics of Precessing Targets
Xiaofeng Ai, Jin Liu, Feng Zhao?, Jianhua Yang?, Jian’an Chen?, National University of
Defense Technology

High Dynamic Range Spectral Estimation for Incomplete Time Series
Mike Newman?, David Harvey?!, 'Thales UK

Tracking small UAVs using a Bernoulli filter
David Cormack!, Daniel Clark? 'Heriot-Watt University/Selex ES, 2Heriot-Watt University

Robust Unmixing Algorithms for Hyperspectral Imagery
Abderrahim Halimi!, Yoann Altmann?, Gerald Buller?, Steve McLaughlin!, William
Oxford? Damien Clarke? Jonathan Piper? 'Heriot-Watt University, 2Dstl

Radar Filters Design in the Presence of Target Doppler Frequency and Interference
Covariance Matrix Uncertainties

Augusto Aubry?, Antonio De Maio?, Yongwei Huang?, Marco Piezzo*, 'Universita degli studi
di Napoli, 2University of Naples Federico II, *The Hong Kong University of Science and
Technology, *Elettronica S.p.A.

Experimental Analysis of Time Deviation on a Passive Localization System

Hugo Seute?, Ali Khenchaf?, Jean-Christophe Cexus?, Jean-Franc¢ois Grandin3, Cyrille
Enderli®, 'Thales Airborne Systems/ENSTA Bretagne, 2ENSTA Bretagne, *Thales Airborne
Systems

Beampattern and polarisation synthesis of 3D RF-seeker antenna arrays

Luc Fourtinon?, Alessio Balleri?, Yves Quéré?, Christian Person* Annaig Martin-Guennou?,
Eric Rius, Guillaume Lesueur®, Thomas Merlet®, !Cranfield University/Telecom-Bretagne,
2Cranfield University, *Université de Brest, *Lab-STICC/MOM UMR CNRS, °Thales Air
Systems

Adaptive M-estimation for Robust Cubature Kalman Filtering
Changliang Zhang!, Ruirui Zhi!, Tiancheng Li?, Juan Corchado? *Northwestern Polytechnical
University, 2University of Salamanca

Fractional Fourier Based Sparse channel estimation for multicarrier underwater
acoustic communication system

Yixin Chen!, John ] Soraghan?, Carmine Clemente’, Stephan Weiss?, *University of
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Christy Simpson?, Andrew Hunter?, Sergei Vorgul!, Emmanuel D. Delande?, Jose
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Cramer-Rao Bounds for Distributed System Size Estimation Using Consensus
Algorithms
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Prof. Geert Leus
Sparse Sensing for Statistical Inference:

Ubiquitous sensors generate prohibitively large data sets. Large volumes of such data are
nowadays generated by a variety of applications such as imaging platforms and mobile devices,
surveillance cameras, social networks, power networks, to list a few. In this era of data deluge,
it is of paramount importance to gather only the data that is informative for a specific task in
order to limit the required sensing cost, as well as the related costs of storing, processing, or
communicating the data. The main goal of this talk is therefore to present topics that transform
classical sensing methods, often based on Nyquist-rate sampling, to more structured low-cost
sparse sensing mechanisms designed for specific inference tasks, such as estimation, filtering,
and detection. More specifically, we present fundamental tools to achieve the lowest sensing
cost with a guaranteed performance for the task at hand. Applications can be found in the areas
of radar, multi-antenna communications, remote sensing, and medical imaging.

Biography

Geert Leus received the MSc and PhD degree in Applied
Sciences from the Katholieke Universiteit Leuven, Belgium, in
June 1996 and May 2000, respectively. Currently, Geert Leus
_ is an “Antoni van Leeuwenhoek” Full Professor at the Faculty
. ) of Electrical Engineering, Mathematics and Computer Science

" ' 3 of the Delft University of Technology, The Netherlands. His
",g- , % research interests are in the area of signal processing for
R_ " - B communications. Geert Leus received a 2002 IEEE Signal
- A W Processing Society Young Author Best Paper Award and a 2005

‘ ' [EEE Signal Processing Society Best Paper Award. He is a Fellow
A - of the IEEE and a Fellow of EURASIP. Geert Leus was the Chair of

the IEEE Signal Processing for Communications and Networking

Technical Committee, and an Associate Editor for the IEEE Transactions on Signal Processing,
the IEEE Transactions on Wireless Communications, the IEEE Signal Processing Letters, and
the EURASIP Journal on Advances in Signal Processing. Currently, he is a Member-at-Large to
the Board of Governors of the IEEE Signal Processing Society and a member of the IEEE Sensor

Array and Multichannel Technical Committee. He finally serves as the Editor in Chief of the
EURASIP Journal on Advances in Signal Processing.




SSPD 2016

Dr. Philip Perconti
Taming the Torrent: Future Military Signal Processing and Information Fusion:

Electronic devices, from unattended ground sensors to small radars, have become a ubiquitous
part of Military operations. With the increased use of sensor systems comes an increased
volume of data that must be processed, moved, assessed, and decided upon within the short
time scales associated with battlefield operations. Onboard processing, information fusion, and
other signal processing methods can be utilized to reduce the overall quantity of information
flowing and to move toward giving the Soldier or decision-maker the best possible targeted
information while limiting the resources required to generate the decision. An overview of
sensor-technology and signal-processing ongoing in the US Army will be given.

Biography

Dr. Philip Perconti is a member of the Senior Executive
Service and serves as the Acting Director of the U.S. Army
Research Laboratory (ARL), the Army’s premier laboratory
for basic and applied research and analysis. ARL conducts
research and analysis in weapons and materials, sensors and
electron devices, computational and information sciences,
human research and engineering, vehicle technology, and
survivability and lethality analysis. ARL's Army Research
Office executes the Army extramural basic research program
in scientific and engineering disciplines. The Laboratory
consists of approximately 2,000 civilian and military
employees with an annual budget of over $1 billion. Prior
to this, Dr. Perconti served as the Director of the Sensors &
Electron Devices Directorate of the ARL. He was responsible
for leading and transitioning the Army’s primary basic and applied research programs in
sensors, electronics, sensor information processing, and power and energy technologies. In
addition, he led ARL's S&T campaign for Materials Research. His duties included operation
of unique electronics and photonics materials fabrication and characterization facilities
that enable world-class, Army-relevant, component research and development. He was also
responsible for planning, executing and balancing mission and customer program needs to
ensure science and technology dominance for the Army.
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Dr. Antonio De Maio
Transmit Adaptivity in Radar:

Radar performance is strongly dependent on the transmit waveform and its parameters
which must adapted depending on the surrounding environment, radar mission, goal, and
task. Waveform adaptivity is a relatively new paradigm, involving a continuous variation of
the transmitted signal, with the main purpose and aim of dynamically optimizing the radar
performance to fulfill the more and more stressing radar performance requirements. In
this talk some new trends in transmit signal optimization will be introduced and discussed.
Specifically, the design of radar waveforms, sharing appealing features and ensuring spectral
coexistence with other Radio Frequency (RF) systems, will be pursued according to a rigorous
framework based on modern optimization theory.

Biography

Antonio De Maio was born in Sorrento, Italy, on June 20, 1974.
He received the Dr.Eng. degree (with honors) and the Ph.D.
degree in information engineering, both from the University of
Naples Federico II, Naples, Italy, in 1998 and 2002, respectively.
From October to December 2004, he was a Visiting Researcher
with the U.S. Air Force Research Laboratory, Rome, NY. From
November to December 2007, he was a Visiting Researcher
with the Chinese University of Hong Kong, Hong Kong.
Currently, he is a Professor with the University of Naples
Federico II. His research interest lies in the field of statistical
signal processing, with emphasis on radar detection and
optimization theory applied to radar signal processing. Dr. De
Maio is a Fellow member of IEEE and the recipient of the 2010
IEEE Fred Nathanson Memorial Award as the young (less than
40 years of age) AESS Radar Engineer 2010 whose performance is particularly noteworthy as
evidenced by contributions to the radar art over a period of several years, with the following
citation for “robust CFAR detection, knowledge-based radar signal processing, and waveform
design and diversity”.

B
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Bio:

Daniel Clark is an Associate Professor in Sensors and Systems at Heriot-Watt University, UK. His research
interests are in the development of the theory and applications of multi-object estimation algorithms for sensor
fusion problems. He has made a number of key contributions to the field of multiple-object filtering that span
the development of novel algorithms and methodology for multi-object tracking to the deployment and
demonstration for commercial applications.

He has collaborated closely with defence organisations internationally on a range of projects in multitarget
tracking spanning theoretical algorithm development to practical deployment in collaboration with Dstl, BAE
Systems, Finnmechanica, Thales, DCNS (France), SAGEM Defense (France), DST (Australia) and the USAF.
His algorithms have been demonstrated in trials with BAE Systems for maritime trials, where they tracked ships
in the Solent from live feed from radar and electro-optic sensors.

Multi-sensor Multi-target Tracking Techniques for Space Situational Awareness
Abstract: The UK and its international partners face a range of new challenges and priorities for defence and
national security for space situational awareness (SSA). In particular, there is increasing concern about the
hazards of space debris and potential harm for satellites and its impact on future space exploration activities.
Space debris has largely been caused by waste products from human activity in recent years, and there are now
several hundred thousand objects that have the potential to cause significant damage.

It is becoming increasingly important to be able to accurately model and track a large number of objects in order
to avoid harm to expensive space-related infrastructure. Advanced surveillance capabilities are needed to be able
to identify and monitor activities in earth’s orbit. It is critically important to these surveillance activities to be
able to detect, estimate, and track multiple potential threats across a variety of platforms with different sensing
characteristics. Multiple-target tracking algorithms have been developed since the 1970s, yet these methods can
suffer from systematic failure due to heuristics introduced for track management.

A radically different approach to multiple-target tracking has attracted a lot of attention in recent years, called
Finite Set Statistics, considers the multi-sensor multi-target tracking problem in a unified way. Estimating target
populations holistically enables operators to estimate the correct number of targets in challenging environments
where there may be many false alarms and the targets are not always observed. This approach led to principled
low computational cost solutions that can be deployed on real-time systems, known as multi-object filters.

This talk will describe the statistical methodology used to develop multi-object filters and show how it can be
used to address a range of problems. The methods will be illustrated on a range of applications including space
surveillance, maritime surveillance, autonomous robotics, and cell biology. The talk will highlight the unique
challenges in multi-sensor fusion for space situational awareness and outline a strategy for addressing them.

Xii
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An Adaptive Receiver Search Strategy for
Electronic Support

Sabine Apfeld, Alexander Charlish, Wolfgang Koch
Dept. Sensor Data and Information Fusion
Fraunhofer FKIE
Wachtberg, Germany
Email: {sabine.apfeld, alexander.charlish, wolfgang.koch} @fkie.fraunhofer.de

Abstract—In this paper, a search strategy for the detection
of multifunctional radar emitters is proposed. The majority
of today’s literature regarding this topic models the intercept
problem as that of the coincidence of two or more periodic
window functions. Since this model is rather simplistic, in this
paper the radars’ illumination patterns are described by signal-
to-noise ratio time series. To optimise the search dwells executed
by an electronic support receiver, a constantly updated scan
period estimate is calculated using the autocorrelation. The
performance of the proposed algorithm is shown in comparison
to several other approaches using a simulation framework.

I. INTRODUCTION

Intercepting the radiations of potentially threatening emit-
ters, which usually are radars, is a common task in the field of
electronic support (ES). Radars of interest might be operating
in a wide range of frequencies, spanning tens of gigahertz.
An intercept receiver covering the complete frequency range
at the same time with a high sensitivity would be expensive,
large and heavy. To overcome this problem, the frequency
range of interest is usually divided into smaller bands of the
receiver’s instantaneous bandwidth and scanned sequentially.
A schedule which defines how long and when to dwell
on which band constitutes a search strategy. Normally, the
emitters to be intercepted use a directional antenna and scan
their surveillance region. Thus, an intercept is only possible
when the receiver is tuned to the frequency of the emitter and
the emitter’s main beam or a sidelobe is directed towards the
receiver.

In the literature, this situation is commonly modelled using
two window functions, which are periodically “on” and “off”
(see e.g. [1]). One of the window functions describes the
points in time when the emitter illuminates the receiver and
the other one specifies the events of the (omni-directional)
receiver being tuned to the frequency of the emitter. When
both window functions are “on” at the same time, an intercept
occurs.

Modelling the illuminations by a strictly periodic window
function simplifies the situation significantly. However, this
simplification is not representative of modern multifunction
radars. Today’s radars perform searching and tracking -
and sometimes even other functions like communication
and missile guidance - in an interleaved manner, breaking
the periodicity of the scan pattern. Moreover, electronically
steered phased array antennas are capable of instantaneously

steering their beams and are not limited by mechanical parts
which need to be rotated. Many authors (e.g. [2]-[8]) don’t
mention this fact or explicitly state that they don’t consider
phased array antennas (e.g. [9]). In [10], the authors argue
that “due to their scanning function electronic beam steering
antennas produce roughly periodic illuminations”. Thus, they
add jitter to the scan period, but still use a window function
based model. In this paper, a complete antenna pattern model
of an electronically steered phased array is used, allowing the
sequence of illuminations to be described by a signal-to-noise
ratio (SNR) time series. In addition, window functions usually
only consider the main beam of the radar. In the presented
approach, the radars can be intercepted and detected through
the sidelobes as well.

Section II describes the developed algorithm in detail.
The method used for evaluation and the results obtained are
presented in Section III. Section IV gives the conclusion.

II. DEVELOPED ALGORITHM

In the presented algorithm, search and tracking dwells
executed by the radars are considered. It is assumed that the
receiver can differentiate between the two types of dwells,
which is not an unrealistic assumption since typically different
waveforms are used for different tasks.

At system startup, no information is available yet so the
receiver begins scanning the frequency range of interest ran-
domly. It uses a fixed dwell time and a fixed instantaneous
bandwidth. SNR is calculated as given in Eq. 1. Here, G rep-
resents the emitter’s antenna pattern. For the omni-directional
receiver, GG, is assumed constant, independent from the angle
of arrival (AoA).

(Syer 5E2) 2 G-,
SNE = (4rRZ - k-T-B-L;,- L, M
p : pulse received
P : set of pulses received
PK(p) : peak power of pulse p
PW (p) : pulse width of pulse p
PRI(p) : pulse repetition interval of pulse p
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A : wavelength of the pulses received
G, : transmit antenna gain in the direction
of the receiver
G, : receiver antenna gain
: range between receiver and emitter

: Boltzmann constant

N >~ X

: noise temperature
B : receiver’s instantaneous bandwidth

Ly, L, : transmit and receive losses

This model of the SNR assumes noncoherent integration
of pulses [11], however it doesn’t take losses due to not
performing matched filtering into account. Introducing these
losses or even considering a different detector architecture
would only result in a scaling of the SNR, which would not
affect the developed algorithm.

Once the SNR on a band crosses the detection threshold
Tp - a parameter of the receiver - the corresponding radio
frequency (RF) is added to a list of active, tentative frequencies
and the receiver stays tuned to that RF band for another d
dwells. If the last one of these dwells results in the highest
SNR, it listens for another dwell. It does so in order to explore
the times of maximum SNR as a high SNR is desirable
for accurate measurements of parameters like pulse repetition
interval (PRI) or pulse width.

Bands in the list of tentative frequencies are visited more
often in the further operation of the receiver in order to gain
more knowledge about the illumination pattern. Algorithm
1 shows the procedure for selecting the next band. The
probability for choosing each tentative frequency is scaled by
y according to the number of frequencies in the list of tentative
RFs until the scaled value reaches a maximum z. This is done
to avoid dwelling on just very few frequencies with a very high
probability. Scaling parameter y and maximum value z must
lie between zero and one. This part constitutes the exploration
phase of the strategy.

Algorithm 1 Select the next band in exploration phase.
Input: List of all RF bands (RF's), list of tentative RFs
(tentative RF's), scaling parameter y, max. value z

Output: Band for the next receiver dwell.

1: 7 <= random € (0,1)

2: if r < min(|tentativeRF's| -y, z) then

3:  return random band € RF's \ tentativeRF's
4: else

5:  return random band € tentative RF's

6: end if

If the receiver intercepts a search dwell and the SNR crosses
the detection threshold, the autocorrelation of the intercepted
SNR time series on that band is calculated. The autocorrelation
is defined as the cross-correlation of a signal with itself. In the
case at hand, the SNR time series is a signal discretised by
the receiver dwells.
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Thus, the autocorrelation is given by

(f*f)(n) = m:Z_w Fr(m)f(m+n) .

n=0,+1,+2, ..

where f* is the complex conjugate of f with f being the
intercepted SNR.

An estimate of the radar’s scan period p is given by the
position of the maximum of the autocorrelation, excluding the
value at lag zero, multiplied by the receiver’s dwell time ¢ gy,¢/1:

b= argmax {(f ()} - taweu 3)

If the standard deviation of the last j period estimates is
smaller than a threshold T4, the period is declared stable and
dwells are scheduled for that frequency. Moreover, the band is
removed from the list of tentative RFs because the exploration
phase is finished. As an intercept is desired to happen when
the SNR is maximal, future dwells are planned at the time of
the last recorded global SNR maximum SN R, plus integer
multiples of the estimated period. Since the period can only
be approximate due to interleaving with tracking dwells and
uncertainties in estimation, the period is updated with each
new detection of the corresponding emitter and dwells are
rescheduled when a new global maximum in SNR is found.
To account for a shift in period, only the last k¥ SNR values are
considered. Furthermore, several dwells are executed around
the expected time of the next (local) SNR maximum. When a
scheduled visit of the frequency band results in a SNR smaller
than the threshold

Tsnr = SNRma:v (4)

with x set to be between zero and one, the number of
dwells scheduled for the next visit is increased by 7. After
s misdetections, the period estimate is reset, the scheduled
dwells are deleted and the band is again added to the list of
tentative RFs, thus restarting the exploration phase.

When a tracking dwell crosses the detection threshold, a his-
togram of the differences in time of arrival (TOA) of the pulse
bursts emitted by the radar on the corresponding frequency
band is built. The maximum of that histogram is used as an
estimate of one of the revisit times. Note that it is assumed that
distinguishing the tracking dwells for different targets is not
possible. Thus, several hypotheses for revisit times are kept.
Each estimated revisit time generates a schedule for visiting
the corresponding band. As for the search case, the RF is
deleted from the list of tentative RFs and several dwells are
executed around the scheduled time. However, as the targets
move, the tracking dwells might quickly point into a direction
where an intercept is not possible anymore. In addition, the
revisit time estimates are rather rough, so scheduled dwells and
the corresponding period estimate are directly deleted after the
first misdetection. If after this deletion no revisit time estimate
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Fig. 1. Example of the illuminations generated by the emitter and the

intercepted SNR time series at the receiver. The illumination pattern results
from calculating the SNR at the receiver assuming that it’s tuned the correct
frequency the whole time.

exists anymore, the frequency is added again to the list of
tentative RFs.

When there is no dwell scheduled, a random band is
chosen with a higher probability for the frequencies in the
list of tentative RFs (see Alg. 1).

Figure 1 shows an example of the illuminations generated
by the emitter and the interceptions by the receiver. The SNR
time series of Figure la depicts the illumination pattern that
would result from the receiver being tuned to the frequency of
the emitter for the whole time. In Figure 1b, the intercepted
SNR at the receiver is shown. At (most of) the points in time
where the SNR is zero, the receiver is tuned to a different
frequency. From about 35 to 52 s simulated time many values
are greater than zero, showing the exploration phase of the
receiver in which it is tuned more often to the corresponding
frequency. After the exploration phase is finished at about 52
seconds, it found a stable period estimate and starts scheduling
for the local maxima of the SNR, as can be seen by the
regularly spaced peaks. The dwells in between the SNR peaks
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Fig. 2. Schematic representation of the scan patterns used. Grey arrows
indicate a jump in beam position without dwelling.

are caused by the random search pattern used when there is
no dwell scheduled. It also dwells on the known bands to be
able to find a potentially undiscovered SNR maximum.

III. EVALUATION & RESULTS

In the following, the simulation framework used for evalu-
ation as well as the results are presented.

A. Simulation Framework

Evaluation of the algorithm is performed using a simulation
framework. An airborne - but for the sake of simplicity
stationary - receiver tries to intercept and detect ground-based
radars using phased array antennas. The stationary emitters
are placed randomly in the scenario, but it is made sure that
they illuminate the receiver at some point. The faces of the
radars are fixed, tilted backwards a few degrees for a better
surveillance of the flying targets. Those are placed randomly
as well and are assigned a random moving direction and
speed. Based on the target’s speed, a revisit time is calculated
which is used by the radars for scheduling tracking dwells.
Without any targets, the emitters perform scanning of their
surveillance region with one of four different patterns (see
Fig. 2). When a target is in a radar’s field of view, tracking
dwells are inserted into the scan pattern, which is then delayed.
Consequently, there is no strict periodicity in the illumination
patterns anymore. Moreover, it means that more tracked targets
cause an increase in aperiodicity.

Each radar uses a different operating mode for searching and
tracking. These are randomly assigned and consist of different
frequencies, PRIs and pulse widths. There is only one radar
transmitting on each frequency at the same time. This choice
was made to avoid implementing deinterleaving algorithms.
Nevertheless, if assumed that the radars can be deinterleaved
based on their signal characteristics, also multiple radars on
the same frequency can be allowed.

During evaluation, the developed algorithm is compared to
a slightly different version of itself and two other algorithms.
The considered strategies are:

o Adaptive strategy: The algorithm proposed in this paper
as described above.

o Adaptive, no tracking: A version of the developed algo-
rithm without scheduling for tracking dwells, included to
see the impact of estimating the track revisit times of the
radars.



o Active RFs: Starts with a random search, then uses the
list of active, tentative RFs and dwells on these with a
higher probability, like in the exploration phase of the
presented algorithm.

o Random: Just selects a random band for each dwell, but
makes sure that each band is selected about the same
number of times.

In each simulation, the number of targets is varied whereas
the simulated time is always 5 min. Further constant parame-
ters are the instantaneous bandwidth of 250 MHz and the dwell
time of 50 ms for each receiver. Moreover, there are always 10
radars present and the scanned frequency band is 2-18 GHz.
Each simulation consists of 30 runs. In each run, the scenario
is created randomly but the different receiver search strategies
are executed in the same scenario before creating a new one.
Note that each radar illuminates the receiver at some point, but
the SNR values of the illuminations don’t necessarily cross
the detection threshold. Thus, the results shown in the next
section are to be seen as a comparison and not an absolute
performance measure, since reaching a 100% detection rate
might not be possible.

B. Results

In Figures 3-5 the results for the simulations are presented.
Each figure shows the values for one of these criteria:

o Efficiency (%): Percentage of dwells on bands with an
active emitter which resulted in a detection.

o Total number of detections over all of the simulation runs.

o Detected (%): Percentage of radars that was detected at
least once.

As the results show, the two versions of the adaptive strategy
always perform better in terms of efficiency and total number
of detections. The percentage of radars detected at least once
is best for the random strategy. This is due to the fact that
the random strategy only explores the environment without
exploiting the information it obtains. Thus, its efficiency as
well as total number of detections are always much worse.

Exploiting the knowledge about active frequencies clearly
outperforms the random strategy in terms of efficiency and
number of detections. Estimating the radars’ scan periods and
scheduling according to the estimates increases the efficiency
and the number of detections even more. However, scheduling
for the tracking dwells doesn’t seem to make a major differ-
ence in performance. As mentioned earlier, the revisit time
estimates are rather rough and as the targets move, at some
time the tracking dwells point in a direction where a detection
is not possible anymore. Moreover, as opposed to the search
pattern with several illuminations as the emitter sweeps past
the receiver’s position, the tracking dwells are only detectable
for a short time instance which requires an accurate schedule.
Thus, because of misdetections for scheduled tracking dwells,
the algorithm directly deletes the corresponding estimates.

None of the criteria considered seems to depend on the
number of targets present in the simulation environment. This
might change when much more targets are present such that
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Fig. 5. Mean percentage of radars detected and standard deviation for the
different search strategies and scenarios.

the radars are overloaded with tracking and only perform the
required minimum of searching. An evaluation of this situation
is planned for the future.



IV. CONCLUSION

An adaptive search strategy for the detection of multifunc-
tion radars has been proposed. The results obtained using
simulations show that efficiency is improved significantly
and more detections are achieved compared to non-adaptive
algorithms. Also, modelling of the intercept/detection problem
in electronic support using antenna patterns and not window
functions was introduced. Using the intercepted SNR time
series instead of a simple “on/off”’-function allows for the
detection of the radars’ sidelobes. In addition, a more so-
phisticated use of the information collected is possible. This
includes scheduling for the times of maximum SNR for an
accurate measurement of the radars’ waveform parameters
and a more efficient use of the receiver’s limited resources.
The simulations demonstrate that the less complex version
of the search strategy, which doesn’t schedule for tracking
dwells, provides an equally good performance as the complete
algorithm. Thus, when regarding computational costs, the
simpler version is a good approach.
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Abstract—This paper proposes a new domain knowledge aided
Gaussian particle filtering based approach for the ground vehicle
tracking application. Firstly, a new form of modelling is proposed
to reflect the influences of different types of environmental
domain knowledge on the vehicle dynamic: i) a non-Markov
jump model is applied with multiple models while transition
probabilities between models are environmental dependent ii)
for a particular model, both the constraints and potential forces
obtained from the surrounding environment have been applied
to refine the vehicle state distribution. Based on the proposed
modelling approach, a Gaussian particle filtering based method
is developed to implement the related Bayesian inference for
the target state estimation. Simulation studies from multiple
Monte Carlo simulations confirm the advantages of the proposed
method over traditional ones, from both the modelling and
implementation aspects.

I. INTRODUCTION

Ground vehicle tracking is an important preliminary step
in many applications such as surveillance, advanced driver
assistance systems (ADAS) and autonomous vehicles. Many
model based state estimation methods (i.e. Kalman or particle
filtering based methods [1]), have been proposed for vehicle
tracking. However, the majority of methods in [1] assume an
open field environment in which the tracked vehicle(s) could
move freely. This contradicts with the realistic scenario where
the motion of the ground vehicle(s) is often affected by its
operational environment. Information from the environment
could be taken as domain knowledge and exploited in the de-
velopment of tracking algorithms in order to enhance tracking
quality.

Different approaches have been proposed to exploit domain
knowledge for ground vehicle tracking. The most apparent
domain knowledge is the road constraint information such as
the constrained region imposed by a road map. Studies on road
network-aided ground vehicle tracking have been reported
in different works such as [2], [3] and [4]. In these works,
different state estimation algorithms (such as the Gaussian (s)
approximation filtering method in [2] and [4], and particle
filtering method [3]) have been applied together with the road
constraint information for the state estimation. Besides, the
manoeuvre of a vehicle will also be affected by its surrounding
environment. For example, a vehicle is likely to accelerate

Jonathon Chambers
School of Electrical and Electronic Engineering,
Newcastle University, UK
jonathon.chambers @ncl.ac.uk.

to overtake. To incorporate domain knowledge related to
manoeuvre determination, [5] and [6] consider a non-Markov
jump modelling system originally proposed in [7] for vehicle
tracking. Multiple state models are applied to represent differ-
ent possible vehicle movements. State-dependent model transi-
tion probabilities are then adopted to model vehicle manoeuvre
type changes with respect to environmental conditions.

In our work, a new domain knowledge aided method is
proposed for ground vehicle tracking. Compared with the
aforementioned works, domain knowledge is exploited in a
more comprehensive way; besides, a more efficient filtering
algorithm is applied for the state estimation. Firstly, the
non-Markov hybrid model framework in [7] is proposed to
model multiple vehicle behaviours. For a particular dynamic
model, both constraints and forces [8] are incorporated to
refine the target state distribution. Based on the proposed
model approach, a Gaussian particle filtering [9] based state
dependent interactive multiple model Gaussian particle filter-
ing (SD-IMMGPF) method is proposed. Compared with the
traditional generic particle based filtering approach for the
hybrid non-Markov jump model implementation as in [7],
the measurement information is exploited for constructing an
importance function to generate more effective particles.

The structure of this paper is listed as follows: The devel-
oped domain knowledge aided model is proposed in Section II.
Bayesian inference and the proposed SD-IMMGPF approach
are presented in Section III. Simulations in Section IV present
the comparison results between the proposed method and
others. Final conclusions and future works are presented in
Section V.

II. PROPOSED ENVIRONMENTAL DEPENDENT MODEL

In this section, we propose a new environmental dependent
model approach for ground vehicle tracking, which exploits
different environmental information in a comprehensive way
for both the manoeuvre type determination and state dy-
namic/distribution refinement.

In a realistic scenario, a vehicle will move with different
manoeuvre types, which can not be reflected by a single
state model. In this way, multiple state models have been
exploited for target tracking as in [10] and [11]. However,
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these approaches assume a Markov jump model, with transi-
tion probabilities between different state models being constant
without considering any environmental information. However,
the manoeuvre type of a certain target is actually environmen-
tally related. For example, a vehicle will commonly overtake
when it approaches another vehicle with a high speed and turn
when it comes to a bend road segment. To this end, the non-
Markov jump modelling framework as in [7] is adopted, for
which the transition probabilities between different models are
not constant but modeled in a state dependent way related to
the target’s surrounding environmental conditions.

A general dynamic model in the non-Markov jump mod-
elling framework can be represented as:

Xe = f(Xe—1) + Wy (1)

where x; represents the state vector, which usually includes
the position and velocity for the vehicle tracking problem; w,
is generally known as the process noise term, which represents
the model uncertainty; f(-) represents a dynamic function
reflecting the desired target dynamics.

Environmental domain knowledge

Fig. 1. The proposed modelling framework. Related parameters are defined
as: X¢: state vector, Z:: measurement vector, m¢: model index and C}:
surrounding environmental conditions of a target, which is dependent on the
target state (i.e., position and velocity) and environmental domain knowledge
(i.e., road map information, geographic data, moving obstacles information,
etc.).

Currently most models (as in [12]) for target tracking do
not consider any environmental information. So the predicted
state distribution by (1) may contradict with the realistic
environmental conditions (for example, the predicted position
of a vehicle may be outside the road boundary). In this
work, a new modelling framework is proposed as shown
in Fig. 1. The non-Markov jump modelling framework is
adopted. Furthermore, the target’s surrounding environmental
condition does not only determine the manoeuvre type but
also refines a particular dynamic model and corresponding
state distribution. The refinement of the state distribution is
achieved by introducing forces and constraints.

A. Force based environmental effects modelling

In realistic scenarios, targets’ movements are affected by
the surrounding environment. For example, a vehicle keeps
away from the road border to avoid collisions or it may
be attracted by certain objects (such as the lane centreline).
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Fig. 2. The illustration of different forces for modelling environmental effects.
f; ; models the repulsive effect between vehicles ¢ and j, f; , models the
repulsive effect between the vehicle i and road boundary o and f; . models
the effect that a vehicle tends to move along with the lane centreline c.

In [8], a force based method has been proposed to model
such repulsive/attractive effects on pedestrians posed by their
surrounding environment. This idea is exploited in this work
for modelling the environmental influences on the vehicle
dynamics. As in Fig. 2, different types of ‘virtual forces’
have been applied, which model the repulsive/attractive effects
on a vehicle determined by its surrounding environmental
conditions.
Same exponential force definition forms are applied to
formulate the repulsive/attractive forces as in [8], with:
f(‘epulsive

V)
fc_l,t'tractive
sJ

=a-exp(—b-d)n;;

=a (1 —exp(=b -d))n;,, @

where ;7 ulsive and f‘i‘)’;tmm“e represent repulsive and attrac-
tive forces between objects i and j; a, b, a’ and b’ are constant
parameter values; n; ; (n; ;) represents the unit vector pointing
from object i to j (j to 7).

Forces from different objects are summed to a total one
(denoted as f°) which represents the effect of the surrounding
environmental conditions on the vehicle. In this way, an
additional acceleration term a® = % is introduced and the
original model of (1) is thus modified to reflect the influence
of the environment on dynamic modelling. In general, the
modified dynamic model can be represented as:

x; = f(x¢e—1) + I(a%) + wy 3)

where the term [(a®) is a function of a¢, which is dependent
on the particular dynamic model definition as in [12].

B. Constraint information

In reality, there are constraints existing in the realistic
environment, which can be further applied to refine the state
distribution. We denote the distribution determined by the
force based model (3) as p(x;), by incorporating the constraint
information the distribution is truncated as:

p(xt)

x; € C
X)) = &t
pelx) { 0, otherwise

“)

where pc(x;) represents the truncated distribution, C repre-
sents the constrained region and &; is calculated as & =
Jo p(x¢)dx;. The probability value which is out of the con-



straint region becomes zero. In this way, the uncertainty of the
state distribution is further reduced.

III. STATE DEPENDENT INTERACTIVE MULTIPLE MODEL
GAUSSIAN PARTICLE FILTERING

Based on the new modelling approach as defined in the
previous section and a proper measurement model, a state
dependent interacting multiple model Gaussian particle fil-
tering (SD-IMMGPF) algorithm is developed for the state
estimation. Different from the generic SD-IMMPF method
[7], the proposed algorithm applies Gaussian particle filtering
for every mode-matched filter with an importance function
constructed with both the state dynamics and measurement
information, which generates more effective particles.

The proposed SD-IMMGPF algorithm is based on the exact
Bayesian inference framework for a multiple model system,
whose overall process is divided into four steps: mode mixing,
state interaction, evolution and correction.

Mode mixing: The mode mixing is related to the evolution
of the model probability between consecutive discrete time
instances ¢t — 1 and ¢. Using the law of total probability, we
have:

Z p(me = s, mi—1 = r|Zs—1)
rem

= > plme = slmi1 =r,Zi_1)p(mi—1 =r|Zi_1),
remM

plme = sZi1) =
(5)

where m, represents the dynamic model index variable whose
value m or r could be any one element in the set M, which
represents the model index ensemble. Z,_; represents the
measurements collection {zi,...,z;—1} during previous time
instances. And p(m; = s|mi—1 = r,Z;_1) can further be
decomposed as:

p(mt = S\Wt—l =T, Zt—l)

6
= /Wfs(xt_l) p(Xe—1|mi—1 =7, Le—1) dXe—1. ©
where 7Z(x;_1) represents the environmental information
related state-dependent model transition probability between
models r and s, which is problem-specific.

State interaction: State interaction generates the initial
mode-conditioned density p(x¢—1|m: = s,Z;_1). According
to the conditional probability relation and the law of total
probability, one has:

Z TFFS(Xt—l) 'p(Xt—1,mt—1 = T|Zt—1)
rem

_ =38.2Zi_ 1) =
p(Xt 1\mt S, Ly 1) p(mt=8|Zt71)

N

Domain knowledge aided state evolution: The state
evolution step is to propagate the mode-conditioned state
density from ¢ — 1 to ¢ by the dynamic model. Given the
initial density is provided in (7) and the s-th environmental
information aided dynamic model, the mode-conditioned prior
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distribution p(x¢|m; = s,Z;_1) at t can be calculated as:

p(xelme = ,Z;_1)

8
= /p(xt‘xt—lamt =8,Z¢—1)p(Xe—1|ms = 8, Zr—1) dX¢—1. ®)

where p(x¢|x;—1,m; = s,Z;_1) is determined by the force
aided dynamic model (3) and constraints (4).

Correction: Finally, the updated measurement is incorpo-
rated to correct the prior by following Bayes’ rule:

p(Xt, M = 8|Zs) o< p(zt]xe, My = s)p(x¢|me = 5,Z¢—1)

9
p(ms = 5|Zo1). ©

The state estimation at time ¢ can then be derived from the
updated posterior distribution p(x¢, m: = s|Z;).

A. SD-IMMGPF implementation

The SD-IMMGPF algorithm is then proposed to implement
the above Bayesian inference. Initially, it starts at time ¢ — 1
with the set of weighted particles {x}",,w/"*:r € M,k €
{1,...,N}} to approximate the probability p(x;_1,mi—1 =
r|Z;—1). Based on this, the Bayesian inference procedure is
implemented as follows:

Mode mixing implementation: Prior mode probability in
(5) is approximated with generated particles as:

E E Wraxkl

reM k=1

p(me = s|Zs 1) ) w2 AL, (10)
where A7_, is defined to facilitate the rest of the derivation.

State interaction implementation: The state interaction
process can be implemented by inserting particles at ¢ — 1

with the different mode index r, into (7) such that

P(Xt 1‘mt:5 /. 1)?j

Z Zﬂrs X, 1 Jwy kld(xt—l _X:fl)/Ai—L

reMk=1

amn

Evolution and correction implementation:

For every mode a Gaussian particle filtering (GPF) [9]
based approach is exploited. An importance function which is
a Gaussian approximation of the mode-conditioned posterior
distribution p(x¢|m; = s,Z;) is constructed, from which
effective particles are generated. Firstly, the mean pj_; and
covariance X;_; of a Gaussian distribution to approximate
p(x¢—1|my = s,Z4_1) are obtained as:

S
Ht—1 = E E 7rrs (x;” 1 Jwy 1Xt I/At 1

TGMk 1

s _ E .k
i 1= E § s (X lwt 1(Xt 1

reMk=1

— i) - (Xt 1
(12)

Based on the domain knowledge aided dynamic model and
measurement model, the mean and covariance are then updated
to obtain p; and X7 at time instance ¢, which determine
a Gaussian distribution N (x¢|pf,¥$) as an approximation
of the distribution p(x¢|m; = s,Z;). Different algorithms
can be applied for the updating, in our work, the truncated

— pi— 1) /Affl



unscented Kalman filtering (t-UKF) scheme as in [13] is
adopted, which exploits both the constraint information and
unscented transformation to better deal with the non-linearities
in both dynamic and measurement models.

A new set of particles {x;°};,—1,  n is sampled from
N (x¢|pf, X7). According to the concept of importance sam-
pling in [1] and (9), the posterior distribution p(x;, m; = s|Z;)
is approximated as:

p(xe,my = $|Zy) = Zwi’sé(xt —x%) (13)

with particle weights {wis}lzl N being estimated as:

pzelx*,me = )N (X% |51, S5 -1 )p(me = 8(Ze 1)
N(xy® |, 27)

1,8
t

(14)
where N (x{|pf), ;%) is a Gaussian approximation of
p(x¢/my = s,Z—1) and p(z:|x;,m; = s) is a measurement
likelihood function determined by a particular measurement
model. From the obtained particles and corresponding weights,
both the state estimation and the s-th model probability can
be estimated as:

N
5 1,8 ,1,8
X = wy X,
sEM i=1
N
p(me =s) =
1=1

IV. SIMULATION STUDIES

15)

i,8
Wy

The proposed method is tested in a simulated scenario as
shown in Fig. 3, with two vehicles being simulated to move
along two road segments in a total of 30s. The first vehicle
is simulated to move with a constant velocity of 10 (m/s)
along the straight road segment for 27.5 (s) after which a
turning manoeuvre is performed with angular velocity 0.2
(rad/s) for 2.5 (s). The second vehicle firstly moves with a
constant velocity of 12.5 (m/s) on the straight road segment
for 8s before it begins to overtake the first vehicle. After 7
seconds, vehicle 2 overtakes vehicle 1 and moves again with
12.5 (m/s) for 7s along the straight segment. Then it begins to
move along the bend road segment with an angular velocity
of 0.2 (rad/s).

Bend

Straight segment segment

110} -

e P

100 -

90 B

80| -

y(m)

70| B

60| -

——vehicle 1 trajectory
50 _e—venicle 2 trajectory )
road boundary , , X ,
] 50 100 150 200 250 300 350 400
x (m)

40

Fig. 3. Simulated vehicles trajectories.
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Multiple dynamic models as in [12] are applied to model
different manoeuvre types of vehicles, which include: a con-
stant velocity (CV) model with a low process noise intensity
level for modelling the CV manoeuvre, a CV model with a
high process noise intensity level for modelling the overtaking
manoeuvre and a constant turning (CT) model for modelling
the turning manoeuvre. A sensor positioned at [200,30] (m)
is applied to measure the range 7, and bearing angle 6, of a
particular vehicle with:

y, = {”} _ [\/(l"s —x)? 4 (Ys — yt)?

+ ny, (16)

0¢ arctan( ﬁ )

where [z, y:] represents a target’s position at time instance
t, [zs,ys] represents the sensor position and n; represents
the measurement noise. In our work, we assume it as

T GQausséi)an distribution with zero means and covariance
5%(m~),

0, 0.02%(rad)?
always receives the two vehicles’ measurements without any
measurement association ambiguities.

Based on the simulated scenario, dynamic and measurement
models, the proposed method is applied for the vehicle track-
ing. The tracking results are compared with other methods
from both model and filtering algorithm.

Model comparison: For the proposed modelling approach,
the transition probabilities between different models are de-
fined with respect to distances between a target and its
surrounding objects (such as another vehicle and the bend
road entry). The road region is applied as the constraints and
forces are used to represented the repulsive effects of vehicle-
to-vehicle and vehicle-to-boundary. These forces are defined
in the form of (2) with the related parameters being selected
empirically for the simulation study.

Comparisons are made between different modelling frame-
works, including Markov jump (MJ) model, non-Markov jump
(NMJ) model, non-Markov model with constraint information
(CNMJ) and the proposed non-Markov modelling framework
with both constraints and forces (FCNMJ). For a fair com-
parison, the same Gaussian particle filtering based approach
is applied for every modelling method and the number of
particles for every dynamic mode is chosen as N = 300. 100
Monte-Carlo simulations are performed. For every vehicle,
the averaged position root-mean-square-errors (RMSEs) for
every time instance is plotted in Fig. 4 corresponding to
every modelling method. While the averaged RMSEs of the
tracked trajectories compared with ground truth one are shown
in Table I. From the results, we can see that the proposed
modelling method exploiting the domain knowledge in the
most comprehensive way, achieves the most accurate result
for the trajectory tracking (as in Table I with the smallest
averaged RMSEs for both vehicles) and lowest RMSEs during
the majority of the time as shown in Fig. 4.

Filtering algorithms comparison: We compare different
Bayesian inference implementation algorithms. The proposed
modelling framework as in Section II is adopted, with the
generic particle filtering based SD-IMMPF (N=3000 for one

. Currently, we assume that the sensor
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Fig. 4. Position RMSEs comparisons for vehicle 1 (a) and vehicle 2 (b) by
different modelling approaches.

TABLE I
AVERAGED POSITION RMSES (M) COMPARISONS FOR DIFFERENT
MODELLING APPROACHES

MJ | NMJ | CNMJ | FCNMJ
Vehicle 1 RMSE (m) | 2.52 | 2.43 2.17 1.51
Vehicle 2 RMSE (m) | 345 | 3.25 242 2.10

dynamic model) and SD-IMMGPF approaches (N=300 for one
dynamic model) implementation approaches being compared.
The same state model is applied for these two approaches and
the same 100 Monte-Carlo simulations have been performed
for RMSEs analysis. From the comparison results as shown
in Fig. 5 and Table II, we can see that the SD-IMMGPF
approach achieves better performance, with smaller RMSEs
being obtained (especially for vehicle 1 with around 45% of
the RMSE reduction as implied in Table II) with a smaller
number of particles and a low computational cost. The reason
behind it is that the SD-IMMGPF approach exploits both the
constraint and measurement information for more effective
sampling.

[=e=50-hweF, H=2000 |
| =8 SDMMGRF. e300 |

RMSE (m)
RMSE (m)

30 40
Time (s)

(b)

Time (s)

(@)

Fig. 5. Position RMSEs comparisons for vehicle 1 (a) and vehicle 2 (b) for
different filtering algorithms

V. CONCLUSION

In this work, a new domain knowledge aided tracking
method is proposed. A new environmental dependent model is
developed. Multiple models are applied with the state depen-
dent probabilities being used to model the realistic vehicle ma-
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TABLE II
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AVERAGED POSITION RMSES (M) COMPARISONS FOR DIFFERENT

FILTERING ALGORITHMS

SD-IMMPF, N=3000 | SD-IMMGPF, N=300
Vehicle 1 RMSE (m) 2.77 1.51
Vehicle 2 RMSE (m) 2.65 2.10
Computational time (s) 3.6 0.8

noeuvre transitions. Both the constraint and force information
are applied to refine the dynamic model and state distribution.
Based on the modelling framework, a SD-IMMGPF approach
is applied to implement the related Bayesian inference for the
state estimation. Simulation studies show the advantages of the
proposed method from both the modelling and implementation
algorithm aspects. In the future, the proposed algorithm will
be extended to a more complicated scenario with miss detec-
tions/false alarms and measurements association ambiguities.
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Robust Detection of micro-UAS drones with L-band
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Abstract—Unmanned Aerial Systems (UAS) are pilotless
aircraft (drone) and are characterized by having very small radar
cross-sections, relatively slow motion profiles and low operating
altitudes compared with manned aircraft. As a direct consequence
they are considerably more difficult to detect and track. This is
exacerbated in traditional 2-D scanning radar which struggle to
find a compromise between the conflicting needs to simultaneously
have short re-visit times and high Doppler resolution. Here, we use
Holographic Radar™ (HR) that employs a 2-D antenna array and
appropriate signal processing to create a multibeam, 3-D, wide-
area, staring surveillance sensor capable of achieving high
detection sensitivity, whilst providing fine Doppler resolution with
update rates of fractions of a second. The ability to continuously
dwell on targets over the entire search volume enables HR to
achieve a level of processing gain sufficient for detection of very
low signature targets such as miniature UAS against a background
of complex stationary and moving clutter. In this paper trials
results are presented showing detection of a small hexacopter UAS
using a 32 by 8 element L-Band receiver array. The necessary high
detection sensitivity means that many other small moving targets
are detected and tracked, birds being a principle source of clutter.
To overcome this a further stage of processing is required to
discriminate the UAS from other moving objects. Here, a machine
learning decision tree classifier is used to reject non-drone targets
resulting in near complete suppression of false tracks whilst
maintaining a high probability of detection for the drone.

Keywords—multi-beam, 3D, Doppler discrimination, air
surveillance, UAS

1. INTRODUCTION

Conventional wide-area non-cooperative ground-to-air
surveillance systems such as Primary Surveillance Radar (PSR)
use a narrow beam scanning antenna to achieve all-round
azimuth coverage. Scanning radars have to find a compromise
between time on target and update rate. This can impede such
systems from reliably detecting very weak signatures targets
buried in strong non-stationary clutter. The central issue is that
the sensor fails to collect sufficient information to distinguish
targets of interest from interfering clutter. Holographic Radar™
(HR) [1] overcomes such short comings through achieving
100% time on target using a 2-D static multiple simultaneous
receive beam antenna array. As the sensor is staring, the update
rate can be very high (ultimately limited by the PRF) and as a
direct consequence the radar is able to maintain very high

detection and more importantly, discrimination performance
even in the most challenging clutter environments.

In most air surveillance radar systems the processing
algorithms are optimized for conventional aircrafts that have an
RCS in the range of 1-100 m? have relatively smooth
trajectories and operate at high altitudes thus making it easier to
discriminate such targets from ground clutter and other surface
targets. Micro-Unmanned Air Systems (Micro-UAS) also
referred to as drones, have an RCS of up to 1000 smaller and
tend to operate over shorter distances, slower speeds, lower
altitudes and have more variable position, velocity and
acceleration parameters, all acting collectively to make Micro-
UAS targets much more difficult to detect.

The Aveillant HR technology [2, 3], has some crucial design
elements that make it well suited to the detection of micro-UAS.
A 2-D array provides vertical separation, the staring antenna
enables longer coherent integration and thus very fine micro-
Doppler resolution. This, in turn, provides for better detection
and discrimination of slow moving objects against ground and
non-stationary clutter. Initial experiments have been conducted
with the HR to establish the potential for providing both a robust
surveillance solution against micro-UASs as well as providing
the key technology to enable their safe use for legitimate
purposes [4]. Increased detection sensitivity against low
observable targets extenuates the problem of false reports of
moving targets such as birds, surface objects, clutter etc. The
suppression of these confuser tracks are very crucial to ensuring
that the surveillance sensor is able to provide reliable reporting
of drone tracks alone. In this paper machine learning techniques
are utilized to filter out the false targets. We report results
achieved in discriminating micro-UAS from the huge numbers
of false targets typical in detecting objects with such a low RCS.

The remainder of the paper is organized as follows. Section
II provides an overview of the HR sensor and describes the HR
prototype used to make real radar measurements. Section II1
reports on the detection performance that the HR is able to
achieve for low observable targets compared to conventional air
targets. Section IV describes the decision tree algorithm used for
drone discrimination and the classification performance
achieved with real drone trials data is reported in Section V.
Finally, the overall conclusions are outlined in Section VI.

978-1-5090-0326-6/16/$31.00 ©2016 IEEE
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II.  HOLOGRAPHIC RADAR™ SYSTEM OVERVIEW

There are three uniquely distinct elements to the HR
architecture. The transmitter uses a broadbeam antenna to
illuminate the whole of the desired search volume. It uses a static
multi-element 2-D receiver array to also cover the whole of the
illuminated search volume. The receiver array is digitized at
each element level and processing allows to form multiple
simultaneous receive beams. A 64-element version, using an 8x8
grid configuration for the receiver array, is pictured
schematically in Fig. 1.

Fig. 1. Example of the 64 element 2-D receiver array arranged in an 8x8
grid with an outer ring of dummy receivers.The plot on right shows a
plan view of the nominal transmit and receiver beam patterns.

With this fixed arrangements of beams, the sensor is able to
continuously stare in all directions simultaneously thus enabling
fine Doppler resolution via long and controllable dwell times.
This fine Doppler resolution is utilized to exploit the target
micro-Doppler signature characteristics over extended durations

(5]

Naturally this results in a larger volume of data to be
processed. The problem of processing such very large data
volumes (~512 MB/s) in real-time is straight forward using
current GPU processor technology. The ensuing high Doppler
resolution in each range, azimuth and elevation cell is exploited
to fine tune the post detection filtering rejecting potential false
alarms such as those stationary objects that exhibit internal
motions (e.g. trees, crops etc.) and preserves only detections
from genuine air targets. The inherent 3-D nature of the receive
array is also used to reject targets that are on or very close to the
ground in a manner that can be tailored to a given scenario and
application.

Channel Data Calibration Data

|
ChannelDataStreamer
Channel Frame
| ChannelDataP rocessor I
Channel
GPU result

InitialDetectionGenerator

HrpProcessModel

Stat Result

StatisticsProcessor
GPU resuft

Detecd on Engine

- I CalibrationP rocessor

ps talDetecti

TargetPeakSelector

Mot Aler  Peah Processer

AsterixConverter

Y
ASTERIX

Fig. 2. The Holographic Radar™ processing chain.
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The processing chain is split into three sub-stages as
illustrated in Fig. 2. The first processing stage, the Detection
Engine, processes the raw 1/Q data from all the receiver channels
to forms a 4-D data matrix comprising range, azimuth, elevation
and pulse number. The temporal data is converted into frequency
domain and thresholded to generate a list of candidate initial
detections specifying range and Doppler.

The peak processor stage uses the initial detections as seeds
to refine the search for detections within a receive beam. These
detections are further filtered using characteristics such as
amplitude, Doppler, etc., to distinguish genuine air target returns
from others. The output detections are termed farget plots and
are passed to the final stage that performs tracking using a
Probability Hypothesis Density (PHD) tracker [6]. The outputs
are smoothed tracks that specify the track id, position and
velocity for each reported target plot.

The HR variant used for the measurements reported here is
the Theia 64A system, pictured in Fig. 3 and has a 32 by 8
receiver array. For the drone trials the system was configured to
operate at short ranges and the processing was optimized for low
observable targets. The sensor operating parameters for the
drone trial configuration are summarised in Table 1.

AAVEILLANT

[l

Il

b

g
'

™

Fig. 3. Holographic Radar™ prototype with a 32x8 2-D recevier array.

TABLE I. HR OPERATING PARAMETERS USED FOR DRONE TRIALS
Parameter ‘ Value
Frequency L band
Bandwidth ~2 MHz
Transmit power ~10 kW
Receiver channels 32x8
Azimuth coverage 90°
Elevation coverage 65°
Pulse Repetition Frequency (PRF) ~3.8 kHz
Update rate ~(0.5seconds
III. DETECTION PERFORMANCE

The standard configuration for the Theai 64A sensor
optimizes detection of a 1m?airborne target at a range of 20nmi.
Performance was evaluated against a drone target and
adjustments made to the processing configuration to optimize
detection of such low observable targets.



As a reference a flight was conducted using a micro-light
flying more-or-less radial trajectories. The GPS truth for one of
these reference flights is plotted in Fig. 4. The figure also shows
the radar location and its azimuth field of regard. Performance is
evaluated using the tracker output which is plotted in Fig. 5 for
the reference flight of the micro-light. The data shown is for a
duration of approximately 2.5 minutes. The green markers are
the micro-light track and any false targets are shown in blue. For
the purpose of the analysis presented here, the range is clipped
at Skm although the actual range extends much further. The
Probability of Detection (PD) of the micro-light is measured to
be 95% and the False Alarm Rate (FAR) is very close to 0%.
The radar is actually detecting 100% of the time and the 5% drop
in PD is due to the tracker declaration delay set, in this instance,
to approximately 5 seconds.

‘Current Track: 16 APR 2015 12:32

Fig. 4. Micro-light (insert), GPS truth (blue line), HR location (red
sphere), azimuth field of regard (red lines), blanking range (purple
circle).

Run 2015-04-16-12-03-10 Set 12 - Tracks: Standard Target

5-

-3 -2 -1 0
x (km)
Fig. 5. Radar tracker output showing the micro-light track in green. No
false targets reported. Radar location marked in red.

The micro-UAS test target selected is the remotely piloted
hexacopter that weighs under 4kg and has diameter less than
0.6m. It has a maximum flight duration of a little less than 5
minutes and operates at altitude up to 500ft. The drone flights
were launched from the coast and flown along more-or-less
radial trajectories. An example of the GPS truth data, for one of
the trials, is plotted in Fig. 6.
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tirack 123/ APR 2015108 32

Fig. 6. Hexacopter (insert), GPS truth (blue line)) HR location (red
sphere), azimuth field of regard (red lines), blanking range (purple
circle).

Using a standard form of configuration optimized for
aircraft, the performance against the hexacopter, in the first
instance, is very poor, with no tracks reported for the drone.
There were some detections at the pre-tracker output but the PD
is very low. Fig. 7 shows the detection output for a 2.5 minute
duration of the test flight where the hexacopter was travelling
inbound. This data will be referred to as set 3. The green
markers are the drone detections and the missed detections are
marked with the black circles. The blue markers are false plots.
Thus at the pre-tracker stage, the false alarms remain low which
translate into no false alarms at the tracker output. The pre-
tracker PD however is only 33%. These intermittent detections
then result in zero tracks after the tracker so the final PD for
drone was 0%. This illustrates the need for a bespoke
processing approach able to cope with the challenges presented
by ultra-low RCS targets, flying low and slow trajectories.

Run 2015-04-23-11-03-37 Set 3 - Detections: Standard Target

5

’-.

0 ‘ s 3 s
-3 -2 -1 0 1 2 3
X (km)

Fig. 7. Radar detections (target plots) showing hexacopter detections
(green), missed detections (black) and false targets (blue).

The detection sensitivity can be enhanced for such low
observable targets by reducing the amplitude threshold and
permitting detections with lower Dopplers. With these changes
the performance improves significantly for the hexacopter. Fig.
8 is the tracker output for the same data set 3 but this time with
enhanced detection sensitivity. The reported PD for the
hexacopter is 98%. There are however many more false tracks
being reported which then inhibit the ability to identify the



correct track corresponding to the drone. These false tracks are
caused due to low observable targets that are likely to compete
with drones for example birds, surface targets, clutter etc. In this
way it can be seen that to detect drones there needs to be
sufficient sensitivity and that if there is, many other targets such
as birds are also detected and a discrimination stage needs to be
added to the overall processing chain. There are many ways that
this can be implemented. Here we consider the use of a machine
learning approach to filter the non-drone false tracks.

Run 2015-04-23-11-03-37 Set 3 - Tracks: Low Observable

5 -
™ 3
4 2
) <
-3
£ 3 .
>~.2 .
1F —
0 ] . ‘
-3 2 -1 0 1 2 3

x (km)

Fig. 8. Radar tracker output optimised for low observable showing
hexacopter tacks (green) and false target tracks (blue).

IV. DEcISION TREE BASED CLASSIFIER

The results obtained with the hexacopter demonstrate that
HR is able to obtain high PD for micro-UAS. However, in the
absence of any drone discrimination a high volume of false
target tracks are also reported. A decision tree based machine
learning algorithm [7] is now examined in terms of its ability to
reject non-drone targets. It is a flow-chart like classifier in which
each internal node represents a ‘test’ on a selected feature of the
data, each branch represents the outcome of the test and each
leaf node represents a class label i.e., drone or non-drone.

There are three stages to the implementation of a decision
tree classifier; (1) selection of feature parameters, (2) learning
and (3) predict. The feature parameters are based on the
measurements generated at the detection stage. The detection
outputs have a limited feature set comprising position, amplitude
and Doppler. However, the feature set can be significantly
expanded by using a pre-tracker to associate detections from
multiple time steps into ‘tracklets’. This enables the temporal
derivative of each of the radar plot measurements to be added to
the feature set. Examples are acceleration, Doppler rate, etc., all
of which play a varying role in aiding discrimination.

The learning operation of the decision tree is performed off-
line using recorded data. The training data is labelled as either
drone using GPS truth data or non-drone for anything that is not
associated with the drone truth data. The decision tree uses a
greedy algorithm to establish the feature value that will provide
the appropriate split of the training data so that the population
purity of the subsequent child node is always increased. The
population split is performed recursively until all the entries in
the child node are either from the same class or when the
population purity exceeds a pre-defined threshold. This is
illustrated diagrammatically in Fig. 9. The final path from the
root node to the leaf node defines the classification rule. The
learning operation concludes with a decision tree model that
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specifies the feature sets and the classification rules that apply in
discriminating drones from non-drone targets.
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Fig. 9. Decision tree schematics showing (left) population split and (right)
node structure where blue node indicates majority population is class
- “and vice versa for a green node.

The final prediction stage uses the decision tree to classify
detections from each time step as either drone or non-drone.
Only the former are passed to the tracker and the final output
contains either true drone tracks or false positives that have been
misclassified as drones.

V. DRONE CLASSIFICATION PERFORMANCE

The decision tree is trained on real data collected using the
Theia 64A HR for a hexacopter. The training data excluded set
3 which is the data used to test the classifier. Altogether the
training data was roughly 5 times larger compared to the test set.
This, by no means, represents an optimal approach, nevertheless
it provides a good illustration of achievable performance.
Through a process of trial and error the following features have
been found to be a good choice for the decision tree:

e Height: This is the height above the position of the
radar. It is useful for separating ground targets from
low altitude drones;

e  Maximum height: This measures a moving average
maximum height and helps again to eliminate
targets that are at or close to surface;

e Track age: This measures the length of the current
track as estimated by the pre-tracker, and is useful
in rejecting short lived false tracks;

e Doppler: This instantaneous radial

velocity;

measures

e Acceleration: This measures the rate of change of
the velocity vector and enables targets to be
separated by turn rate;

e Jolt: This measures the rate of change of
acceleration and enables targets to be separated
according to the smoothness of their trajectory and
number of turns made;

The classification performance achieved with the decision
tree approach using data set 3 is summarized in the confusion
matrix shown in Fig. 10. The 99% correct classification for non-



drone (class 1) means that the detection plots for data set 3
following classification are extremely clean (i.e., few false
targets as can be seen in Fig. 11). It is interesting to note that the
18% missed classification of the drone is linked to the
commencement of the track (as indicated by the black missed
detections in Fig. 11). Within this early period of the track there
is unlikely to be sufficient measurement history accumulated
from the data to provide good estimates for features such as
acceleration to enable robust discrimination. This highlights an
important aspect of how classification function are to be
executed and that the time to classification is an important
criteria. A notion of classification declaration delay should be
associated with the discriminator output. This will be
synonymous with the declaration delay used in tracking
algorithms to deal with track initiation.

True Class

Predicted Class

Fig. 10. Confusion matrix for drone (class=2) vs non-drone(class=1)
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Fig. 11. Radar detection (target plots) after drone discrimination showing
hexacopter (green), missed detections (black) and non-drones (blue).

The final tracker output obtained for set 3, after the
detections have been filtered by the decision tree discriminator,
is shown in Fig 12. There is just the one genuine track reported
for the drone shown in green. The PD for the drone in this case
is 88%. There is a single output generated for a non-drone false
target (blue marker). Increasing the tracker declaration delay by
just half a second from 5 seconds to 5.5 seconds removes all
false targets from the final tracker output resulting in an overall
FAR of 0%. Thus it is possible to achieve low false alarm rates
for drones whilst managing to cope with the extremely high
sensitivities needed to enable robust detection and
discrimination of miniature UAS.

However, it should be kept in mind that these initial results,
whilst encouraging, are based on limited data and need to be
further evaluated using larger training and test data and against
a wider range of drone target types.
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Fig. 12. Radar tracks after drone discrimination showing hexacopter
(green) and non-drones (blue).

It is also important to understand how well training on one
drone type will enable classification on different drone types and
under different range of environmental conditions. It is equally
important to understand how the classifier is able to distinguish
between different non-drone classes of targets. Ultimately the
drone discrimination effectiveness will be limited by the ability
of the classifier to reject confuser targets.

The current version of the decision tree has been
implemented into the real time processor and the HR system is
able to perform the drone discrimination in live operations.
Future work will extend the feature sets for the decision tree to
include micro-Doppler signatures which will improve the class
separability using aspect such as the propeller response from
drones and the wing beat pattern from birds.

VL

Trials results have shown that HR offers good detection
sensitivity against hexacopter micro-UAS. Furthermore,
discrimination using 6 selected feature trained with a decision
tree is able to remove almost all non-drone false targets. The
training is performed off-line and the classification is carried out
in real-time. The current version of the machine learning
classifier is predominantly making use of features derived from
the flight trajectory profile.

CONCLUSIONS
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ABSTRACT

It has been recently demonstrated that optimal sensor place-
ment can significantly improve target localization accuracy.
This improvement is even more exacerbated when using
arrays of directional sensors. However, the optimal array
configuration is hard to obtain, typically requiring a high-
complexity systematic search. In this paper, we propose a
plausible modification of the optimization criterion that re-
duces the dimension of the search area while maintaining
near-optimum performance.

Index Terms— Cramer Rao bounds, direction-of-arrival
estimation, Cardioid sensors

1. INTRODUCTION

Signal snapshots are collected in order to estimate the Direc-
tion of Arrival (DOA) of a far-field narrow-band source. Not
only the signal phase depends on the source DOA, but also
the amplitude, should the sensors be directional. Estimation
accuracy depends on the estimation algorithm, the array ge-
ometry and the source actual DOA. In the single source case,
most popular algorithms are comparable as they (asymptoti-
cally) achieve the Cramer-Rao Bound (CRB) [1], a widely ac-
cepted performance measure of theoretical and practical im-
portance [2]. For the sake of improving DOA estimation,
a new approach has proved to be effective. In fact, proper
sensor placement may improve performance significantly, as
shown by many recent studies. There, antenna array geome-
tries have been identified that exhibit lower CRB. This ap-
proach has been successfully applied to DOA estimation of
deterministic [3], random [4, 5], far-field [6] and near-field
sources [7].

Existing work has focused on arrays of omni-directional
sensors, as frequently assumed in the DOA literature. A first
attempt has been made in [8] to optimize the geometry of an
array of directional sensors and, hence, address more realis-
tic situations. Directional sensors translate into optimization
problems that are analytically untractable even in the two-
sensors case. Size is a critical design criterion for those sys-
tems, e.g. airborne and marine autonomous unmanned vehi-
cles [9, 10], that can accommodate only a very small number
of sensors.

In [8], it has been proved that: i) the two-sensor ar-
ray with adapted-geometry is comparable in performance
to larger-sized fixed-geometry arrays, and ii) the amount of
improvement increases with the sensor directivity. In this re-
gard, the practical limitation is the computational complexity
of the optimization procedure, for instance, a 3D systematic
search [8]. The present paper achieves a significant reduction
of the computation burden, as the dimension of the search
area is reduced from 3 to 2.

Such simplification is made possible thanks to a modi-
fication of the optimization criterion. Originally, the CRB
is used as a scalar-valued cost function. As it may be
DOA-dependent, focus has been brought onto the so-called
isotropic arrays, for which the CRB is the same at all look
directions. Unfortunately, it is not possible to design small-
sized isotropic arrays, not even the popular Uniform Circular
Arrays (UCA) [11]. In such case, a more suitable perfor-
mance criterion is the expected CRB (ECRB), which depends
on the DOA probabilistic distribution. Yet, CRB and ECRB
have complex expressions if sensors are directional. To
circumvent this difficulty, we adopt the (expected) Fisher
information, i.e. the inverse of the CRB, as our design per-
formance, one that leads to a closed-form expression of the
array orientation. At the same time, performance is close to
optimality, as confirmed through tests with arrays of cardioid
sensors irradiated by a source at an arbitrarily distributed
direction.

The paper is organized as follows. In Sec. 2, we intro-
duce the observation model and recall previous results. In
Sec. 3, an alternative criterion is proposed and the subsequent
optimization algorithm is developed. The so-optimized array
is calculated in Sec. 4 for a number of distributions, and its
performance compared to that of the ECRB-optimized array.
Finally, a conclusion is given in Sec. 5.

2. SIGNAL MODEL AND PREVIOUS RESULTS

A far-field source, characterized by DOA 6 measured counter
clockwise from the z-axis, is emitting a narrow-band signal
s(t) at wavelength A in the direction of an array of two sen-
sors. The first sensor is fixed at the origin O while the second
sensor is placed at a distance pA from O, forming an angle
¢ with [O, x) axis, p and ¢ are yet to be determined. The

978-1-5090-0326-6/16/$31.00 ©2016 IEEE
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two identical sensors have a DOA-dependent response g(6)
so that orientations of the sensors are also to be determined.

We denote by 1, 12 and ¢ the respective orientations
of the first sensor, the second sensor and the sensor array, as
shown in Fig. 1. The geometrical optimization problem con-
sists in determining the best choice of the triplet ¢, ¥; and
12, the remaining geometrical parameter p is assumed to be
prefixed based on other antenna array design considerations,
more likely in order to jugulate inter-sensors mutual coupling
and array ambiguities.

0.8
0.7
06
05
0.4

0.3

Y coordinate

0.2

I
-0.4 -0.2 0 0.2 0.4 0.6 0.8
X coordinate

Fig. 1. Positions and orientations of the two directional sensors for
an arbitrarily-shaped sensor response g(6).

DOA estimation is attempted from received signal snap-
shots, collected at time moments 1, .., ¢, all of the form

9(0 — 1) } {nl(t)}
x(t) = . s(t)+
O= 1906 v2) explj2mpeos (0 — 6,01 | ™ [ o)
ey
where source signal s(t) and noise snapshots n;(t) have re-
spective power 02=E [|s(t)|?] and 02=E [|n;(t)?] i =
1,2. Under some regularity conditions [12], DOA local-
ization ability, for a source in the direction 6, is described
by
o2
B(9) = =
CRB(9) 2No?2

S

F=1(0), )
where [8]

2
"(6—11) "(0—v2) s 02
T~ go—vay| +4mptsin® (6 - ¢)

F(0) = [

3)
is known as the Fisher information. Notice that the above is
unchanged if ¢ is replaced by ¢ + , or if (¢1, 12) is replaced
by (b2, 11). So, we will assume that ¢ is in [0, 7] and ¢5 >
11. When the source DOA is random, as assumed in this
paper, the array DOA estimation performance is more conve-
niently assessed through the so-called EC RB=E [C RB(0)].

1 1
090 T 7092
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Minimization of E [1/F(0)] is possible by systematic search,
thanks to the bounded nature of the investigated geometric
parameters ¢, ¥; and 1, and may be affordable in a num-
ber of cases where the source DOA distribution remains un-
changed for some time. Optimal array configurations based
on this ECRB criterion have been reported in [8], along with
their performance, and so for the most frequent cases of uni-
form and normal distributions. For more general cases (e.g.
weighted sums of normal distributions), it is worth reducing
the complexity of such a procedure. This objective is achieved
in the next section, at the expense of optimality, but not dra-
matically so.

3. AN ALTERNATIVE OPTIMIZATION CRITERION

Instead of minimizing the ECRB, i.e. minimizing E [1/F(6)],
we propose to maximize E [F'(#)], following the intuition that
the so-optimized array geometric configuration will achieve
an ECRB close to the lowest possible ECRB. Hence, we will
be opposing

1
P ot ah) — :
(P, 0,7 argmmE{ (9)]
to
(U1, ¥q, @) = argmax E [F(6)].

In order to preserve optimality, the geometric unknowns
are determined by systematic search. While, for the former
physically-relevant criterion, this search is over a 3D region
[8], for the latter criterion dimensionality is reduced to 2D, as
we will show promptly.

Complexity-wise, considering E [F'(6)] allows for an easy
derivation of the optimal value of ¢. In fact, the adhoc crite-
rion E [F'(6)] is given by

Iy — 27%p? [cos (2¢) I1 + sin (2¢) 5] )
where
r 2
g (0—v1)  g'(0—2) 2 2
9(9—w11) B 9(9—1&;)} +277p
I, = B . : (5)
20— T 20—
[ cos (20
L - B|— =) ] ©)
| 2= T 20—
sin (260
I, = E T ( )1 ] @)
| oo T 20

We can assume that, for arbitrarily distributed DOA, I; is
non-zero with probability one. Hence, it becomes obvious
that, at optimality, we have

Iy

tan (2¢) = i



so that ¢ = 3 arctan (%) in] — w/4,7/4], or ¢ =

1 arctan (%) + % in Jm/4,37/4[. We can also write that

cos(2¢) = nli/\/I1? + I3 and sin(2¢) = nla/\/I? + I3,
for some sign parameter = 41, yet to be determined. This
being replaced in (4), we realize that we have to maximize
the following function of ¢; and 15

[ =1y — 2nnp?\/ I} + 12

In regard of the above, and assuming the probability den-
sity function (PDF) of 6 is known, steps of the optimization
algorithm are as follows

1. Set I to zero.
2. Determination of ¥, and Ws:

(a) For 1 spanning 0, ..., 2m,
i. For vy spanning ¢, ..., 27,

A. Evaluate Iy, I and I5 as shown in (5),
(6) and (7), respectively.
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B. Calculate v = max{Io+2r2p?\/I? + I2,

Io —2m2p2\/1? + 12}.
C.Ify>T,thenset]’ =~, ¥y = and
Uy = 1.

3. Determination of ®:

(a) Repeat step 2(a)iA with ¢»; = ¥, and o = Us.

(b) If In +2m2p2\ /12 + 12 > Iy — 272 p*\ /17 + I3,
then set n = —1. Otherwise, setn = 1.

(¢) If nI; > 0, then set & =  arctan (%)

Otherwise, set & =  arctan (%‘) + I
1

4. VALIDATION

In order to compare the proposed adhoc criterion to the orig-
inal ECRB-based criterion, we consider arrays of cardioid-
type sensors, frequently used in acoustic systems [13]. They
exhibit a directional response of the form:

9(0) = go[1 + Bcos(0)], ®)

characterized by constant gg and, more importantly, by pa-
rameter (3 that controls the sensor directivity. We update (5)-
(7) by introducing I} =1 /g2, for k = 1,2 and 3, obtained
as

I = E{

2 sin(0—11)
6 |:1+5cos(9—w1)

2
sin(6—12) 2.2
- 1+5cos(9—2w2):| + 27 P

®

1 + 1
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Fig. 2. Compared performance (a) and shape (b) of the two-sensor
arrays for a zero-mean normally distributed source DOA with a stan-
dard deviation as shown along the horizontal axis. Sensors are such
that 8 = 0.4.

cos (260
Il = E - J(r ) - 1 (10)
[1+,6’cos(9—1/)1)]2 [1+,8cos(0—1/;2)]2
sin (260
I = E . J(r ) - ] (11)
[1+,8C03(9—1/)1)]2 [1+,Bcos(0—1112)]2

Obviously, the optimization procedure remains unchanged
if we replace I, I and I5 in (5), (6) and (7), by 11, I] and
Ig, respectively. At the same time, the optimization proce-
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Fig. 3. Compared performance (a) and shape (b) of the two-sensor
arrays for a zero-mean normally distributed source DOA with a stan-
dard deviation as shown along the horizontal axis. Sensors are such
that § = 0.8.

dure (and the subsequent array geometries) become solely
dependent on the directivity parameter 3.

The near-optimum two-sensor array (optimized based
on the adhoc criterion) is compared to the optimum two-
sensor array (optimized based on the ECRB), and to the
non-optimized fixed-geometry UCAs of 3 and 4 sensors.
Sensors are spaced by half-a-wavelength in order to combat
array ambiguities [14]. Orientations of the UCA sensors are
fixed such that the main lobe is directed outwards [8, 15].
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These direction finding arrays are compared based on the

2 2
physically-relevant ECRB-based cost C= 2gfﬂf#ECRB. For
the two-sensor array, we have

c ="
{ 1 + 1 } f(9)
[+Bcos(@—v)]° ' [1+Bcos(9—va)]

2
sin(0—11) sin(f—12) s 2
52 |:1+ﬁ cos(G—lwl) T 1+8 cos(9—2w2):| +472p2 sin (9_¢)

dé.

Expressions of C' for UCAs of different sizes can be found in
[8].

The optimization problem depends on the DOA PDF. In
Fig. 2 and Fig. 3, where [ is successively equal to 0.4 and
0.8, we illustrate results for a zero-mean normally distributed
DOA, as function of the distribution’s standard deviation. We
realize that the adhoc criterion performs closely to the opti-
mum for low-to-moderate DOA uncertainty (expressed here
by the standard deviation), as shown in Fig. 2(a) and Fig.
3(a). On the contrary, as illustrated in Fig. 2(b) and Fig. 3(b),
the two competing arrays have different behaviors when un-
certainty increases. On one hand, the adhoc criterion invari-
ably points two sensors at the direction of the most probable
DOA, regardless of how uncertain it is. On the other hand,
the optimum criterion manages to take benefit from the uncer-
tainty (i.e. from the prior) by pointing the two sensors away
from the most probable DOA as this direction becomes less
and less sure. On the positive side, the adhoc criterion always
succeeds to deliver the optimum array direction ¢. Also to
be concluded from the comparison between Fig. 2 and Fig.
3, the adhoc criterion is closer to optimality when sensors are
more directive.

In Fig. 4, we intend to evaluate the performance of the
adhoc criterion in a more general scenario where the DOA
PDF is given by

_0)2 2
, ool o521
16) = 2021
We set 0 = 10 [DEG] and let Q span the range [10, 90]

[DEG], in order to check the potential of the adhoc criterion
in arbitrary situations. It is clear from Fig. 4 that a worst
case scenario happens when the two possible look directions
are (close to be) orthogonal. Otherwise, near optimum per-
formance can be achieved.
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Fig. 4. Performance comparison for a source PDF characterized by
two possible look directions €2, with 2 = 10, 20, ..., 90 [DEG].
Sensors are such that 8 = 0.4 (dotted line) and 3 = 0.8 (solid line).

5. CONCLUSION

In the context of DOA estimation using an array of two
directional sensors, the Fisher information has a simpler an-
alytical expression than the CRB and serves as the basis of
a new design criterion to determine best locations and ori-
entations of the sensors. The source DOA being randomly
distributed, maximizing the average Fisher information is
not, strictly speaking, equivalent to minimizing the averaged
CRB. In practice, it is close to be the case. The moderate
loss of optimality is compensated by a drastic simplification
of the optimization procedure. A systematic search involves
a 2D search region instead of the 3D region required by the
CRB-based criterion.
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Abstract— Radar performance is strongly dependent on the
transmitted waveform and its parameters which must be adapted
to the surrounding environment, radar mission, goal, and task.
Waveform diversity is a relatively new paradigm involving a
continuous variation and adaptation of the transmitted signal
to dynamically optimize the radar performance and fulfill the
more and more stressing requirements. In this context, cognitive
radar waveform design in spectrally dense environments is a
very challenging and topical problem. This paper deals with the
synthesis of signals optimizing radar capabilities while satisfying
spectral compatibility constraints. Specifically, the design of radar
waveforms, sharing appealing features and ensuring spectral co-
existence with other Radio Frequency (RF) systems, is introduced
and discussed according to a rigorous framework.

I. INTRODUCTION

The Radio Frequency (RF) electromagnetic (e.m.) spectrum
is a limited natural resource necessary for an ever-growing
number of services and systems. It is used in several appli-
cations, such as mobile communications, radio and television
broadcasting, as well as remote sensing. Indeed, both high-
quality/high-rate wireless services (4G and 5G) as well as
accurate and reliable remote-sensing capabilities (Air Traffic
Control (ATC), geophysical monitoring of Earth, defense and
security applications) call for increased amounts of bandwidth
[1], [2]. Besides, basic e.m. considerations, such as good
foliage penetration [3], low path loss attenuation, reduced size
of the devices push some systems to coexist in the same
frequency band [4] (for instance VHF and UHF). As a result,
the RF spectrum congestion problem has been attracting the
interest of many scientists and engineers during the last few
years and is currently becoming one among the hot topics in
research field [5], [6].

A plethora of papers have addressed the problem of de-
signing radar waveforms with a smart frequency allocation
[7], so as to control the interference brought on overlayed
wireless networks (communication and navigation systems),
while enhancing radar performance requirements in terms of
range-Doppler resolution, low range and Doppler sidelobes,
detection, and tracking capabilities. In [8], a waveform design
technique is introduced to confer some desired spectral nulls
to the radar signal. The idea is to perturb a stepped frequency
modulated pulse forcing an additional fast time polyphase

code. The approach is extended in [9] to the case of continuous
phase waveforms that place nulls at specific frequencies. An
alternate projection algorithm for the construction of chirp-
like constant-modulus signals with a single spectral null is
proposed in [10], whereas in [11] its extension, addressing
the production of multiple notches, is established. In [12],
a fast coding technique based on alternate projections and
successive fast Fourier transforms is developed to obtain sparse
waveforms with a controlled Peak Sidelobe Level (PSL). In
[13] and [14], sparse frequency constant modulus radar signals
with a low Integrated Sidelobe Level (ISL) are built optimizing
a suitable combination between the ISL metric and a penalty
function accounting for the waveform frequency allocation.
Finally, in [15], a spectrum-centric signal design is developed
based on the minimization of the transmitted energy on a
set of disjoint stop-band frequencies under a unimodularity
constraint and AutoCorrelation Function (ACF) masking.

In this paper, cognitive procedures are proposed to de-
vise radar waveforms that exhibits desirable spectral features
(ensuring coexistence with overlayed wireless networks) and
optimize radar detection performance. It is supposed that
the radar system has the ability to predict the behaviour of
surrounding licensed radiators, for instance using a Radio
Environmental Map (REM), [16], containing geographical
features, information on available wireless services as well
as locations and activities of wireless transmitters. More in
details, the described design techniques consider as figure
of merit the Signal to Interference plus Noise Ratio (SINR)
and optimize the transmitted radar waveform constraining the
amount of interference energy on crowded/reserved frequency
bands. Specifically, both global and local spectral compatibil-
ity requirements are considered at the design stage. To manage
some relevant features of the radar probing signal, in addition
to a requirement on the maximum radiated energy, a similarity-
like constraint is enforced on the transmit sequence. By doing
s0, a control of some significant waveform characteristics, such
as range-Doppler resolution, variations in the signal modu-
lus, ISL, and PSL is provided. Hence, algorithms to devise
optimized radar waveforms complying with the considered
constraints are presented. Finally, some interesting case studies
are reported highlighting the trade-off among the achievable
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SINR, spectral shape, and ACF features of the synthesized
waveforms.

The remainder of the paper is organized as follows. In
Section II, the model for the radar transmitted signal and
the description of coexisting wireless systems are reported.
In Section Section III, the constrained optimization problems
for waveform design under either global or local spectral
compatibility requirements are formulated and studied. In
Section IV, the performance of the considered techniques is
illustrated. Finally, Section V is devoted to conclusions and
proposals for possible future research tracks.

II. SYSTEM MODEL

Let ¢(t) be the baseband equivalent of the transmitted radar
pulse modeled as the superposition of N linearly modulated
unitary energy sub-pulses. The code element associated with
the i-th sub-pulse is denoted! by c(i) whereas the vector
c = [c(1),...,¢(N)]T € CN represents the fast-time radar
code. The waveform at the receiver end is down-converted to
baseband, undergoes a sub-pulse matched filtering operation,
and then is sampled. As a result, the N-dimensional column
vector v = [v(1),...,v(N)]T € CV of the fast-time observa-
tions from the range-azimuth cell under test can be modeled
as

(D

with o a complex parameter accounting for channel prop-
agation and backscattering effects from the target within the
range-azimuth bin of interest and n the N-dimensional col-
umn vector containing the filtered disturbance signal samples,
which is modeled as a complex, zero-mean, circularly sym-
metric Gaussian random vector with covariance matrix M =
E[nn']. As to the licensed radiators coexisting with the radar
of interest, it is supposed that each of them is operating over a
frequency band Q, = [fF, f5¥], k=1,..., K, where f and
f% denote the lower and upper normalized frequencies for
the k-th system, respectively. To ensure spectral compatibility
the radar has to properly shape its transmit waveform to
manage the amount of interfering energy produced on the
shared frequency bandwidths. Specifically, the energy radiated

on the k-th band can be essentially evaluated as

I3
Se(f)df =

ff

v =arc+n,

c! R’}' c,

2)

A 2
where S¢ (f) = ‘22;1 c(n)e*]z”f"’ is the Energy Spec-
tral Density (ESD) of the fast-time code ¢ and V(m,l) €
{1,...,N}?

'We adopt the notation of using boldface for vectors a (lower case), and
matrices A (upper case). The n-th element of a and the (m,![)-th entry
of A are respectively denoted by a(n) and A(m,n). The transpose and
the conjugate transpose operators are denoted by the symbols (-)7 and (-)*
respectively. CN and HN are respectively the sets of N-dimensional vectors
of complex numbers and N x N Hermitian matrices. A > O means that A
is a positive semidefinite matrix. I denotes the identity matrix. The Euclidean
norm of the vector @ is denoted by ||@|| whereas the modulus of the complex
number x is denoted with |x|. The letter j represents the imaginary unit (i.e.
j = v/—1), while the letters i and k often serve as indexes. I [] denotes the
statistical expectation.
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£ 1t m=1
Rl;(mv l)= eI2mf5(m=1) _ g2 ff (m—1) 3
l
J2r(m —1) m#

Thus, denoting by E¥, k = 1,..., K, the acceptable level of
disturbance on the k-th bandwidth, that is related to the quality
of service required by the k-th telecommunication network, the
interference energy produced on the shared frequency band-
widths can be controlled forcing the transmitted waveform to
comply with one of the following conditions

o global design constraint

K
ZwchR’;c < Er;

“)

k=1

o local design constraint
cRYe<EF k=1, K. (5)

where E; = ZiilwkE}“ and wy >0, k=1,..., K, specific
weights. According to (4), a constraint on the global injected
interference energy is forced [17]. In this case, different
importance can be given to the coexisting wireless networks,
for instance based on their distance from the radar and their
tactical importance (i.e. navigation systems, military com-
munications, public services, etc), appropriately choosing the
coefficients. As to (5), a local control of the interference energy
produced on each shared frequency bandwidth is pursued [18].
Remarkably, the REM represents the key instrument to gain
the spectrum awareness required to force either the constraint
4) or (5).

III. PROBLEM FORMULATION AND CODE DESIGN

In this section, waveform design techniques that attempts
to enhance the target detection probability while controlling
both the amount of interfering energy produced in the licensed
bands and some desirable features of the transmitted waveform
is introduced. The figure of merit is the SINR defined as

SINR = |ar|?cfRe, (6)

To control some relevant features of the probing signal, other
than an energy requirement ([[c[|® < 1), a similarity-like
constraint is enforced on the transmit sequence, i.e., |c —
QeyCol|? < €, where the parameter 0 < € < 1 rules the size
of the trust hypervolume, ¢y is a suitable reference code, and
Qey» With |ar, |2 < 1, enables the modulation of the reference
code energy.

The degree of freedom given by «, allows to center the
trust hypervolume along the reference code direction (i.e., in
e, Co) according to the actual radar signal energy ||c|?. As
a result, a similarity between the sought radar code and the
signature of the reference code is enforced. Interestingly, when
|le[> = 1 this constraint is equivalent to the conventional
similarity. Notice that several reasons motivate its use [19]: an
unconstrained optimization can lead to signals with significant



modulus variations, poor range resolution, high peak sidelobe
levels, and more generally with an undesired ambiguity func-
tion shape. These drawbacks can be partially circumvented
forcing the solution to be similar to the signature of a known
code ¢g (||co||* = 1), which shares some nice properties such
as constant modulus and reasonable peak sidelobe level.

In line with the two different spectral compatibility require-
ments (4) and (5), the waveform design problem of interest
can formulated as

max c'Re

CceCN,a. €C

s.t. lell? <1

Pi ceH;

lle — ac,coll? < e
|aCO|2 <1

;i =1,2,

where

K
ceCV: Zwchlec < Ej
k=1

HQ:{cecN: ch’;cgEf,k:L...,K}.

Ha
®)

A. Global Design Solution Technique

In this section Problem P;, which accounts for a global
constraint about the spectral compatibility requirements, is
studied. This design problem can be solved resorting to the
analytical framework developed in [17], recasting it as a
Quadratically Constrained Quadratic Programming (QCQP)
problem which is, in general, difficult to solve [20], [21].
Hence, some hidden convexities can be exploited to compute
the transmit signal maximizing the SINR with a polynomial
complexity [17]. From a technical point of view P; is equiv-
alent to a SemiDefinite Programming (SDP) convex problem
whose optimal solution C* allows the design of ¢* by means
of a specific rank-one decomposition procedure [21]. Figure 1
summarizes the main steps involved in the optimal design.

Relaxation

)

Convex Optimization
Problem

Non-Convex
Optimization Problem

Optimal
Solution

|

Rank-one Decompositio

Optimal Code Procedure

Fig. 1: Block scheme of the optimization procedure leading to the optimal
transmit code for the global design.

B. Local Design Solution Technique

In this section Problem P, accounting for local spectral
compatibility constraints is considered. In [18], it is shown
that Ps is a non-convex QCQP problem and, unlike PP; which
is hidden convex, it belongs to the class of NP-hard problems
[22] due to the presence of multiple spectral constraints.
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Hence, a procedure based on the SemiDefinite Relaxation
(SDR) and randomization paradigm [22] is developed to
synthesize in polynomial time solutions with quality guarantee.
The main idea is to explore the one-dimension subspaces
contained in the range span of the optimal solution to the SDP
relaxation [18]. Figure 2 summarizes the main steps involved
in the optimization algorithm.

Relaxation

—)

Convex SDP
Problem

NP-Hard Problem

Optimal
Solution

Randomization

— Procedure
Optimized Code

Fig. 2: Block scheme of the optimization procedure leading to the optimized
transmit code ensuring local control on the radiated interfering energy.

IV. PERFORMANCE ASSESSMENT

The performance of the proposed waveform design tech-
niques are now shown in terms of achievable SINR value,
spectral shape, autocorrelation features, and transmitted en-
ergy. Hereafter, a radar whose baseband equivalent transmitted
signal has a two-sided bandwidth of 810 kHz (corresponding
to a sampling frequency of f; = 810 kHz) is considered.
Additionally, the interference is composed of unlicensed nar-
rowband continuous jammers, white interference, and licensed
coexisting telecommunication networks spectrally overlaid to
the radar of interest. The disturbance covariance matrix is
modeled as

01k

Afr

K Ky
M=0oI+Y “Z°Ri+> osxRy, ©)
k=1 k=1

where K = 7 is the number of licensed radiators; K; = 2
is the number of active and unlicensed narrowband jammers;
Afr, = f§ — fF is the bandwidth associated with the k-
th licensed radiator, for ¥ = 1,...,K; oo, = 0 dB is
the thermal noise level; o7 accounts for the energy of the
k-th coexisting telecommunication network operating on the
normalized frequency band [f{, f}] (o1, = 10 dB, k =
1,...,K); o5, k =1,..., K, accounts for the energy of
the k-th active jammer (0,1,, = 40 dB, 0,2, = 50 dB);
R, is the normalized disturbance covariance matrix of the
k-th active unlicensed jammer, defined as

_ T _
RJ’k;—TJ’]@','J,k7 k’—l,...,K]7

with 7 .(n) = e/27/7+n/Fs where f; denotes the Doppler
shift of the k-th jammer (f;1/fs = 0.7, and f;2/fs = 0.75).

As to the overlayed and foreseen telecommunication sys-
tems spectrally coexisting with the radar of interest we con-
sider the following normalized baseband equivalent radar stop-



bands [23]
3 =[0.0000,0.0617], €2 = [0.0988,0.2469],
Q3 =[0.2593,0.2840], €4 = [0.3086,0.3827],
=
=

]

] (10)

Q5 = [0.4074,0.4938], Qg = [0.5185,0.5556],
27 = [0.9383, 1.0000].

Additionally, we consider Ef ,; = 10log,,(E}) = —20 dB
for k # 3,6 and E¥ 4 = —30 dB for the other frequency
bands.

Concerning the reference code ¢y, we employ a unitary
norm Linear Frequency Modulated (LFM) pulse with a dura-
tion of 200 ps and a chirp rate K = (750x 10%)/(200x 10~°)
Hz/s which corresponds to N = 162 samples due to the
considered sampling frequency. Finally, as to the global design
we consider By = >, E¥ and Ry = Y;_, R

In Figure 3, the normalized (to |az|?) SINR and the
transmitted energy versus e for the waveforms synthesized
according to the local design and the global design are
shown. As expected, regardless of the design technique, the
higher e the better the detection performance. Besides, the
two approaches provide similar SINR values and essentially
achieve the same performance level for e high enough.

e
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— Global Design
—Local Design
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>

SINR / |0¢T|2
£
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€

(a) Normalized SINR versus e.
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& .
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£
04
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0 i i i i ; i i i i
0 ol 02 03 04 05 06 07 08 09 1

€

(b) Code energy versus €.

Fig. 3: Comparison between global and local design in terms of normalized
SINR and code energy.

In Figure 4, the ESD and the squared modulus of the
normalized (to the peak value) ACF of the codes synthesized
through both the design strategies, assuming ¢ = 0.31,
are reported. For comparison purposes the behaviour of the
reference code cg is displayed too. In Figure 4(a), the stop-
bands where the licensed systems are located are shaded in
light gray. The curves highlight the capability of the local
design to perform a fine control of the amount of interference
energy produced over the shared frequency bandwidths. In
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fact, unlike the global design that shares a flat ESD in the stop-
bands, the code synthesized using the local design exhibits
a spectral behaviour which closely follows the local spectral
compatibility requirements. In fact, within the third and sixth
stop-bands the ESD is lower than that in the others. Moreover,
in 4 and Q5 a higher ESD than in 2 is observed. In
a nutshell, the results clearly show the capability of the
local design to grant the necessary quality of service to the
overlayed radiators. Interestingly, the ACF obtained using the
local and the global design share similar features as both
satisfy the same similarity constraint.
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3 i M
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w
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(a) ESD versus normalized frequency.
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(b) Squared modulus of ACF versus delay bin.

Fig. 4: Comparison between global and local design in terms of ESD and
ACF considering € = 0.31.

In Figure 5, the behaviour of the codes synthesized through
P (in terms of ESD and normalized ACF) is reported for the
three values of epsilon (¢ = 0.001,0.322,0.584). As expected,
the code for e = 0.001 is almost aligned with ¢g. Moreover,
it can be observed that increasing the similarity parameter
e smarter and smarter distributions of the useful energy are
achieved. Indeed, an enhancement of the unlicensed jammer
rejection as well as a possible reduction of the radar emission
in correspondence of the shared frequencies is obtained. This
is in agreement with the SINR trend of Figure 3(a). Finally,
inspection of Figure 5(b) highlights that better SINR values
and interference rejection are traded-off with worse and worse
range resolutions and/or ISLs/PSLs.

V. CONCLUSIONS

This paper has considered the cognitive design of radar
waveforms in a spectrally crowded environment where some
frequency bands are shared among the radar and other
telecommunication systems.

Either global and local spectral compatibility requirements
have been considered at the design stage. Hence, polynomial
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Fig. 5: Local design results in terms of ESD and ACE.

computational complexity solution procedures have been de-
scribed to synthesize optimized radar waveforms. The perfor-
mance of the synthesized signals has been analyzed studying
the tradeoff among the achievable SINR, spectral shape, ACF
features, and radiated energy. Remarkably, the local constraint
approach is able to ensure a precise control on the interference
energy induced on each shared/reserved bandwidth at the price
of a slight performance reduction.

Possible future research tracks might concern the develop-
ment of robust frameworks to contrast transmitter impurities
and the cognitive fully exploitation of the available multiple
dimensions, i.e., spatial, temporal, and polarizations [24]-
[26], to further improve system performance. Besides, it could
be interesting to extend the local approach to account for
unimodular waveforms (which is tantamount to introducing
additional non-convex constraints) and signal-dependent in-
terference (implying that the objective function is no longer
quadratic) [27].
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Abstract—Based on the background of radar target detection
and recognition of space precession targets, an experimental
study on full-polarization micro-Doppler of those targets is
introduced. The wide-band scattering properties of space
precession targets are analyzed, and then the theoretical full-
polarization micro-Doppler models are proposed. The scenario of
the experiment is introduced, and the measured data are
analyzed, and then the differences of full-polarization micro-
Doppler of different scattering structures can be observed during
precession.

Keywords—Target  Recognition;  Precession;  Microwave
Anechoic Chamber; Micro-Doppler; Polarization; Wide Band

I. INTRODUCTION

Along with the improvement of radar measurement and
modern signal processing, the description of target details,
especially the precise description of the target’s motion state
and construction has become a research hotspot of radar
detection.

Normally micro-motion is defined as the whole or parts of
target’s micro motion such as vibration, rotation and coning
except translational motion?!. Micro-motion is decided by the
physical property such as the distribution feature of the target’s
mass and the dynamic characteristics, which can be regarded as
the inherent motion forms. Micro-motion makes it possible to
extract the target’s features relating to physical property, which
provides a novel path to non-cooperative target’s detection and
recognition14],

Modern radar system is moving towards the ability of wide-
band, full-polarization and coherent measurement, and
provides an efficient tool for richer target information
measurement. On the background of space precession target
measurement, this paper aims to research the dynamical
scattering properties of space precession targets by way of
microwave anechoic chamber experiment. Based on the wide-
band measurement experiment), the full-polarization micro-
Doppler property of the space precession target is further
analyzed, which supports the research of ballistic target
recognition in midcourse for microwave radar.

II. WIDE-BAND SCATTERING PROPERTIES OF SPACE PRECESSION
TARGETS

In high-frequency area, the total electromagnetic scattering
can be seen as the composition of the electromagnetic
scattering of some parts, and this special scattering point is

This research is funded in part by National Science Foundation of China
under contract 61101180 and 61401491.

defined as the equivalent scattering center'®. For typical space
precession target, the scattering mechanism of its nose cone is
hyperboloid specular reflection, the equivalent scattering center
slides with the change of the incidence direction®. And in
some warhead designs the radius of the nose cone is small that
the sliding can be ignored, in other words the equivalent
scattering center can be seen to be fixed. The scattering
mechanism of its torus is borderline diffraction!”, and its
equivalent scattering center is the cross point of the incidence
plane and the edgef®.

Considering the flat cone cylinder warhead, shown as Fig 1,
when the radar line of sight R, illuminates along the included

angle with the cone axis £, a borderline scattering center will

be formed at the joint part of the edge of the bottom and the
cone-cylinder. The points B, C, D marked in figure 1 is the
cross points of the incident plane and the edge of the two rings,
and it is also the location of the borderline scattering center at
the missile body, which can be strictly demonstrated using the
method of equivalent currents®. Considering the shadowing
effects, only one scattering center is formed at the edge of the
bottom. Besides, when [ is larger than the semi-cone angle,

the scattering center at C will not exist. During the precession
of the warhead, the target’s symmetry axis will change, and
then causing the change of the incident plane, therefore the
scattering center will slide along the ring, not fixed.

Fig 1. Equivalent scattering center of the precession target

In warhead designs, common structure of both the nose
cone and rings is rotational symmetry. For this structure, the
illuminated parts changes when the target circles around the
symmetry axis, however the key factor determining the echo
such as the surface shape and the medium doesn’t change.
Although the surface flow field of the electromagnetic wave
affects the echo, its action time is short, usually several
microseconds, therefore the scattering field can be regarded
fixed. In this case, the scattering center of the warhead’s main
body will not change with the target spin, so the coning is the
main influence of the precession.

978-1-5090-0326-6/16/$31.00 ©2016 IEEE
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III. FULL-POLARIZATION MICRO-DOPPLER MODEL OF THE
SPACE PRECESSION TARGET

As shown in Fig 2, precession is constituted by two parts,
one is the spin circling the missile body’s symmetry axis
Oz with the angular velocity @, , and the other is the coning

circling the precession axis OZ with the angular velocity @, .

The included angle 8 between OZ and Oz is the precession
angle.

In Fig 2, R is the radar’s position, O is the target’s center
of mass, OX is in the plane formed by OZ and OR , vertical
to OZ and forming an acute angle with OR. OY , OX and
OZ form a right-handed coordinate system, and call OXYZ
the reference coordinate system. Ox is in the plane formed by
OZ and Oz, vertical to Oz and forming an obtuse angle with
OZ . Oy , Ox and Oz form a right-handed coordinate
system, and call Oxyz the local coordinate system. At initial
time, the included angle of the projection of Oz at OXY plane
and OX is ¢ . The included angle S of OR and OZ is
called the average aspect angle, and The included angle ¥ of
OR and Oz is called the incident angle.

A

Fig 2. Precession model
Assume that there exists a scattering center p in the

missile body, and R, is the distance between radar R and the
scattering center p . Radar transmits the pulse signal with the
frequency f; . The slow-time echo can be written as

St @) Sy ()

5. (1) { }=S<r) exp(jzz@) (1)

Syry @ s vvr @)
Where S(t) = Ay (D) XP([ Py (1)) @y (£) XP(j Py (1))
L ay (0exp(idy, (1) ay, () exp(jdy, (1)

is the polarization scattering matrix at ¢ .

According to the geometrical relationship, to an ideal
scattering center which has fixed polarization scattering matrix
and location at the missile body, assuming its coordinate in the
local coordinate system is (x, y,z) , its distance to the radar is
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R, = R, —cos f(zcos @+ ysin @) — xsin fcos(@,t + ¢) o

+ysin fcos@sin(w,t + @) — zsin Ssin sin(@,t + @)

And the echo’s Doppler frequency of a single polarization
channel ij(i=H,V;j=H,V) is

_ 1 do(s, (1)) 20,f, sin
2 dt c
+ycosfcos(@,t+@)—zsinfcos(@,t + ¢))

i (xsin(@,t+ @)

3)

To the scattering center of the nose cone, assume the
coordinate of its top in the local coordinate system is(0,0,z),

and the distance to the radar is
R, =R, —zcos fcos@—zsin fsinOsin(@,t + @)+ AR, (4)
Where AR, is the slide distance.

And the echo’s Doppler frequency of a single polarization
channel ij(i=H,V;j=H,V) is

P _Ld@(sij 1) 20,f sin
Y or dt c
+ycosfcos(w,t + @) —zsinfcos(@,t + @))

(xsin(@,t + @)

©)

do.
Where ZL a‘i” is the Doppler frequency shift caused by
V4

the polarization scattering matrix phase change.

For the ring structure, assume the distance between its
center and the center of mass is /, and the ring’s radius is r,
then the distance between the two equivalent scattering center
and the radar can be expressed as

R, = R, —kcosa(cos @ cos 5 +sin fsin fcos(@,t + ¢))
(6)

—k sin a\/l —(cos@cos f+sinGsin fcos(w,t + )’

R,, = R, —kcosa(cos@cos S +sinsin Scos(w,t + @)
(7)

+k sin a\/l —(cos@cos S +sin Osin fcos(w,t + o))’

Where k=vI*+r* ,a= arctan(?) . The echo’s Doppler

frequency of a single polarization channel
ij@=H,V;j=H,V) is
_ 1 d(s,(0)
“om dt ®)
= L%+%(a) cosasin fsin @sin(@ t + @)
2z dt ¢ 0 F ’

o, sin ozsin Bsin @sin(@, ¢ + @)(cos B cos @ +sin fsin 8 cos(w,t + (/J)))
\/1 —(cos@cos f +sin Gsin S cos(w,t + 0))’




1 do(s, (1)

T o
de,
=Lﬂ+2—kf°(a)ycosasinﬂsinb’sin(a)t+(p)
27 dt c r

o, sin arsin Bsin @sin(w,t + @)(cos S cos O +sin Ssin & cos(w, ¢ + go)))

\/1 —(cos@cos f+sinGsin fcos(w,t + 0))’
It is known by theoretical derivation:

1. The Doppler of the rotational symmetry precession target is
determined by the precession angle, radar’s average line-
of-sight angle and the coning frequency.

2. The Doppler of the ideal scattering center’s coning is sine
function. And when non-ideal scattering exists, the
coordinate in the local coordinate system will make the
Doppler deviate the sine function.

Target’s polarization characteristic changes with time, and
the phase change of polarization scattering matrix affects
Doppler frequency, and the amplitude change affects signal’s
intensity.

IV. EXPERIMENTAL SCENE OF FULL-POLARIZATION MICRO-
DOPPLER MEASUREMENT

According to the motion feature and structure of the
warhead, researchers make the precession target model shown
in Fig 3.

(a) individual components
Fig 3. The precession target model
Precession target is formed by five parts: warhead model,
spin motor, coning motor, rotation coupling and control cabinet,
which are marked as 1-5 in Fig3(a). By way of the combination
of the target model, the change of the precession angle and the
average line-of —sight angle and the change of the precession
velocity, different motion states of different targets can be
simulated.

(b) combined model

The experiment is conducted in the compact microwave
anechoic chamber, shown in Fig 4, the main facilities include
network analyzer, transmit antenna, receive antenna, collimator
reflector, antenna platform and target platform.

In microwave anechoic chamber measurements, network
analyzer is used as transmit signal source and the echo
processor. It works as a radar, being the key part of the system.
network analyzer in this experiment is Agilent 8362B, its
frequency range is 10MHz-20GHZ), and the frequency range
of the collimator reflector is 0.1GHz-40GHz, so this system
can support the experiment from UHF band to Ku band.
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Fig 4. Microwave anechoic chamber measurement system of precession
targets

The key of microwave anechoic chamber dynamic
measurement is the expansion of network analyzer’s dynamic
data record function. In static measurements, network analyzer
processes all the echoes at some specific posture averagely, and
only makes one record. However in this experiment, the
network analyzer is expected to simulate radar’s detection,
which requires continuously data record during target’s motion.
Dynamic data record can be realized by way of software
development. according to the performance of Agilent 8362B,
when the frequency range is 9GHz-10GHz and the interval is
SMHz, the data record frequency can reach 68Hz.

Connect the output of the network analyzer with the receive
parts and the antenna of the band to be measured, and put the
antennas on the focus of the collimator reflector, and isolate
them by the transmitter-receiver isolation. Let the antenna’s
polarization be linear polarization, variable polarization
measurement can be conducted by accurate antenna rotation
facility.

V. EXPERIMENT RESULTS ANALYSIS

The experiment on full-polarization micro-Doppler of space
precession target is conducted in the Microwave Lab of
National University of Defense Technology. Fig 5 shows the
experiment scene.

e e

(a) Front and side view (b)Back view
Fig 5. Experiment scene of full-polarization micro-Doppler of space precession
target

The scanning frequency range in this experiment is 9GHz-
10GHz, the bandwidth is 1GHz and the interval is SMHz. by
IFFT transform to the data collected, HRRP can be get for
target’s current posture. Processing the HRRP by time-
frequency analysis, micro-Doppler of different structures can
be obtained during target’s precession. The polarization
scattering property is reflected in the time-frequency energy
distribution shown in Fig 6. And Fig 7-10 gives out different
structure’s micro-Doppler of HH,HV,VH,VV polarization
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channels, where (a) means the micro-Doppler of the nose Compare Fig 7(b) and 10(b) with Fig 8(b) and 9(b), the
cone,(b) means the micro-Doppler of the middle ring, (c) cross-polarization is one order of magnitude lower than the
means the micro-Doppler of the bottom ring, the precession co-polarization. Besides, the micro-Doppler of the same
angle is 7.9, the average line-of-sight angle is 10.4° ,and the structure for different polarizations differs slightly, which
coning frequency is 0.26Hz. is caused by the polarization scattering matrix phase

change in formula (1).

Frequency /Hz

\
[ 1 :
== m
Time /s
/ Fig 12. Comparison of the measurement results and the theoretical micro-Dop

pler frequency for the middle ring
J 4. From the comparison of Fig 7,8,9,10, the echo intensity of
. the nose cone is one order of magnitude lower than the
ring structure. It shows that the scattering energy of ring
structure is stronger than the nose cone. The scattering
intensity of the nose cone is stable, while the scattering
intensity of the ring structure is sensitive to the posture.

Fig 6. Measurement results analysis
Though observation, conclusions can be drawn as follows:

Frequency /Hz
Frequency /Hz
Frequency /Hz

1. The warhead design is usually very simple due to the

Time /s

Time /s

aerodynamics, so it has limited numbers of scattering (a) (b)
centers. As shown in figure 6, HRRP is made up by three
scattering centers, which is the nose cone, the middle ring
and the bottom ring.

Fig 7. HH polarization

2. From Fig 7(a) and 10(a), for HH and VV polarization the
micro-Doppler of the nose cone is sine. Figure 11 gives
out the comparison of the measurement results and the
theoretical micro-Doppler frequency according to formula
(5) marked by the imaginary line for VV polarization. @)
From Fig 8(a) and 8(b), for HV and VH polarization the Fig 8 .HV polarization
echo of the nose cone is very weak, it’s concluded that the
echo energy of co-polarization is much larger than that of
cross-polarization.

Frequency /Hz

Fig 9. VH polarization

Frequency /Hz

10
Time /s

Frequency /Hz
Frequency /Hz

Fig 11.Comparison of the measurement results and the theoretical micro-Dopp
ler frequency for the nose cone
3. From Fig7(b),8(b),9(b) and 10(b), the middle and bottom
rings is the sliding scattering centers and the micro- @) (b) ©
Doppler deviates from sine function. Fig 12. gives out the  Fig 10. VV polarization
comparison of the measurement results and the theoretical
micro-Doppler frequency according to formula (8) and (9)
which is marked by the imaginary line for VV polarization.
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VI. CONCLUSION

In this paper the measurement system for precession target
is built by precession target model design and expansion of
microwave anechoic chamber dynamic measurement function.
Based on this the full-polarization micro-Doppler characteristic
of precession targets is studied. The experiment results are
accordance with the theoretical results. Further we will take
advantage of the microwave anechoic chamber measurement
data to conduct the study on motion and structure feature
extraction of precession targets based on spatial polarization.
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Abstract—A Fractional Fourier Transform (FrFT) based
waveform design for joint radar-communication systems (Co-
Radar) that embeds data into chirp sub-carriers with different
time-frequency rates has been recently presented. Simulations
demonstrated the possibility to reach data rates as high as
3.660 Mb/s while maintaining good radar performance compared
to a Linear Frequency Modulated (LFM) pulse that occupies
the same bandwidth. In this paper the experimental validation
of the concept is presented. The system is considered in its
basic configuration, with a mono-static radar that generates the
waveforms and performs basic radar tasks, and a communication
receiver in charge of the pulse demodulation. The entire network
is implemented on a Software Defined Radio (SDR) device.
The system is then used to acquire data and assess radar and
communication capabilities.

I. INTRODUCTION

The employment of joint radar-communication systems
represents an innovative solution to the problem of continu-
ously increasing demand on bandwidth [1] and the need to
meet the low-SWaP (Size, Weight and Power consumption)
requirements.

Applications that can benefit from the technology proposed
in this paper include satellite and airborne Synthetic Aperture
Radars (SARs) that need to share sensed data with a ground
station rapidly [2]; nodes in a surveillance Multiple-Input
Multiple-Output (MIMO) radar network that need to exchange
information about targets; vehicles that need to interact in a
intelligent transportation network [3]. All these applications
may benefit from a joint-radar communication technology
which shares bandwidth, power and hardware resources to
perform radar and communication operations simultaneously.

A joint radar-communication system (Co-Radar) based
on Fractional Fourier Transform (FrFT) waveform has been
recently presented by the authors in [4]. The FrFT [5] was
shown to be suitable for orthogonal waveforms generation for
MIMO radar systems [6]-[9], and in this scenario it has been
exploited to map complex modulated symbols into different
chirp, or Linear Frequency Modulated (LFM), sub-carriers
with different time-frequency rates. Simulations demonstrated
the feasibility to reach data rate as high as 3.660 Mb/s,
while maintaining good radar performance in terms of range
resolution, Doppler resolution and Side Lobe Levels (SLLs)
when compared with a LFM pulse that occupies the same
bandwidth.

Different techniques of embedding data in the radar wave-
form have been previously proposed. In [10] and [11] informa-

tion bits are sent by exploiting the orthogonality between up-
chirp and down-chirp signals. Methods based on LFM pulses
phase-modulated through Binary Phase Shift Keying (BPSK)
and Minimum Shift Keying (MSK) symbols are presented
in [12] and [13], respectively. Stepped-frequency [14] and
Frequency Modulated Continuous Wave (FMCW) [15] based
joint radar-communication systems have also been proposed, as
well as Orthogonal Frequency Division Multiplexing (OFMD)
based systems [16], [17]. However, none of these previous
techniques is designed to achieve data rates up to 3.660 Mb/s
at medium ranges.

In this paper the experimental validation of the FrFT based
Co-Radar system [4] is reported. A basic configuration of the
system is considered: a mono-static radar generates the FrFT
waveforms, sends the pulses, listens to echoes and performs
basic radar tasks, while a communication receiver demodulates
the pulses.

The remainder of the paper has the following structure.
Section II summarises the concept of the FrFT based Co-
Radar waveform design framework presented in [4]. Section
IIT describes its implementation on a Software Defined Radio
(SDR) device, while the experimental setup and results are
presented in Section IV. Finally, Section V concludes the paper.

II. FRFT BASED CO-RADAR SYSTEM

In this section the FrFT based Co-Radar system [4] is
presented. The FrFT [5] is a time-frequency representation of
a signal and can be considered as a rotation by an arbitrary
angle ¢ of the signal itself in the time-frequency plane, such
that:

¢=a M

where « is called order of the transform. In the proposed
system, FrFTs with different orders are used to map the
modulated symbols into quasi-orthogonal chirp sub-carriers.

The block diagrams of the mono-static radar and the
communication receiver in a simple FrFT based Co-Radar
system scenario are shown in Figure 1 and described in the
following.

A. Mono-Static Radar

The block diagram of the mono-static radar in the consid-
ered basic configuration of the FrFT based Co-Radar system
is shown at the top of Figure 1. The serial-to-parallel (S/P)
block is used to divide the long sequence of bits coming from
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Figure 1.

the source into C' — 1 segments of N bits each, where C
is the number of chirp sub-carriers composing the waveform.
The 0-th order sub-carrier is not used to carry information
bits. It accommodates a pilot waveform instead, used at the
communication receiver for synchronisation and phase com-
pensation. Since each pulse contains NV x (C' — 1) information
bits, the final bit rate is N x (C' — 1) x PRF b/s, where PRF
stands for Pulse Repetition Frequency. In each segment, G
guard bits are added at the end of the sequence in order
to compensate for the group delay introduced by the Root
Raised Cosine (RRC) filter. Then the sequence is spread
by using a chip sequence; the chosen chip sequence is a
L-long Barker code, which leads to a spread sequence of
(N + G) x L bits. The interleaver is used to mitigate the
Inter-Carrier Interference (ICI) that occurs in the middle of
the sequence due to the overlap of the different chirp sub-
carriers and that generates a burst of errors. It is applied only
to the NV bits of information and aims to spread the burst of
errors across the entire spread sequence. The digital modulator
maps a series of B bits into one of the M = 28 possible
complex symbols belonging to the chosen modulation scheme
(i.e. PSK), leading to a (N + G) x L/ B long symbol sequence.
The modulation scheme and the cardinality of its alphabet
M can be adaptively chosen according to the conditions of
the channel. The RRC filter is used to minimise the Inter-
Symbol Interference (ISI) that may be caused by the channel.
For efficiency, it is implemented as a multirate filter that up-
samples the output by a factor R, leading to a final sequence
of (N + G) x L x R/B samples.

The C'—1 sub-waveforms obtained after the RRC filter are
then mapped to different chirp sub-carriers uniformly spaced
in the time-frequency domain. Note that the FrFT is periodic
in ¢ with period 2w, however rotations of ¢ and ¢ + =«
produce signals that overlap in the time-frequency plane. For
this reason, only angles in the range [0, 7) are considered, that
leads to o € [0,2). Thus, the uniformly spaced sub-carriers
are obtained by choosing the ¢-th fractional order to be equal
to a; = ia,i = 1,...,C — 1, where & = Z. Finally, the
parallel-to-serial (P/S) block combines the chirp modulated
sub-waveforms and the pilot sub-waveform by adding them
together. Specifically, the latter is a bi-phase coded signal run
by a Coarse/Acquisition (C/A) code [18] given by:

pln] = e/ (el=1) @
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Block diagram of (top) the Mono-Static Radar and (bottom) the Communication Receiver of the FrFT based Co-Radar basic configuration [4].

where a[n] is the selected C/A code properly up-sampled
and truncated to match the length, in samples, of the Co-
Radar waveform. Before sending the waveform to the Radio
Frequency (RF) front-end, its mean is removed and the power
is normalised such that all the transmitted pulses present the
same power. While generating and transmitting the FrFT based
pulses, the mono-static radar acquires the echoes and performs
any needed radar task (i.e. matched filter with the transmitted
pulse).

The spectrogram of a Co-Radar waveform with relatively
few sub-carriers is shown in Figure 2 for clarity, although in
practice many more sub-carriers would most likely be used.
Each of them is the rotation by a specific angle, driven by the
order of the FrFT, of a phase modulated signal (i.e. QPSK).

Spectrogram of a FrFT Based Co-Radar Waveform

Normalised Frequency (f/BW)

0 0.2 0.4 0.6 0.8 1
Normalised Time (t/7)

Figure 2.
carriers.

Spectrogram of a FrFT based Co-Radar waveform with 4 sub-

B. Communication Receiver

The communication receiver is shown at the bottom of
Figure 1. All the operations are performed within a Pulse
Repetition Interval (PRI). Before the pulse is synchronised and
demodulated, the mean of the received signal is subtracted
to remove the strong return from the background. The syn-
chronisation is necessary since the pulse could fall anywhere
within the PRI due to the transmitter-receiver distance, and
the alignment with the pulse on a sample basis is needed to
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Figure 3. Pilot waveform’s (a) autocorrelation and (b) its peak’s complex
value on varying the phase offset.
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perform the inverse FrFT. This is achieved by exploiting the
good autocorrelation properties of the pilot waveform, shown
in Figure 3(a).

The pilot waveform is also used to estimate the phase
offset introduced by the channel. Figure 3(b) shows how the
autocorrelation’s complex-valued peak changes on varying the
phase offset. In particular, when the offset is zero the real
part of the peak reaches its maximum, while the imaginary
part is zero. Hence, once the peak of the autocorrelation is
detected by matched filtering the received signal with the pilot
waveform, the phase offset can be estimated by evaluating the
phase of the correlation peak. This phase estimation method is
also robust with respect to the Doppler shift potentially present
in the signal.

Once the synchronisation and the phase compensation are
performed, the pulse can be demodulated. The S/P block splits
and redirects the pulse, whose length is (N + G) x L x R/B
samples, to C' — 1 different IFrFT blocks that perform the
inverse FrFT. Each sequence is then input of the RRC filter,
which also down-samples the sub-waveform by a factor R.
The digital demodulator translates the (N + G) x L/B long
sequence of symbols in a sequence of (N + G) x L bits,
according to the modulation employed. At this point, the de-
interleaver performs the inverse operation of the interleaver.

The chip correlator block correlates the input spread se-
quence with the L-long Barker chip code used in transmission
to extract N + G bits, exploiting both the low correlation side
lobes and the knowledge that the peaks of the correlation occur
every L samples. Finally, the guard remover and the P/S blocks
reconstruct the original stream by combining the N-long bit
sequences coming from the C' — 1 different parallel branches.

III. FRFT BASED CO-RADAR ON SDR

The FrFT based Co-Radar system is implemented by
means of a SDR device, namely the National Instruments
Universal Software Radio Peripheral (NI-USRP) 2943r. It has
four in-phase and quadrature (IQ) channels, two receivers and
two transmitters/receivers, and its working frequency ranges
between 1.2 GHz and 6.6 GHz. It is provided with a fully
programmable Xilinx Kintex-7 FPGA (Field-Programmable
Gate Array) and can be connected to a host computer through
a high-speed, low-latency PCI Express x4 (~800 MB/s). It
is used with three wideband LB-2678-15 multi octave horn
antennas produced by A-Info, two for the mono-static radar
node and one for the communication receiver.

The USRP 2943r is programmed through NI software
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Figure 4. High-level block diagram of the FrFT based Co-Radar system’s
implementation in LabVIEW.

LabVIEW, and its high-level block diagram is shown in
Figure 4. Within the loop that repeats every PRI, the FrFT
based Co-Radar waveform is generated as described in the
previous section and sent to the FPGA. The latter up-samples
the signal in transmission to meet the 120 MHz data clock
frequency of the device and interfaces with the RF front-end.
Meanwhile, the received signal, down-sampled and coming
from the FPGA, is sent both to a MATLAB session for the
real-time pulse demodulation and to a matched filter with the
transmitted pulse for further radar processing. Specifically, a
real-time spectrogram is computed. This choice is driven by
the limited power and bandwidth resources of the employed
SDR device, which are not sufficient for more advanced radar
operations. Outside the loop, the message to send is loaded
and all the preliminary steps are performed.

IV. EXPERIMENTAL SETUP AND RESULTS

The implemented FrFT based Co-Radar system is used in a
controlled laboratory environment to acquire data and assess its
communication and radar capability. The acquisition geometry
is shown in Figure 5. The mono-static radar is placed at the
bottom left, the communication receiver at the top right, while
within the light blue area a person is walking towards and
away from the radar to generate a Doppler signal.

The transmitted message is a 64 x 64 black and white

|

| Receiver |
| |
| Mono-Static |
: Radar :
| |
| |
| |

Walking Area

Figure 5.
paign.

Acquisition geometry of the laboratory-based experimental cam-



image with a bit depth 5. Carrier frequency is 3 GHz and
the bandwidth is 1 MHz. The number of information bits per
carrier, N, is 3, the length of the Barker code is L = 7 and
Quadrature PSK (QPSK) is the employed modulation scheme,
hence B = 2. The RRC filter is designed to span S = 8
symbols, with an up-sampling factor R = 18 and a roll-off
factor = 0.4. This leads to a guard of G = 3 bits. The total
number of samples per waveform is 378, which means that
the duration of the pulse is 7 = 378 us. The PRF is fixed to
83.33 Hz, giving a duty cycle of 3.15 %.

Different configurations are analysed by changing the num-
ber of sub-carriers, C = 4,6, 8,10, and modifying the trans-
mitted power. The Signal-to-Noise Ratio (SNR) is estimated
both at the mono-static radar and the communication receiver.

Communication performance is shown with solid lines in
Figure 6, in terms of Bit Error Ratio (BER) averaged over 10
realisations vs SN R.omms- The dotted lines in Figure 6 show

Communication Performance

-~ 4 Sub-Carriers
-~ 6 Sub-Carriers
8 Sub-Carriers
- 10 Sub-Carriers|

0

10

— Real Data
Monte-Carlo Simulation

¥

Bit Error Ratio
=
L}

15 20

1‘0
SNR__(dB)

comms

Figure 6. Communication performance on varying the SN Rcomms and for
different number of chirp sub-carriers.

the results obtained by running Monte-Carlo simulations with
10° iterations with the same parameters listed above, assuming
the channel to be Rician with K-factor equal to 6 dB (indoor
channel). They are used as comparison to validate the results
on the acquired data. Note that no Forward Error Correction
(FEC) method is used, since this is out of the scope of the
present paper.

As expected, as the SN R omms increases, the BER de-
creases. However, no significant further improvements are
observed for SN R.omms greater than 15dB, and this trend
is confirmed by the results from the Monte-Carlo simulations,
which clearly show plateaus. They are due to the overlap of
the sub-carriers, which causes errors independently of the noise
level. For the same reason, performance improves by reducing
the number of sub-carriers.

The radar capabilities of the FrFT based Co-Radar are
presented by showing spectrograms from the signals acquired
during the laboratory-based experimental campaign. Figure 7
and Figure 8 show spectrograms when FrFT based Co-Radar
pulses with C' 4 and C 8 sub-carriers are used,
respectively, and for two different values of SN R, 444 In
all the cases the Doppler and micro-Doppler signature of the
person walking towards and away from the radar is clearly
visible.

V. CONCLUSION

The paper presented an experimental validation of the FrFT
based Co-Radar system proposed in [4]. The system was suc-
cessfully implemented on a SDR device and its performance
demonstrated in a controlled laboratory environment. A basic
configuration was considered with one mono-static radar and

34

Backto Contents

Spectrogram-C =4, SNRra

. 2.95dB. Spectrogram - C = 4, SNRra

da dal

Frequency (Hz)
Frequency (Hz)

Time (s)

Time (s)

(@) (®
Figure 7.  Spectrograms obtained from FrFT based Co-Radar pulses with
C = 4 and different SN R,.q 4q.- Window length 0.36 seconds, overlap 80 %.
Person walking towards the radar approximately between 0-5 seconds and 10-
11 seconds, and away from it between 5-10 seconds.
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Figure 8. Spectrograms obtained from FrFT based Co-Radar pulses with
C = 8 and different SN R, q4.- Window length 0.36 seconds, overlap 80 %.
Person walking towards the radar approximately between 4-8 seconds, and
away from it between 0-4 seconds and 8-11 seconds.

one communication receiver.

Communication performance was evaluated in terms of
BER vs SN R.,ms and resulted consistent with that obtained
from Monte-Carlo simulations. It shows BER between 1073
and 1072 when no error detection and correction techniques
are used. Due to the limited power and bandwidth resources of
the employed SDR device, the radar capability of these novel
waveforms is assessed by computing the spectrograms of the
acquired signals. They clearly showed the main Doppler and
micro-Doppler signature of a person walking towards and away
from the radar. These preliminary results confirm the capability
of the proposed novel waveforms of joint radar-communication
operations.
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Discriminating Underwater LiDAR Target
Signatures using Sparse Multi-spectral Depth Codes

Puneet S Chhabra®, Aurora Maccarone, Aongus McCarthy, Andrew M Wallace and Gerald S Buller
School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS

Abstract—The analysis and discrimination of underwater
multi-spectral full-waveform LiDAR signatures acquired using
a single-photon counting sensor is presented. We use a realistic
scaled exemplar of a marine environment, with known and
unknown targets, and show how we can both discriminate
different materials and detect and locate mines. Each waveform
is a temporal photon histogram whose inherent nature changes
with the laser wavelength, target geometry and environment.
Discriminatory dictionaries for target materials and mine types
are learnt by making multi-spectral measurements. An accuracy
of 97.8% and 98.7% was achieved for material and mine type
discrimination, respectively.

Index Terms—Photon counting, dictionary learning, multi-
spectral, lidar, ATR, full-waveform, target discrimination

I. INTRODUCTION

Terrestrial and aerial light detection and ranging (LiDAR)
has enabled researchers to explore the third dimension, depth;
this has advantages in remote sensing [1], bathymetric map-
ping [2], defence and security [3], and restoration and ar-
chaeology [4]. It is only recently that LiDAR systems have
been built and tested for underwater applications. Commercial
and academic focus [2] on bathymetric LIDAR has been on
shallow waters and uses either monochromatic laser sources
or a maximum of two wavelengths. This work is the first to
report signal analysis and discrimination of underwater LIDAR
data for mine counter-measures (MCM).

The multi-spectral depth imaging system [5] used in this
study is based on the time-of-flight (ToF) approach using
time-correlated single photon counting (TCSPC). Figure la
illustrates a schematic of the experimental set-up. The TCSPC
module (Hydraharp in Figure 2) time-stamps each photon
event reflecting from a target and records it using a single-
photon detector. The photon counts can then be time gated
to form a histogram, a full-waveform, whose inherent nature
depends on several factors, e.g., the laser wavelength, surface
geometry and transmission medium. Figure 1b illustrates an
exemplar used in this paper which has several targets em-
bedded in a sand-cement-epoxy mixture, and was imaged in
a tank filled with clear unfiltered tap water. Making such
measurements is the first step to demonstrate how LiDAR
could be used as an alternative to acoustic sensors for MCM
purposes in very challenging environments.

*As a joint PhD candidate P. S. Chhabra is also with the University of
Edinburgh. Correspondence: psc31@hw.ac.uk
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Fig. 1: a) A schematic of the experimental set-up; b) (left) an
exemplar under investigation with different targets; (middle)
Amplitude image, colour coded photon count, blue (low) to red
(high) c) 16 full LiDAR waveforms at different wavelengths
for a single pixel.

A. Contributions & Outline

The main contribution of this work is a novel approach to
discriminate target signatures acquired by an underwater multi-
spectral LiDAR system. This has been applied to identify both
materials and specific targets for MCM.

In Section II we describe the basis of our approach,
including firstly i) a “reflectance” aware spectral depth
representation (SDR); and, secondly ii) a semi-supervised
discriminatory objective function as an enhancement to the
traditional sparse approximation scheme. In Section III we
describe our implementation of the earlier theory, giving
pseudocode descriptions of our software. The evaluation of
the method on our own experimental data is given in Section
IV. Finally, our conclusions are presented in Section V.

B. Experimental Setup

The experimental set-up is illustrated in Figure 1. Table I
summarises the sensor equipment and acquisition parameters
used. The exemplar was lowered underwater and kept at a
distance of 1.33m from the SPC sensor. In order to limit the
influence of any ambient illumination, the experiment was
carried out in a dark room. The instrumental response was
measured using a reference scatterer, a Spectralon panel, which
was placed approximately at normal incidence to the beam. For

978-1-5090-0326-6/16/$31.00 ©2016 IEEE
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TABLE I: Experiment Key Parameters

Parameter Value

Environment Clear unfiltered tap water

Laser System NKT Photonics supercontinuum
laser source and tunable filter
fibre-coupled to the transceiver unit
500nm - 725nm

~ 300pum

19.5MHz

Exemplar 1: 200 x 200 pixels

Area: bem x bem

Mluminating Wavelength

Laser Beam Diameter

Laser Repetition Rate

Acquisition Mode

Pixel acquisition time: 10ms

Histogram bin width 2ps
Histogram Length 4500 bins (after gating)
Avg. Optical Power ~ 300nW

each pixel a 4500 bin time-gated histogram is created with a
depth resolution of 300um, which is referred to as, Single
Photon Counting data in Figure 2. Such measurements are re-
peated for 16 wavelengths ranging between 500nm to 725nm,
equally spaced by 15nm. The choice of the wavelengths hinges
on a detailed, previous study [5].

II. THE PROPOSED APPROACH - AN OVERVIEW

The proposed approach summarised in Figure 2 has three
main stages: i) spectral depth representation (SDR) (see
Section II-A, where a representation based on the LiDAR
equations and surface geometry is proposed; ii) signal approx-
imation and discrimination (SAD) to create and learn spectral
sparse codes of the representations produced in stage 1,
Section III; and, iii) prediction where unseen target signatures
are classified.

A. Stage 1 - Spectral Depth Representation

The following assumptions were made when processing
raw multi-spectral SPC data: i) one peak per waveform was
extracted at each wavelength; ii) SPC waveforms are aligned
and normalised with respect to the Spectralon target, with
10% reflectance; iii) the laser beam width is less than surface
differential. For a beam width of 300 um, the smallest target
diameter under-investigation was around 0.5 cm. Finally, iv) a
fixed stand-off distance from the sensor is assumed and the
sensor is stationary.

1) Spectral FW-LiDAR Features: In previous work for the
analysis of urban and forest scenes using laser scanning,
several classification and feature relevance algorithms [1], [6]
have been proposed. However, these methods do not truly em-
bed the full-waveform properties and the spectral reflectance
of the observed objects. Our SDR representation captures such
variations from the waveform and the point cloud data. For NV
acquired sets of waveforms at A wavelengths, N x A wave-
forms are processed and the echo properties are extracted, Eq.
2. The transmitted time signature of the super-continuum laser
source is an exponential pulse and the degree of modulation
on the backscattering beam depends on the surface geometry
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Fig. 2: The Proposed Approach.
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Fig. 3: An exponential pulse and a least-square fit to a
returning target signature for a single wavelength.

and its spectral reflectance. Figure 3 illustrates one such return
as a black curve. The pulse has the form

f(t) = k(e
Ee(tpito)ﬂ d
-1 " T m-T)

The waveform processing module, stage 1 of Figure 2,
finds the location within in each waveform where the average
curvature, controlled by a specified region, is concave down,
to. Once this location is identified, a least-square fit of a double
exponential pulse provides the true position, the temporal
parameters, 71, T2 and the area under the curve, Ay. Figure 3
shows how an exponential pulse was fitted, the pink curve, to
the incoming full-waveform, the black curve. The parameters
71 and 72, represent the fall and the rise of the exponential
pulse respectively. These are computed at each wavelength.

2) Depth Representation (DR): The FW processing leads to
a dense 3D point cloud. In order to capture local surface vari-
ations, a regional variance-covariance matrix was computed
on the 3D point cloud. The radius, r, of the region shown in
Figure 4 can be altered depending on the point cloud density.
West et al. [6] show how Eigenvalues can be used to describe
the local, spatial distribution of the 3D point cloud. They
compute discrete moments within a neighbourhood that can
describe the planarity, linearity, sphericity and anisotropy.

Table II illustrates how these properties are computed,
provided the Eigenvalues & > & > &;. The Eigenvalues

>

=

— TRy,

(t=0),
In(72/Th)

where, k = tp (D



Fig. 4: Raster images of different geometric features computed
for each 3D point, controlled using a local neighbourhood
radius, 7. (a) Anisotropy Ag, b) Planarity Pg, ¢) Sphericity
Sg and d) Linearity Lg Table II.

TABLE II: Depth Representations using Eigenvalues

Linearity Lg % Sphericity Sg %
Planarity Pg % Anisotropy Ag %

computed are invariant to 3D rotation [6] and view-point since
they are computed locally. Four local 3D surface features,
Anisotropy, Ag, Planarity, Pg, Sphericity, Sg and Linearity,
L¢g are computed within a neighbourhood, governed by radius
r, of each 3D point. Finally, the depth D, per pixel completes
the SDR vector. A combined per-pixel representation was then
fed into the stage 2 of the approach, the SAD. For each pixel,
the SDR representation is a vector of 53 elements. For the
experiments reported here, A = 16. Set one (elements 1 to 16)
corresponds to the 77, set two (elements 17 to 32) corresponds
to the 73, set three (elements 33 to 48) corresponds to Ay. The
remaining elements are the local geometric properties. So the
final representation looks like

Fy = [(TLaBos AT Aoy,

Ag, Pe, S, Le, D @)

B. Stage 2 - Signal Approximation and Discrimination

Signal representation has a significant impact on the
discriminatory nature of any classification system. Over
the years, research in image characterisation has provided
many compact and invariant representations e.g., image
saliency, edge detections, bags-of-features (BoF) [7]. The
BoF approach uses a vector quantisation (VQ) scheme in
order to encode relationships between high-dimensional
image patches belonging to the same class. In [7], VQ was
applied to local regional histograms in order to generate
cluster means. Cluster membership can be controlled in
the higher-dimensional space and distance measures can be
computed. The VQ scheme forces a cardinality constraint on
cluster membership leading to a coarse representation of the
input signal. This work proposes an alternative to the VQ
scheme and not only relaxes the cardinality constraint but also
improves the discriminatory capabilities. For completeness,
first a short overview of the VQ method is presented in Section
II-B1 followed by the proposed alternative formulation in
Section II-B2.
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1) Vector Quantisation: Let W be a set of SDR in a P-
dimensional space, i.e., W = [w1,...,wn]" € RN*P_ The VQ
scheme applies a K-means clustering algorithm to solve the
following problem

N
argpin 3 [|wn — 4.2If3, Card (¢,) =1,
’ =1

where, Z = [z1, ..., 2x]" € RP*X | are the K cluster centres,
a codebook are unknown. ||.||3 and |.| denotes the squared

Lo and L norm, respectively. The cluster membership in Eq.
(3) can be written as Q = [¢1, ...,qN]T.

2) Discriminatory Sparse Codes: An alternative to a re-
strictive VQ approach is to relax the Card(q,) constraint
to allow more than 1 non-zero element. In this work the
traditional sparse approximation scheme was modified and a
new discriminatory objective function was added. Suppose we
have access to the best Z, the new modified SAD problem can
be written as

N
el +G Q).

n=1

N
argmin | 7w, — an 213 + B

’ n=1
subject to |¢n| < 1, Vn=1,2,...,N (4)

In Eq. 4, the codebook Z is an overcomplete basis set, a
dictionary, where K » P. The term G (Q) is a discriminatory
function that minimises inter-class and maximises intra-class
variance. Detailed explanation of G (Q) and step by step
implementation of SAD is given in Section III. The penalising
terms, $; and [y control the importance of the sparsity
constraint and the reconstruction error, respectively.

The solution to (4) can be divided in to two steps: 1) solve
Eq. (4) with respect to Q and Z. The dictionary, i.e, codebook,
Z and coefficients Q are retained; ii) for a test signal, the
coefficients are obtained by optimising Eq. (4) with respect
to Q only. The individual functional blocks within each stage
are explained in detail below along with their implementation
details.

The discriminative nature of Eq. 4, G(Q) is expressed
below. For a set of coefficients Q = [q1, g2, ..., gk |, Where
qi,---,qk, ---, g are the coefficients for the dictionary atoms,
of which K, samples are in class €2, for 1 < ¢ < (2, the mean
and variance for class ). can be defined as:

1 2 1 2
fe=— >, @ V=1 > llz—pell3 5)
Ke qee K 2€Q.
The mean of all coefficient samples can be written as:
1 K
1= k=1 qk- ©)

The inter-class scatter matrix, S,, and the intra-class scatter
matrix, S, can be defined as:

Q
Sw=ZU§

c=1

Q
Sy =11 > Ke (e = 1) (e — )" 113 (7)
c=1



Finally, the Fisher discrimination function is defined as:
G(Q) =S5, S, (8)

Using Eq. (5) - (8), Eq. 4 can be solved using an orthogonal
matching pursuit (OMP) algorithm [8]. The modified version,
simultaneous approximation and discrimination (SAD) was
presented in [3]. Algorithm 2 presents step by step details
to solve Eq. 4.

III. IMPLEMENTATION DETAILS - PSEUDOCODE

In this section, the solution to Eq. (4) along with details
of the discriminatory function G(Q) is presented. First, the
sparse codes for the SDR, from stage 1, are generated and a
dictionary and their respective coefficients are learnt. Further,
with the help of a semi-supervised clustering approach, these
sparse codes are optimised for maximum discrimination. The
pseudo-code to the approach in Figure 2 is presented in
Algorithm 1.

A. Stage I - Lines I to 11

For a given set of input pixels, W € RN, the aim is to create
a representation that has a physical basis, LIDAR equations
and target geometry. Lines 1 - 11 of Algorithm 1 generate a
P-dimensional representation F € RIN*A)XP In total, 40,000
waveforms were recorded for 16 different wavelengths. Lines
3 and 4 process each pixel for 16 different wavelengths. Lines
4 - 7 correct the intensity at each wavelength. For each pixel,
line 7 aligns the 16 waveforms with respect to the system
impulse, measurements made on a Spectralon target in advance
and estimates the depth, point cloud matrix P. Finally, line 10
compute the FW properties and geometric shape properties, as
explained in Section II-A.

B. Stage II and III- Lines 12 to 21

Given a F € RINXMXP matrix, the aim is to produce
a set of sparse codes that are optimal and highly discrimi-
natory, especially in identifying different materials. From a
partially labelled set, U, line 13 selects a small sub-set, K,
of representations, where K >» P, and initialises them to Z.
Equation 4 is solved for Q and Z but without the optimisation
add-on G (Q), Eq. 8. Solving Eq. 4 with the discriminatory
function, G (Q) produces Q and Z that maximises the intra-
class variance and minimises the inter-class variance. A semi-
supervised approach can be adopted here, where labels are
generated by clustering Q into three different clusters.

IV. RESULTS AND ANALYSIS

The discriminatry performance of our approach is analysed
using the exemplar of Figure la. Two sets of experiments
were carried out: 1) Material Discrimination: classify target
signatures into three constituent materials, sand, plastic and
metal, used to make the exemplar; ii) Mine Discrimination:
classify different mine types, which not only differ in shape
but also in material. Four different mines were used, Plastic
1, a cuboid shaped mine, Plastic 2, a spherical shaped mine,
Metal 1 and Metal 2, small and large spherical shaped metallic
mines, respectively.

Backto Contents

Input: SPC data W € RN*A| Partial labelled set, 2
Output: Dictionary Z, Coefficients Q and pixel labels
// Stage I — SDR. See Section II-A
begin
SDR matrix F « []
forall the n € [1,N] do

forall the ) € [1,A] do

CorrectIntensity (wn, x, $»)

end

Waiign < AlignWaveforms ({w, x}5_;)

P — EstimateDepth(W gy,
end
10 F « SDR(Wiign,P) // Eq. 2
11 end

// Stage II — SAD. See Section III-B
12 begin
// Get w random SDR’s from set
13 w € R® « Randperm(£2), where K » P
[Qinit, Zinit] < Solve Eq. (4) without G(Q)
14 classlde — VQ(Q, w) // Eq. 3
// Dictionary selection. Algorithm 2
15 [Q,Z,dictIdx] < SAD (F, Zinit, classldz, pamm)
// Reorder dictionary indices
16 Zopt Reorder(Z, dict[dx)

o NN T R W N -

17 end

// Stage III - Prediction
18 begin
19 labels «— Classify(F, Zopt, Ftest)
20 forall the i € [1,N] do
21 | Distance(Zopt, F)
22 end
23 labels « Sort(Distance (Zop, F))
24 return [abels
25 end

Algorithm 1: PSEUDOCODE - PROPOSED APPROACH

Input: F = {fn}ﬁ':1 e RN*P Qe RP*K, 51, By
Qutput: Dictionary, atom indices and coefficients
151 Ry «— W, dictldx <« ¢
152 while Ry; — 0 do

15.3 t « 0 Select z;, € Z, such that
N N
rél}% B2 Z ||fn - an||2 + B Z |qn|1 + G(Q) >
n=1 n=1
subject to|gn| <1, Vn =1,2,.., N

15.4 dictldx < dictldx U k

// Projection and residual
155 | Oy — Qxinv(QT «Q) = QT
15.6 R; < F-0O,F
157 t—t+1
158 end

159 return Q, Z, dictldx
Algorithm 2: PSEUDOCODE - SAD MODULE
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TABLE III: Confusion Matrix - Material Discrimination

Sand | Plastic Metal

Sand 0.9721 | 0.0144 | 0.0133
Plastic || 0.0151 | 0.9823 | 0.0024
Metal 0.0140 | 0.0035 | 0.98239

TABLE 1IV: Confusion Matrix - Mine Discrimination

Plastic 1 | Plastic 2 | Metal 1 | Metal 2 Sand

Plastic 1 0.9755 0 0.0020 0 0.0224
Plastic 2 0.0054 0.9905 0.0007 0.0020 0.0014
Metal 1 0.0014 0.0027 0.9946 0 0.0014
Metal 2 0.0014 0.0068 0 0.9891 0.0027
Sand 0.0102 0.0007 0 0.0007 0.9884

TABLE V: Effect of Depth Representation (DR) on accuracy

Plastic 1 | Plastic 2 | Metal 1 | Metal 2
Without DR(%) 92.65 95.65 97.62 98.10
With DR(%) 97.55 99.05 99.46 98.91

A. Experiment 1 - Material Discrimination

The confusion matrix for material discrimination is shown
in Table III. A subset of 8520 target signatures, equally
divided into three different materials was selected. A 10-fold
cross-validation classification was then performed using the
proposed approach resulting in a mean classification error rate
of 0.021%.

B. Experiment 2 - Mine Discrimination

The aim of this experiment was to seek answers for the
following questions: 1) can mines with structural variation
but similar spectral signatures be classified correctly?, and,
ii) what impact do the Geometric features, Section 1I-A2,
have on classification? Table IV lists the confusion matrix for
mine classification when geometric properties are included,
using the full SDR representation, Eq. 2. A subset of 7350
target signatures, equally divided into five different classes was
selected. The mean classification error rose by 1 3.6% when
geometry based DR was neglected. The effect on accuracy of
classification for four different mines with and without DR is
listed in Table V. Figure 5 illustrates the learnt coefficients, Q,
clustered into different mine types. The 3D point cloud, shown
within, is segmented not only on the basis of their spectral
content but also their geometric features. For illustration
purposes, the clusters are plotted along three dimensions, area-
under-curve, Ay, sphericity, Sg and linearity, L¢, respectively.

V. CONCLUSION

A novel spectral-depth representation is presented that is
highly discriminatory in characterising different target signa-
tures underwater. A custom-made realistically scaled exemplar
with known and unknown targets has been investigated using
a multi-spectral single photon counting LiDAR system. Multi-
spectral measurements were made underwater on targets with

40

Backto Contents
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Sphericity's, 0

Fig. 5: Mine clusters using the spectral depth codes, Q, on
the spectral axis, echo area; and the depth axis, linearity and
sphericity, respectively.

different shapes and materials, Section I-B. Using the pro-
posed spectral depth representation sparse codes are optimised
for maximum discrimination between different materials and
mines, demonstrating accuracies of 97.8% and 98.7%, re-
spectively. Combining depth with spectral data, the approach is
very effective at discriminating targets of different shapes, but
with similar spectral response, or conversely of similar shape
but having different spectra. When spectral features alone
are considered, the discrimination error reported for Plastic 1
mine is 7.35%. But, when spectral and depth representation is
considered, the error reduces to 2.45%, Table V. This work
has been the first to report the analysis and discrimination
of multi-spectral underwater single photon counting LiDAR
signals as an alternative to acoustic MCM.
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ABSTRACT

This paper describes a new Bayesian range estimation and spectral
unmixing algorithm to analyse remote scenes sensed via multi-
spectral Lidar measurements. To a first approximation, each Lidar
waveform consists of the temporal signature of the observed target,
which depends on the wavelength of the laser source considered
and which is corrupted by Poisson noise. When the number of
spectral bands considered is large enough, it becomes possible to
identify and quantify the main materials in the scene, in addition
to estimating classical Lidar-based range profiles. In this work, we
adopt a Bayesian approach and the unknown model parameters are
assigned prior distributions translating prior knowledge available
(e.g., positivity, sparsity and/or smoothness). This prior model is
then combined with the observation model (likelihood) to derive
the joint posterior distribution of the unknown parameters which
are inferred via maximum a posteriori estimation. Under mild
assumptions often true in practice, we show that it is possible to
find a global optimizer of the posterior by splitting the problem
into two sequential steps estimating the unknown spectral quantities
and the target ranges, respectively. The proposed methodology is
illustrated via experiments conducted with real multispectral Lidar
data aquired under controlled observation conditions.

Index Terms— Multispectral Lidar, Depth imaging, Spectral
unmixing, Poisson noise.

I. INTRODUCTION

Light detection and ranging (Lidar) systems are particularly
useful to extract spatial features from three-dimensional (3D)
scenes. Using single-photon techniques, it is possible to recover
structural parameters of forest canopies such as vegetation height,
leaf area indices and ground slopes. Spectral information about the
scene is usually extracted using passive multispectral (MSI) and
hyperspectral images (HSI). Such images are particularly useful
to detect spectral variations caused for instance by changes in the
canopy composition or by the presence of hidden vehicles or targets
for defense applications.

Combining spatial and spectral information can be achieved by
coupling Lidar data and multi/hyperspectral images [1], [2]. How-
ever, as in many multimodal data fusion problems, data synchro-
nization issues in space (alignment, resolution) and time (dynamic
scene, change of observation conditions, etc.) are still open issues.
To tackle these problems, multispectral Lidar (MSL), which has
recently received attention from the remote sensing community
[3]-[5], presents as a promising alternative. Indeed, MSL systems
have the ability to fully exploit the 3D distribution of objects,
in particular for scenes including semi-transparent objects (e.g.,
vegetation or fences). In contrast to passive hyperspectral imaging
systems which integrate the spectral response along the path of
each optical ray, MSL systems measure the spectral response as
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a function of distance, e.g. depth into a forest canopy and can be
used to detect and identify objects (e.g., buildings, vehicles, human
activity) hidden for instance in vegetated areas.

In [5], [6], spectral unmixing techniques were developed to
analyze 3D scenes composed of multi-layered objects, assuming
that the spectral signatures of the materials composing the scenes
were known and assuming linear mixing processes. In this paper we
extend the method proposed in [5] to account for and identify possi-
ble deviations from the classical linear mixing model (LMM) used
to estimate the amount/abundances of each endmember (assumed
known) present in the scene. We assume that for each pixel, the
photons emitted by the pulsed laser sources at different wavelength
are reflected onto a single surface. This is typically the case for
short to mid-range (up to dozens of metres) depth imaging where
the divergence of the laser source(s) can be neglected.

Single-photon Lidar and thus MSL systems usually record,
for each pixel/region of the scene, a histogram of time delays
between emitted laser pulses and the detected photon arrivals. Due
to the discrete nature of detected photons, Poisson noise models
are more appropriate for single-photon MSL data than Gaussian
noise models classically used when analysing HSIs. Due to the
design of the proposed experiments (performed indoor here) and
to simplify the estimation problem, we further assume that the
ambient light and dark counts can be neglected. This assumption
often holds for measurements by night or for mid-range imaging
applications for which the laser power can be adjusted to reduce
the acquisition time and thus the background counts. In this paper,
we demonstrate the possibility of efficient 3D scene analysis by
exploiting geometric and spectral information contained in MSL
data (33 discrete wavelengths ranging from 500nm to 820nm),
under favourable observation conditions. However, the proposed
method can be extended to more difficult observation conditions,
as discussed in the conclusions of the paper.

Adopting a classical Bayesian approach, appropriate prior distri-
butions are chosen for the unknown parameters of the model and
the joint posterior distribution of these parameters is then derived.
Here we propose to estimate the unknown model parameters via
maximum a posterior estimation. Unfortunately, the corresponding
cost function to be optimized is often multimodal, which increases
the risk of reaching a local as opposed to a global optimum. In
this work, we show that under weak assumptions (often met in
practice), it is possible to reach a global optimum using a two-step
optimization scheme. More precisely, one can first estimate the
mixing coefficients (abundances) involved in the spectral unmixing
problem and then estimate the object ranges.

The remainder of the paper is organized as follows. Section II
introduces the observation model associated with MSL returns for
a single-layered object to be analyzed. Section III presents the
Bayesian model associated with the spectral unmixing problem
considered and the associated posterior distribution. Section IV
describes the estimation strategy adopted to maximize the posterior
of interest. Results of experiments conducted on real MSL data are
shown and discussed in Section V and conclusions are reported in
Section VI.
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II. PROBLEM FORMULATION

This section introduces the statistical observation model associ-
ated with MSL returns for a single-layered object which will be
used in Section III for spectral unmixing of MSL data. We consider
a 4-D array Y of Lidar waveforms and of dimension Nyow X Neol X
L x T, where Nyow and N stand for the number of rows and
columns of the regular spatial sampling grid (in the transverse
plane), L is the number of spectral bands or wavelengths used to
reconstruct the scene and 7" is the number of temporal (correspond-
ing to range) bins. Let y; j ¢ = [YL‘,J‘,L: = [Yije1s--- ,yl"j’[,T]T
be the Lidar waveform obtained in the pixel (¢, 5) (i.e., ith row and
jth column) using the ¢th wavelength. The element y; j ¢+ is the
photon count within the ¢th bin of the ¢th spectral band considered.
Let d; ; be the position of an object surface at a given range from
the sensor, whose spectral signature (observed at L wavelengths) is
denoted as A;; = [Nij1,--.,\ijzn]T. According to [7], [8] and
assuming that the ambient illumination and dark photon counts can
be neglected, each photon count y; ;¢ is assumed to be drawn
from the following Poisson distribution

—tij)) 1)

where go ¢(-) is the photon impulse response whose shape can differ
between wavelength channels and ¢; ; is the characteristic time-of-
flight of photons emitted by a pulsed laser source and reaching
the detector after being reflected onto a target at range d;,; (d;,;
and t; ; are linearly related in free-space propagation). Moreover,
the impulse responses {go¢(+)} are assumed to be known and can
usually be estimated during the imaging system calibration. We
further assume that the spectral signatures of the scene surfaces can
be decomposed as linear mixtures of 2 known spectral signatures
m, (also referred to as endmembers and gathered in the matrix

Yigiet|Niges iy ~ P (Nijego,e(t

M = [mi,...,mg])
)‘i,j = Ma’ixja Vi, 7, 2
where @i ; = [aij1,...,ai 4 r|" contains the abundances of the

R endmembers in the pixel (7, ). Note that due to physical con-
siderations the unknown abundance vectors {a; ;}, . are assumed
to have positive entries. It is important to recall that in this work,
we consider applications where the observed objects consist of a
single visible surface per pixel. We do not consider cases where
the photons can penetrate through objects (e.g., semi-transparent
materials for which we would like to infer the internal composition)
or be reflected onto multiple surfaces. This assumption allows the
spectral unmixing problem to be reduced to a two spatial dimen-
sions problem, which could be extended for distributed targets
in future work. The problem addressed in this paper consists of
jointly estimating the range of the targets (for all the image pixels)
and solving the spectral unmixing problem (e.g., estimating the
abundance vectors). The next section studies the proposed Bayesian
model developed to solve the problem considered.

III. BAYESIAN MODEL
III-A. Likelihood

Assuming that the MSL waveforms y; ; {yi7j727t}e7t of
a given pixel (4,7) result from the photons reflection onto a
surface associated with the spectrum A; j, the likelihood associated
with the pixel (i,7) can be expressed as f(yi ;|\ j, ti,j;) =
I1,; f(wijee5 Niyjego,e(t — ti5)) , when assuming that the de-
tected photon counts, conditioned on their mean in all chan-
nels/spectral bands are independent. Considering that the noise real-
izations in the different pixels are independent, the joint likelihood

can be expressed as
H f(yis

and T is a matrix gathering the target ranges.

F(Y|A,T)

,j7ti,]')7 (3)

where A = {Xij}, ;
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III-B. Prior distributions

In this work, we do not account for the potential spatial cor-
relations between the target distances in neighbouring pixels of
the scene. Thus, each target position is considered as a discrete
variable defined on T = {tmin, - - -, tmaa }» such that 1 < ¢ <
tmae < T (in this paper we set (tmin, tmae) = (501,77 — 500)
for 1" = 4500, see discussion in Section IV) and assign the target
ranges independent uniform priors p(t;,; = ¢) = 1/T',Vt € T
where T’ = card(T). Note that more informative priors could
be used, e.g., to capture potential spatial correlations affecting
the range profiles, as in [8]. However, when the number of
spectral bands L considered and the number of detected photon
are significant, the depth estimation does not require informative
regularization (as the L bands are used to estimate ¢; ;). For this
reason and for paper length constraints, we simply consider uniform
priors here. Moreover, assuming prior independence between the
ranges parameters {t; ;};; yields

T) = Hp(ti,j)-

As often assumed when addressing spectral unmixing problem,
we consider applications where the number of spectral components
involved in the mixture of a given pixel is likely to be smaller
than the number of endmembers R in the known matrix M. This
typically occurs when the surface hit by the laser source and visible
by the detector is relatively small compared to the size of the scene
objects. In such cases, it makes sense to consider prior models
which promote sparse estimated abundances. Similarly, when the
transverse spatial sampling of the scene (using either a raster
scan on a regular grid or a detector array) is dense enough, the
abundance maps often present spatial structures (e.g., smoothness)
that can be incorporated within a prior model. In contrast to
the model proposed in [5] and which did not consider spatially
correlated abundances, in this work, we consider the following
priors promoting sparse and piece-wise smooth abundance maps
while ensuring the abundance positivity
f(A'r|)\1,'r7 >\TV,7‘) X

“)

exp [~ A1 |[Ar[l11 = Arv,, TV (AL)]if @i, > 0,Y(3, 5)
0 else

where A, is an Nyow X Neo matrix such that [Ay]i; = aijr,
[[Arl[1,1 = 2, ;laijr| and TV (-) denotes the total-variation
(TV) regularizatién [9], [10]. The positive parameters Aq , (resp.
Arv,r) control the prior sparsity (resp. smoothness) of each
abundance map A.,. In this work, we set \;, = A; and
Arv,r = Ary,Vr and these parameters are assumed to be fixed
((A1, Arv) = (10,100) in the results of Section V). Although the
estimation of these hyperparameters is out of scope of this paper,
note that they can be tuned via cross validation or adjusted via
sequential optimization (see e.g., [11]).

Finally, assuming prior independence between the R abundance
maps yields f(A|A1, A\rv) = [T, F(A A1, Ary).

III-C. Joint Posterior distribution

From the joint likelihood and prior model specified in Sections
III-A and III-B, we can now derive the joint posterior distribution
for T and A = {A.,} , given the observed waveforms Y and
the value of the fixed hyperparameters ® = (A1, Arv). Using
Bayes’ theorem, and assuming prior independence between T, and
{A.},, the joint posterior distribution associated with the proposed
Bayesian model is given by

f(T,AlY,®) < f(Y|T,A)f(A[®)f(T) ©)

)



IV. ESTIMATION STRATEGY

The posterior distribution (5) models our complete knowledge
about the unknowns given the observed data and the prior informa-
tion available. In a similar manner to [5], we exploit this posterior
to perform joint depth estimation and spectral unmixing of the MSL
data. However, while a minimum mean squared error (MMSE)
estimator was used in [5], here we consider the following joint
maximum a posteriori (MAP) estimator

(T,A) = argmaxf(T,A|Y, ®), ©)
T,A
which can also be obtained by minimizing the negative log-
posterior — log (f(T, A|Y,®)). Although is can be shown that
f(Y|T,A) is log-concave with respect to (w.r.t.) A, computing
the estimator in (6) is generally challenging, mainly because
f(Y|T, A) can be multimodal w.r.t. T. In [5] a simulation method
was used to handle the possibly multimodal likelihood (3) based
on the full 4D data cube. As will be shown below, here the joint
depth estimation and spectral unmixing problem is solved with a
reduced computational cost using efficient optimization methods
(under mild conditions discussed below). Indeed, we show that the
estimator in (6) can be obtained by first computing A and then T.
From (1) it can be seen that

Ui g,e|Niges iy ~ P (Nijedie) s (7

where ¥; ¢ = Z?:l Yi,j.ee and Gi o = 23:1 go’g(t —tZ"j)‘ That
is, the integrated waveform (summed over the time bins) for each
pixel and wavelength follows a Poisson distribution whose mean
only depends on spectral parameters \; j , = my,.a; ; scaled by
Gi,j,¢ which contains only information about the range of the target.
The additional assumption considered in this work concerns the
values of g; j¢. More precisely, we assume that g; ;¢ is constant
for all possible values of ¢;; € T. This occurs in practice when
T is far from the boundaries of (1,7) compared to the spread of
the impulse responses go,¢(+). In our experiments, the supports of
the instrumental responses are shorter than 500 time bins and we
ensured the histograms of time-of-flights were long enough not to
clip any target peak. This motivates our choice of (tmin, tmaz) in
Section III-B. Under this additional assumption, we have

log (TT, f (wige.tlXige, tig))
= log (f(i,jelNijesti)) + i
log (f (Fi.j,e1Mi,5.0)) + cijoe, (®)

where ¢; j ¢ is a constant which does not depend on \; ;.. Note
that ¢; ;¢ depends on ¢; ; though and should be noted c¢; j¢(ti ;).
However, we do not explicit this dependency and use c; j¢ to
lighten the notations. Combining (5),(6) and (8) yields

log(f(T))

(T, 11) = argmin — log(f(A)) —
T,A

— Zlog

4,4

(f (i,5,6| X 5,0)) + cigie )

where we notice that the optimization w.r.t. A does not depend
on the value of T. Thus, we can first estimate A (it reduces to
estimating the marginal MAP estimator of f(A[Y,®) and then
compute T which also maximizes the conditional f (T]Y, A, D).
In addition to splitting to estimation of A and T into two 51mple
sequential steps, one of the main advantages of the proposed ap-
proach (over the method considered in [5]) is its low computational
complexity while providing a global optimum of (5). Indeed, the
estimation of A is achieved using only a reduced number of
summarizing features (i.e., {7 j}) from the original data. The
next paragraph details how to sequentially compute A and T.
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IV-A. Estimating A

Eq. (7) can be rewritten in matrix form as

Y~P (MK) (10)

where Y is an L x NrowNeol matrix gathering the elements g, ; 0, M
corresponds to the endmember matrix whose columns have been
scaled by g; ¢, A and is the R ><AwaNcol reshaped abundance
matrix. Consequently, computing A reduces to unmixing the in-
tegrated waveforms Y under Poisson noise assumption, using the
prior model/regularization described in Section III-B and estimating
A via MAP estimation. The corresponding minimization problem

+ A1 Z |Ar]]1,1 — Arv ZTV (A,)

is can be solved using any state-of-the art convex optimization
algorithm since C(A) = —log(f(Y|MA)) is proper, lower
semicontinuous and convex [12] (in practice M has positive entries
and is full-rank). Here we used an instance of alternating direction
method of multipliers (ADMM) similar to PIDAL-TV [12] but
other alternative algorithms could have been used (e.g., SPIRAL
[13]). Comparison of algorithms for solving (11) is out of scope
of this paper and the interested reader is invited to consult [10],
[12] for details about the ADMM implementation using TV and ¢;
regularization. It is interesting to recall here that although solving
(9) requires the whole observation matrix Y, estimating A only
requires the integrated waveforms, which drastically reduces the
computational complexity of the problem.

an

minC'(A)
A0

IV-B. Estimating T

As discussed above, T can be obtained by maximizing
f(T|Y, A, ®). Moreover, it can be seen for (5) that

) = [ f(tislyis Mas ;)

¥

f(T|Y,A, & (12)

with f(ti7j|yi,j,AMdi7j) X f(yi,j\ti,j, Mdi,j)/T/. Consequently,
the elements of T can be estimated independently (and in a parallel
manner). Since ¢;; is assumed to be discrete and can only take
value in finite set T, the estimation of T is straightforward. Note
that since we compute the values of f(¢; ;|ys,;, Ma;, ;) for all
possible values of ¢;,; € T, we can derive measures of uncertainty
about the ranges (see Section V).

V. SIMULATION RESULTS

500nm
550nm | —
600nm
650nm
700nm | 7
750nm
800nm

Photon counts

3 3.5 4

Fig. 1. Examples of instrumental impulse responses mea-
sured with an acquisition of 100s at different wavelengths
(500, 550, 600, 650, 700, 750 and 800nm)



V-A. Experiment description

We assess the performance of the proposed method to analyse
the depth and spectral profiles of a 5 X 5 cm scene (see Fig. 2
(a)) composed of 8 objects made of polymer clay and mounted on
real tree leaves and fixed onto a dark-grey backboard at a distance
of 1.8m from a time-of-flight scanning sensor, based on time-
correlated single photon counting (TCSPC). The transceiver system
and data acquisition hardware used for this work is broadly similar
to that described in [14]-[18], which was previously developed at
Heriot-Watt University. The measurements have been performed
indoor, in the dark to limit the influence of ambient illumination.
The scene has been scanned using a regular spatial grid of 190x 190
pixels and L = 33 regularly spaced wavelengths ranging from
500nm to 820nm. The histograms consist of 7" = 3000 bins of
2ps, which represents a depth resolution of 300um per bin. The
power of the supercontinuum laser source has been adjusted from
preliminary runs and the per-pixel acquisition time is 10ms for each
wavelength.

The instrumental impulse responses go.¢(-) (partly depicted in
Fig. 1) were estimated from preliminary experiments by analysing
the distribution of photons reflected onto a Lambertian scatterer
placed at a known distance over a long period of time (100s here).
Fig. 1 illustrates the fact that the response of imaging system
can change in amplitude and shape, depending on the wavelength
considered due to the wavelength-dependent characteristics of its
different elements (e.g., supercontinuum laser source, detector,
lenses). Notice also the delays between the different peaks mainly
due to the different (and wavelength-dependent) path lengths of the
light in the imaging system. These delays can be compensated for
as part of the calibration and do not have a significant influence on
the imaging performance.

If a single wavelength was to be used to estimate the depth
profile, the variations of the peak shape could make the choice
of the most relevant wavelength difficult as the depth estimation
accuracy mainly depends on the amplitude (reflectivity estimation)
and width (depth estimation) of the peak. Of course, the depth
estimation performance also depends on the spectral signatures
of the objects of the scene (e.g., some objects can have a low
reflectivity at a given wavelength and are thus hardly detectable).
By considering several wavelengths to estimate the depth profile,
we can expect a more robust depth estimation (each object needs to
be visible at at least one wavelength) as we benefit from potential
redundancy between the different spectral bands.

V-B. Unmixing results

Fig. 3 shows the spectral signatures of the R = 9 endmembers
manually extracted from the the data (based on the known position
of the different objects) and Fig. 4 depicts the corresponding esti-
mated abundance maps. Although the leaves and most clay objects
present close shades of green in Fig. 2 (a), Fig. 3 shows that the
leaf spectra are significantly different from the green clay spectra
which have similar shapes (and thus makes the unmixing problem
particularly difficult). Nevertheless, the estimated abundances are
generally in good agreement with the RBG image as it is possible
to identify the regions where the different materials are present.

V-C. Depth estimation

Fig. 2 (b) shows the depth/range image estimated using the
proposed method (i.e., after having estimated the abundance maps)
which is in very good agreement with the structure of the scene
in Fig. 2 (a) (the reference range being set to the range of the
backboard). In particular, it is possible to detect subtle depth
variations (e.g., central veins of the leaves, depth gap between
the leaves and the board). To evaluate the quality of the depth
estimation, we compute for each pixel the posterior probability
flti; = tijlyij,Ma; ;) in (12). The corresponding proba-
bility map in Fig. 2 (c) illustrates the high concentration of
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(b) (©)

Fig. 2. (a): Standard RGB image of the scene composed of different
coloured clays and leaves fixed on a dark-grey backboard. (b)
Estimated depth/range image in millimetre (the reference range
corresponds to the backboard range). (c) Posterior probabilities
of actual ranges to be within the 0.3mm interval around d;; =
(3/2).10%%; ;.
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Fig. 3. Spectral signatures of the R = 9 endmembers used to
analyse the MSL data (corresponding abundance maps depicted in
Fig. 4).

f(ti;lyi;, Ma, ;) around £ ; which translates an accurate depth
estimation. Indeed, f(t;; = t: ;|yi.;, Ma. ;) is higher than 95%
in most pixels, the lower probabilities being associated with regions
where the surface orientations yields lower photon counts and thus
higher uncertainties about the object ranges. Note however that
f(ti; € (ti; — 1,ti; + 1)|ys,;, Ma, ;) is higher than 99% for
more than 99% of the pixels, leading to confidence intervals at
99% smaller than 0.9mm for almost all estimated ranges.



&

Fig. 4. Estimated abundance maps (all images have the same
dynamic, i.e., between O and 1).

VI. CONCLUSION

We have proposed a new Bayesian model and a fast joint
depth estimation and spectral unmixing algorithm for 3D scene
analysis from MSL data. Assuming the ambient illumination can
be neglected, the spectra of the scene surfaces visible by the
imaging system were decomposed into linear mixtures of known
endmembers, potentially corrupted by sparse deviations/anomalies.
Adopting a Bayesian approach, prior distributions were assigned to
the unknown model parameters; in particular sparsity and smooth-
ness promoting priors were used to encode the spatial organization
of the abundance maps. Including ambient illumination and dark
count levels in the observation model (as in [8], [18]-[20]) is
the obvious next step from a more general application of the
proposed method. This can be done easily by including additional
background terms in (1). Note that the proposed method can
still be applied if the background levels are known (or estimated
beforehand) by modifying the cost function in (9) (the resulting
cost function remains convex with respect to A). In future work,
and especially for remote sensing applications, it will be crucial to
account for the presence of distributed (multi-layered) targets and
anomalies (e.g., objects present in isolated pixels and/or presenting
spectral signatures which differ from the main objects of the scene),
which would yield multiple returns in the MSL data. This could
potentially allow the estimation of real 3D abundance profiles.
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GMTT in circular SAR data using STAP
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Abstract—This paper presents method and results of a Ground
Moving Target Indication (GMTI) experiment using multi-
channel Synthetic Aperture Radar (M-SAR) data collected by
the four channel F-SAR system. The proposed approach is based
on sub-aperture processing, Space-Time Adaptive Processing
(STAP), constant false alarm rate (CFAR) thresholding and
geocoding. The results are validated and compared with results of
the same data set from a previous approach based on a combina-
tion of single-channel (SC) and Along-Track Interferometry (ATT)
detections. It is shown that the STAP-based technique guarantees
better performances when detecting moving targets with a small
Radar Cross Section (RCS).

I. INTRODUCTION

Nowadays, SAR-GMTI is becoming increasingly important
since acquiring knowledge about moving objects and simulta-
neously imaging the area of interest has considerable advan-
tages for both civil and non-civil applications. Monitoring and
counting vehicles on highways or detecting non-cooperative
moving targets on ground may demand different performances
but they do ask for a common core processing. In the past
decades several solutions have been proposed in order to de-
sign a SAR system with GMTI capabilites. A simple taxonomy
is based upon the number of receiving channels. Therefore,
we may divide these systems into two groups: single-channel
systems and multi-channel systems. The first ones are SAR
systems with a single receiving antenna connected to a single
receiver. They were initially proposed since generating multi-
channel data was not feasible in terms of processing burden,
hardware complexity and costs. Viceversa, most recent state-
of-the-art methods for SAR-GMTI such as ATI [1], Displaced
Phase Center Array (DPCA) [2] and STAP [3-4] rely on multi-
channel data.

DPCA and STAP-based techniques make use of multiple
receiving channels to suppress the signal back-scattered by
stationary targets (clutter), thus making the detection of small
slow moving targets easier. More specifically, STAP processes
the pulses collected by M antenna elements at N pulse
repetition intervals (PRI). These space-time samples are then
combined in such a way that the output signal-to-interference-
pluse-noise-ratio (SINR) is maximized. Such a processing de-
fines a 2-D filter which increases detection rates with respect to
any 1-D space or time filter. Unfortunately, the main drawback
of STAP is its computational burden which is a function of
the N spatial degrees-of-freedom and M temporal degrees-of-
freedom (DOFs). Sub-optimal STAP configurations were then
designed in order to limit the overall number of spatial and
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temporal DOFs and make STAP suitable for real life appli-
cations [3-4]. While SAR-STAP was mainly applied to linear
flight patterns [5], less attention was placed on the advantages
of circular SAR data. The circular acquisition geometry used
in this paper yields an extended illumination time which
leads to longer moving object detection times. Furthermore,
a more detailed analysis of STAP detection capabilities under
a changing illumination geometry becomes feasible given a
circular flight pattern. This allows the validation of STAP
detection capability with respect to the aforementioned criteria.
Additionally, a comparison with SC/ATI combined detections
was conducted demonstrating that STAP can contribute to a
better detection capability especially for small RCS objects.
Initial results show an increase from 30% using SC/ATI to
80% with STAP.

In Section II-A we briefly introduce the test site, then we
describe the F-SAR sensor and list its specifications. In
Sections II-(B-E) each single stage of the processing chain is
described in detail. Section II-F outlines the validation method
while section III analyses and evaluates the achieved results.
Finally, in Section IV we summarize the overall results and
suggest potential future investigations.

II. METHOD

A method for GMTI using circular M-SAR real data is
introduced and described. The main steps of the processing
chain are as follows: (/) a pre-processing block implementing
sub-aperture processing, track linearization and array calibra-
tion, (2) a sub-optimal STAP processing known as Adjacent
Bin Post Doppler STAP (ABPD-STAP) [6], (3) a CFAR
thresholding to detect moving targets and (4) geocoding.
The aforementioned processing chain is capable of achieving
ground moving target detections in spite of a circular flight
path and attitude perturbations.

A. Test site and sensor

The study area for the SAR-GMTI experiment was a
highway intersection close to the municipality of Oensingen,
located in the canton of Solothurn, Switzerland (see Fig. 1).

The SAR sensor utilized in the experiment is the F-SAR
sensor designed by DLR [7]. The system comprises one trans-
mitting antenna and four equally spaced receiving antennas
with an inter-element spacing of 20 cm. Elevation and azimuth
angle are respectively 30.3 and 7.3 degrees.

The transmitted signal is a down-chirp signal centered around
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Fig. 1. Geocoded SAR image of the test site Oensingen.

a 9.6 GHz carrier frequency with bandwidth equals to 100
MHz and the theoretical range resolution is approximately 1.5
m. The slow time signal was sampled with a Pulse Repetition
Frequency (PRF) of approximately 2016 Hz. The whole batch
of data comprises more than 300 k pulses (ca. 149 s) collected
on a circular acquisition geometry. The flight path has an
approximate diameter of 3.5 km, a mean altitude above ground
of 2.7 km, and an average platform velocity of 76 m/s.

B. Data pre-processing

The data were firstly divided into a large number of highly
overlapping apertures with reduced bandwidth (OAwrB) with
a step size of 200 pulses (ca. 0.1 s) between subsequent
OAwrB. Each of the OAwrB was defined by extracting a
coherence processing interval (CPI) of 700 pulses (circa 0.34
s) from the whole data set. This aperture is small enough
to guarantee a valid post-Doppler STAP filtering and limits
target range migration within few range-Doppler cells. The
following step consists of track linearization and forward
velocity compensation: this was only possible since a very
precise global positioning system (GPS) was installed on-
board the airborne platform. The OAwrB were then processed
to achieve range compression and a Fast Fourier Transform
(FFT) was performed along the slow-time axis to map the
received signal into the range-Doppler domain. Fig. 2 shows
the range-Doppler map of Channel #1 for a given OAwrB.
Even though range-Doppler maps are not always straight-
forward interpretable, some of the underlying structures are
clearly visible. This is due to the meter range resolution
and to the CPI duration which is long enough to compress
the signal along the Doppler axis. In fact, we can recognize
the highway intersection, some agricultural fields and few
buildings characterized by dominant scatterers. The presence
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Fig. 2. Range-Doppler map before STAP: Channel #1, OAwrB #106.

of grassland and urban area suggests that the background
clutter is very likely to be heterogeneous and this will have to
be accounted for when performing moving targets detection.
Finally, the last step of the pre-processing stage is the array
calibration, which is crucial when using techniques that exploit
amplitude and phase differences of the signals collected by
an array. The main goal is to remove any antenna pattern
imbalances between the array elements so that their transfer
functions are as similar as possible. The technique that was
implemented is the adaptive 2-D calibration proposed by
Ender [8]: this approach is useful when no information about
the antenna patterns is available.

C. STAP processing

In order to remove or at least mitigate the impact of back-
ground clutter the ABPD-STAP technique has been applied
to each Fourier-transformed OAwrB. Post-Doppler approaches
imply a theoretical decoupling of the samples at adjacent
Doppler bins allowing an independent and separate clutter
suppression for each one of them. Nonetheless, even if the
Fourier-transformed signals are less correlated than the time-
domain ones, some correlation persists. For this reason the so
called order 2 extended factored processing [6] was adopted.
That is, two adjacent correlation values (one for each side)
were included giving a total of three Doppler bins. The
interference-pluse-noise covariance matrix is then estimated
as follows:

K
R(k,w) = % > Z(k,w) * Z' (k,w) (1)
k=1

w=[(w—1) w (w+1)]

being ’ the conjugate transpose operator, while & and w
identify respectively the range bin and the Doppler bin. Given
the spatially dependent nature of clutter, the K bins were
selected by means of a sliding window strategy [9] and a fixed
number of neighbouring range-gates were discarded in order to
avoid target self-nulling. The STAP filter weights are defined
by
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Fig. 3. Range-Doppler map after STAP: OAwrB #106.

h(k,w) = R (k,w) * v(w) ()

where v is the steering vector which maximizes the signal
centered around Doppler bin w. Finally, STAP filtering is
implemented as

~ ’

Z(k,w) =h (k,w)* Z(k,w) 3)

yielding the results shown in Fig. 3.

D. Moving targets detection

The decision whether a moving target is present in the
range-Doppler map is made by a 3-step detection scheme
[10]. The final detection mask is defined by computing the
logical AND of three different binary masks. The first one
aims at removing false alarms lying outside the antenna main
beam: a threshold is defined as function of the noise level
and its variance. Range-Doppler cells containing values falling
below this threshold are very likely not containing any useful
signal. The second binary mask is designed in order to remove
clutter residues [11]. In fact, as one can see by comparing
Fig. 2 with Fig. 3, the proposed ABPD-STAP technique is
not capable of completely removing the background clutter.
Dominant scatterers are likely to survive the STAP filtering,
especially when the SAR scene is heterogeneous. The third
binary mask is the result of a CFAR thresholding. From
Eq. (3) we can easily derive the so called Maximum-Likely
Quotient (MLQ) statistic which reflects the highly variant
back-ground reflectivity of the SAR scene. The scaled F-
distribution proposed in [12] proved to be the one providing
the best fit. The very last step consists of removing single cell
potential detections from the AND mask, that is detections
occupying only one range-Doppler cell were suppressed.

The results of this detection scheme are shown in Fig. 4
where one can recognize the candidates for moving targets.

E. Geocoding

The masked range-Doppler map (as shown in Fig. 4) is the
input for the geocoding step. Moving target candidates are
back-projected directly to a three-dimensional reconstruction
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Fig. 4. Range-Doppler map after STAP and MT detection: OAwrB #106.

grid as we are interested in mapping them into a geocoded
reference system. This is possible since the linearized aircraft
position is known and a very accurate digital elevation model
(DEM) was available. In order to accomplish it, Time Domain
Back-Projection (TDBP) [13] was used. Note that here we
have range-Doppler STAP-filtered signals while usual inputs
for the TDBP are the base-band range-compressed signals. An
Inverse FFT (IFFT) was then performed along the Doppler axis
to transform the filtered signals back into the time-domain. The
TDBP calculates the geocoded image as follows:

OAU)TBFLT =

= E SFLT

t=1

<R’t> ei2mfem | 12k R(Z0,y0,20) 4)
c

R = /(X (t)~20)* + (Y (t)~y0)* + (Z(t) ~ 20)?

where ¢ and 7 correspond respectively to slow-time and
fast-time. (X (¢), Y (¢), Z(t)) is the sensor position in global
Cartesian coordinates along the slow-time, k. is the frequency
wavenumber at carrier frequency f,. and c is the speed of light.
sprT 18 the base-band range-compressed STAP-filtered signal
at slow time ¢.

F. Validation method

In order to validate the overall processing chain, the outputs
of the STAP approach are compared with the ones of a SC/ATI
based approach [14] where the same data set was processed.
In addition, ground-truth measurements are available from (a)
a camcorder equipped with a GPS clock overlooking the test
site and (b) speed camera pictures and times of each single car
or truck passing during the over-flight. With this information,
we could not only validate the accuracy of the STAP moving
target detections, but also outline a brief comparison between
the STAP-based approach and the SC/ATI combined approach
based on five test objects.
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Fig. 5. Geocoded SAR image: Channel #1, OAwrB #106.

III. RESULTS

To define a fair comparison between different approaches,
the CFAR thresholding of Section II-B was defined in such a
way that the number of STAP potential detections could match
the ones from the other approaches (SC & ATI). That is, the
FA ratio of the three methods were similar. The set of five
moving target detections was analyzed over 100 consecutive
OAwrB (circa 10 s). Fig. 5 shows the geocoded SAR image;
Fig. 6 shows the STAP-derived detections overlaid on top of
it. The five test moving targets are marked by the numbers 1-5
and can be found in the bottom-left of Fig. 6.

TABLE I
DETECION RESULTS

SC ATI SC N ATI STAP
MT #1 95 66 98 100
MT #2 42 53 93 90
MT #3 41 57 87 94
MT #4 46 66 93 95
MT #5 3 29 29 81

The results are summarized in Table I. The overall perfor-
mances of the STAP approach proved to be better than SC
and ATI if those are taken singularly. The reason behind this
gap is simple. The SC approach works fine as long as the
target is outside the antenna main beam but fails when target
with small RCS are within the main beam. Viceversa, ATI
works better in the center of the antenna beam but its detection
performances are affected by clutter: in fact, the phase of a
moving target hidden in strong clutter is mainly driven by
the clutter itself (see [14]). However, when combining these
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Fig. 6. STAP-derived detections on top of the SAR image: OAwrB #106.
(Green crosses) Moving target detections. (Red) Moving targets’ responses.

two approaches together the detection rate rise substantially.
STAP still shows an overall better detection rate but the gap is
considerably smaller. More specifically, large moving targets
with big RCS (see Table I, MT #1) are reliably detectable
by both approaches. On the contrary, moving targets with a
smaller RCS (see Table I, MT #5) represent a more challenging
task for SC/ATI combined approach (only 30% detection rate)
while STAP still guarantees a robust detection rate of 80%.
As for the STAP missed detections of MT #2-5, they were
mainly caused by the sliding-window secondary data selection
for the estimation of the covariance matrix. In fact, for few
apertures the test moving targets were at the same Doppler
and very close in range to a line of dominant scatterers. The
presence of strong fixed targets in the secondary data led to
the moving target in the cell under test being nulled when
applying the STAP filter. However, based on these five test
objects and using circular SAR data, we can conclude that
STAP is relatively unaffected by the illumination geometry.

IV. CONCLUSIONS

We have introduced a method based on OAwrB and STAP
processing to identify ground moving targets in circular SAR
data. The proposed algorithm was evaluated by comparing it
with the SC/ATI detections of the same data set. The achieved
results are promising as the algorithm proved to be capable
of detecting moving targets with reliable detection rates.
This approach could potentially be an option for detecting
and tracking non-cooperative moving targets in a non-civil
scenario irrespective of the acquisition geometry. However,
the algorithm should be modified to be capable of managing
dense vehicle and man-made target environments. This would
guarantee enhanced performances that are more suitable for



such applications. Further investigations shall include a more
detailed comparison between SC, ATI and STAP in order to
assess whether STAP is the best technique for any environment
and any configuration. If that is not the case, following
steps shall focus on merging different approaches in order to
increase the overall detection rate at a fixed FA ratio.
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Abstract—This paper presents a work for imaging the moving
targets and estimating their velocities with better accuracies using
the Digital Elevation Map (DEM) in urban environments under
multi-channel Synthetic Aperture Radar (SAR) scenarios. Given
the received phase histories pre-processed by channel balancing
techniques, we employ Ground Moving Target Indicator (GMTI)
methods to detect the moving targets, and apply the DEM to
assist imaging the observed scene and estimating the states of
the targets. Specifically the DEM can be leveraged to calibrate
the positions of the moving targets and give further constraints
on the estimations of velocities. The described work is demon-
strated through the AFRL Gotcha challenge data. We present
the positions of the relocated targets along with their velocity
estimations as the experimental results.

Index Terms—SAR, GMTI, digital elevation map

I. INTRODUCTION

SAR was originally developed as a flexible sensing tech-
nique to produce high resolution images of the observed scene
for surveillance purposes. In particular, SAR-based GMTI
aims to indicate the moving targets within SAR images and
estimate the moving target parameters including their physical
positions and velocities. The developments on GMTI tech-
niques in the last decade significantly captured the attention
from the SAR community due to its capabilities in promoting
situational awareness. In practice, SAR imaging assumes that
the observed scene contains only static targets. Therefore,
moving targets will introduce blurrings and displacements to
the SAR images, and they need to be relocated and refocused
using GMTT techniques.

Within the multi-channel SAR framework, widely used
GMTI techniques include Displaced Phase Center Antenna
(DPCA), Along Track Interferometry (ATI) and Space-time
Adaptive Processing (STAP) [1][2][3]. DPCA and ATI are
subtractive methods which suppress the clutter and reveal
the moving targets with magnitudes and interference phases
respectively. STAP can be taken as the extended version of
DPCA and it is well known to be computationally expensive.
Take the ATI as an example, radial velocities of the moving
targets can be estimated and the moving targets can then be
relocated accordingly. However, in particular scenarios where
the monitored region has significant variations on elevations,
the localisations of the targets will be distorted and inconsis-
tencies will show up if we compare the relocated targets to
the ground truth target path.

In this paper, we discuss how the DEM can be utilised to
enhance the relocations of the moving targets and improve the
estimations of targets’ states. The remainder of the paper is or-
ganized as follows. Section two describes the signal modeling
of a standard multi-channel SAR system with a specific terrain
map. In section three, the DEM aided SAR/GMTI processings
are presented. We first introduce the SAR basics and GMTI
approaches. Then we focus on incorporating the DEM into
the moving target imaging and the target states estimations. In
section four, we demonstrate the performance of the proposed
methods using the real airborne SAR data. Conclusions are
presented in section five.

II. SIGNAL MODELING

In Fig. 1 we depict a standard multi-channel SAR system
in the spotlight mode with a number of moving targets in
the observed scene. A terrain map is associated with the
monitored region. The phase centres of antennas are equally
spaced with a distance d along the flight path of the platform.
Let the azimuth time (slow time) of the transmitted pulses
be 7, where n = {1,2,..., N} is the pulse number; r(7,)
be the instantaneous spatial position of one target at 7,;
Tgt)(Tn) and Tio)(Tn) denote the distance from the target to
the i—th antenna and the distance from the scene origin to the
corresponding antenna position respectively. Within a short
sub-aperture, we can assume that the platform velocity is a
constant vp,.

For the target at r(7, ), the discrete received phase histories
from the i—th channel after the de-chirping process (the
movement of the platform is compensated with reference to
the scene origin) can be formulated as:

> ey

where {fx|k = 1,2,...,K} denotes the range frequencies;
A; represents a nominal factor which accounts for the beam
pattern and energy loss for the i—th channel; o(r(7,)) is the
complex reflectivity of the target at r(7,); ¢ is the speed of
light and wu;(7,,) is the differential range rgt) (Tn) — rﬁo) (Tn)-
Given that we have multiple targets in the observed scene,
the received data can be assembled by accumulating the
received signals from all the targets. Thus, the received data
can be further reformulated in the matrix-vector form as

_j47rfkui (Tn)
&

Vil i) = Asor(r(r) exp(
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Platform track

Fig. 1. The geometry of a multi-channel SAR system with moving targets in
the monitored scene which is associated with a terrain map.

Y; = ®p(X), where ®p is the forward projection operator
to map the image domain to the data domain and X € CM*E
denotes the collection of the target reflectivities.

III. DIGITAL ELEVATION MODEL AIDED SAR/GMTI

Based on the described multi-channel SAR system we focus
on the DEM aided SAR/GMTI processings in this section.
How the terrain information can help locate the moving targets
and estimate their states will be discussed in details.

A. SAR Pre-processing

Given that the phase histories have been range compressed
and range-migration corrected, it has been reported that for two
channels the signals in Doppler and range-frequency domain
can be approximated with the equations [4]:

Y1 (w, Q) = c(w)h1(2)D1(q(w))
Yalw, ) = C(w)hz(Q)Dz(CI(W))%P(—jQipw) @

where c¢(w) is the nominal factor to denote the complex
Doppler dependencies, h;(€2) is the transfer function with the
range frequency 2 for the i—th channel, D, is the antenna
pattern for the i—th channel, and ¢(w) is the directional cosine
history over the Doppler frequency w.

From (2) it is shown that the phase histories can be balanced
with two functions in azimuth and range directions respec-
tively, i.e. H,.(w) and H,4(2) in (3), to retrieve the same

52

Backto Contents

responses for stationary targets between different channels.

Hy.(w) = Dl(Q(W)) d
Dz(q(w))efﬂp(*jﬂw) 3)
~ h(9)
HTQ(Q) - hQ(Q)

This process is especially crucial for subtractive GMTI
methods such as DPCA and ATI which reveal moving targets
in SAR images through the differences between channels.
Specifically the phase history for the second channel can be
balanced via Ys(w, Q) = Ya(w, Q)H,.(w)Hrg(§2). An adap-
tive 2D channel balancing technique was proposed to update
H,.(w) and H,,(Q) with iterations [4]. We will employ this
approach to pre-process the SAR data in the remainder of the
paper.

In practice, we tend to employ more azimuth samples
to better mitigate the imperfect balances along the range
direction. However, H,.(w) have strong degradations in am-
plitudes among azimuth frequencies, and this will induce
less calibration accuracies for the azimuth samples in high
frequencies. The simple solution is to estimate H,.(w) and
H,,(€) with a number of azimuth samples and preserve only
the low frequencies in H,.(w).

B. SAR Imaging and GMTI

The SAR imaging process can be interpreted as approxi-
mating the pseudo inverse of the forward projection opera-
tor ®%.. Let the discrete grid on which the SAR image is
formed be G,,; = (zm,y1,0) and the range files AR, =
(1) — Gl = |lx(m)|l, where m = {1,2,..,M}, and
I = {1,2,...,L}. The well known matched filter and back
projection techniques realise the image formation via X =
®%(Y;) in which the backward projection operator ®% is the
Hermitian transpose of ®%:

( ) “4)

Based on the imaging mechanism, multiple targets detection
algorithms are valid to mark the ground moving targets in
the formed images. In particular, DPCA is implementing the
subtractions among the formed SAR images between different
channels, ATT is realised by multiplying the formed image
from a channel with the conjugate of the complex image
from another channel, a compressed sensing based method is
exploiting the sparsities pixel-wise in the image domain [5],
and a sparse regularised minimisation model is generalising
the moving targets and background separation problem as an
optimisation framework [6].

In general, these GMTI techniques are all capable of de-
tecting displaced targets in SAR images and estimating their
radial velocities. For the rest of the paper, we employ a fast
back projection approach [7] to do efficient high-resolution
SAR imaging, and the sparsity based optimisation method we
previously developed to realise the targets detection and radial
velocities estimations [6].

7 47Tfk Alen
C

K N
X (m, l):Z Z Yi(fr, ™) exp

k=1n=1



C. Moving Targets Relocations with DEM

Since we can indicate the moving targets in SAR images
based on the aforementioned approaches, here we aim to
integrate the GMTI outputs and DEM into the SAR imaging
algorithm (4). Given the velocity vector V; = (0!, v{¥) v(*))
for a moving target and the subdata Y, which corresponds
with this target, the image formation of this specific target

with DEM can be written as:

K N
Xt(mvl) = Zzn(fkﬂ-n)x
k=1n=1
<j47ffk(|l’(7n) — G — Vel — Ro(m))

C

exp

)

(&)

where G/, = (z,y,2(m,1)) is the physical grid with
the elevation information, the enriched range files AR],;,, =
|lr(rn) — G, — Vi7|| = Ro(7,) contain the DEM and target
states, and Ro(7,) = ||r(7,,) — Irreys|| denotes the distance files
with azimuth time between the platform and a reference point
r..s. Here the reference point r,.; is the scene center which
can incorporate the DEM, and it can be pre-computed as a
constant vector.

To be specific, the fast SAR imaging technique [7] operates
by splitting the raw data into blocks and calculate the pixel
reflectivities in parallel within each data block. The imaging
implementation for each block still follows the basic back
projection format. Therefore, it is straightforward to utilise the
DEM and velocity information in the fast image formation by
manipulating the differential range AR/, in (5), i.e. incor-
porating the DEM into G/, and r,.s, and setting AR/, =
I’ (7,) = GL,I| — Ro(r,) where ¥'(1,,) = r(7,) — V7,
to achieve moving targets imaging with better relocations.
Therefore, the computations remain consistent with (4) in the
imaging process and the fast SAR imaging technique [7] still
holds.

In a number of scenarios we only have the estimated radial
velocities or our emphasis is on the target relocations, the
differential range can be approximated via:

~ rad
AR, 2 1(7) = Gl + 07V = Ro(ma)
= [r(7n) = Gl — Ro(70)
where vyad) describes the radial velocity with which the target

moves away from the antenna, and the distance files Ro(7,,)
can be flexibly replaced with R{(7,) to enforce the radial
velocity constraint in moving targets relocations.

D. Moving Target States Estimation

There has been a number of investigations in estimating
moving target states/velocities. For example, it is well known
that the radial velocities of moving targets correspond to
the phase differences between SAR images from different
channels in ATI [8][9], and the azimuth velocities can be
estimated through bank of filters[10]. It was suggested in
[11] that the azimuth velocities of moving targets can be
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charactered with a Fractional Fourier transform in the time-
frequency domain. In [12] it was reported that the estimated
velocities can be selected by best focusing the targets to give
sharp image patterns and also maintaining the data fidelity.
Here the utilisation of DEM can give us a direct estimation
on the vt(z) in V; by differentiating the elevations, which
provides us a further constraint on the velocity estimations.
It can also be used as an auxiliary criterion to help calibrate
the velocities estimated by other methods. Especially when the
targets are moving on roads in urban environments, the geo-
metrical information of the road can be used in combination

with the DEM to estimate the target states in three directions
( (x) , (v) (Z)).

vy 0, vy
IV. EXPERIMENTAL RESULTS

In this section we demonstrate the exploitation of DEM in
AFRL GOTCHA data set [13] and compare our estimations
to the ground truth data. An X-band SAR system with three
Radar channels operates in an urban environment and collects
71 seconds raw data (PRF is 2.17 kHz and the transmitted
chip is centred at 9.6 GHz). The original data Y;, Yo and
Y5 were intentionally range-gated from 5400 range samples to
384 range samples for memory considerations. We replace the
missing range samples with zeroes and rebuild the complete
phase histories Y; € C?409%200 where i = {1,2,3}. Then
with the 2D channel balancing technique presented in [4], we
keep calibrating the raw phase histories with 8000 azimuth
samples and only preserve the 800 calibrated samples in the
low frequencies till all data has been processed.

A. DEM Setup

Note that the DEM is absent in the original dataset, we need
to extract proper DEM data for the experiments. A coarse
DEM on a regular 80 x 60 grid with latitude and longti-
tude ranges of 0.0240 and 0.0250 respectively was obtained
from the United States Geological Survery (USGS) seamless
dataset. The coarse DEM coverage was initially chosen to be
larger than the observed scene of our SAR system for further
processing.

Since the monitored region does not match the retrieved
DEM pair (Gcoarse7Ecoarse) at this stage where Gcoarse
denotes a grid on the xy-plane (similar to G,,,;) and E ,q;-sc are
the corresponding elevation values, we have to find a reference
point (X,cf, Erey) so that the elevation map (G, Epy) can
be estimated by shifting the (Geoarse; Ecoarse) based on this
point (X,s, Ey.s), and then interpolating on the imaging grid
G-

Given that we have the ground truth GPS information of one
moving target (X, E;), where X; contains its xy positioning
information and E,; are the corresponding z coordinates, and
they form a path on the terrain surface, the reference point
(Xpes, Ere f) can be estimated by best matching the path to
the DEM:

1
5 HEt - F(Gcoarse - Xrefa Ecoarse - Erefa Xt)”%
(7)

min
XrefsEref



where T'(X, 4w, Zirqw, Xnew) 1S the operator to interpolate the
surface (X, 4, Zraw) at the query points X,,¢,,, and return the
estimated elevation values.

The interpolated DEM shifted with the reference point is
shown in Fig. 2. As shown in the DEM, the monitored region
has significant elevation variations.

-10004 \7500

Fig. 2. The estimated DEM which is associated with the imaging grid.

B. Moving Targets Relocations

Given the estimated DEM and pre-processed phase histo-
ries, here we focus on the processing of the GOTCHA data
from azimuth number 144001 to 146000 and compare the
relocations to the ground truth GPS of one moving target. The
data is divided into five sub-apertures and each sub-aperture
contains 400 azimuth samples.

We first employ the GMTI technique described in [6] and
estimate the radial velocities of the moving targets for the
five sub-apertures. Here other GMTI techniques which are
able to give estimations on radial velocities can also be used.
As we have estimated the velocity map for the whole image,
the estimated velocities can vary from pixel to pixel and the
accuracies of relocations are very sensitive to the estimated
radial velocities. Instead of giving a single estimation on the
radial velocity, we consider a small 30 x 30 window around the
target for which we have the ground truth, and introduce an
estimation bar to give a range for the estimated radial velocity.
We denote the minimum/mean/maximum radial velocities in
the estimation bar for the i—th sub-aperture as ugmd”’””%

plradmean) 4nq vfrad’m”) respectively. In this way we allow

1
certain estimation tolerances for the target radial velocities.
These radial velocities can then be used in (5) and (6) to
give moving targets relocations. As we now have a range
for the estimated radial velocities, this will induce different
relocated positions and build up a window to indicate its
possible locations. The filled region in Fig. 3 stands for the
boundary of all possible target positions.

We extract the five relocated positions of the moving target
in five sub-apertures based on the radial velocity estimation
bar, and compare the relocated target path to the ground truth
GPS. The results can be found in Fig. 3.
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DEM-+velocity bar
— target GPS
~—— DEM-+average velocity
no DEM+velocity bar
= no DEM+average velocity
A average position with DEM
A average position without DEM
A average position with GPS
——arroad on the image
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Fig. 3. Comparisons between the ground truth path of the moving target and
the relocations (with and without the DEM). The black line indicates the road
in the SAR image.

As shown in Fig. 3, the relocated path of the target with
DEM (green line) is significantly closer to the ground truth
(red line) and the road (black line) than the relocated path
without DEM (blue line). As the five sub-apertures correspond
to only 1 second during the flight, the ground truth target path
is approximately linear. We can therefore compare the average
relocated locations of five sub-apertures, i.e. the ones marked
with A (green and blue) in Fig. 3, to the ground truth (red
triangle). The average relocated positions with and without
DEM are deviated from the ground truth for 4.4 m and 9.8 m
respectively. The improvement is about the same level as the
elevation map.

C. Moving Targets Parameters Estimation

The DEM can be further exploited in the estimation of mov-
ing targets velocities. Since the target is likely to move slowly
in the z direction, vlgz) can be estimated by differentiating
the positions of the moving target. It gives us an additional
constraint on the velocities to help estimate the full state of the
target. Particularly in the urban environment, the moving target
is likely to move on the roads. The direction of the road gives
us another restriction on the velocity estimations. Furthermore,
the velocity estimations can be calibrated by allowing errors in
radial velocity estimations, i.e. relocating the moving target to
the intersection of the road and its possible locations (the filled
region in Fig. 3). Calibrated relocated positions of the target
give us calibrated radial velocity estimations and therefore
promote the accuracy of the estimated radial velocity.

Here we first calibrate the radial velocity estimations. The
estimated radial velocity of the target vt(rad) is adjusted to
relocate the moving target to the road (black line). Based on
the road direction in the formed image, we can approximately
leverage this equation v,gy) =14.1x Ut(m). Then its velocity in z
direction vt(z) can be estimated by differentiating its relocated
positions. The accuracy on estimating vf’ is thus limited by
the accuracy of the DEM. Specifically, with the normalised
vector in radial direction n("*®) which goes from the target

to the platform, the (v,@,vt‘y),vf}) and vt(rad) follow this



TABLE I
COMPARISONS BETWEEN THE GROUND TRUTH AND ESTIMATIONS
sub-aperture number 1 2 3 4 5
estimated v(”) (m/s) | 0.88 09 094 095 1.0
ground truth o) (m/s) | 099 103 107 L1 114
estimated v(¥) (m/s) | 124 1272 132 134 141
ground truth ) (m/s) | 129 131 133 135 137
estimated v{*) (m/s) | 0. 012 02 017 038
ground truth v (m/s) | 032 028 025 021 02

restriction:
vt(rad) _ U}Ex) <uz, n(rad)> + vgy) <uy; n(rad)> + UEZ) <uz’ n(rad)>
3)

where u,, u, and u, are the unit vectors in X, y and z
directions respectively, (-, ) is the dot product operator.

Based on (8), we can estimate the target velocities
W v %)), We compare our estimations to the ground
truth and show the results in Table I. It can be seen that the
estimations on the target velocities match the ground truth with
high accuracies. In practice, the geometrical information and
DEM can be used as the auxiliary restrictions on other velocity
estimation approaches to give SAR/GMTT applications better
robustness.

V. CONCLUSION

This paper presents a work for relocating moving targets and
estimating targets’ states with DEM in SAR/GMTI scenarios.
Specifically by modeling the DEM in the SAR imaging
and moving targets relocation scheme, the positioning of the
moving targets can be further improved. Also the DEM can
give us rough estimations on the z direction velocities, and
it can be combined with geometrical information especially
in urban environments to give further criteria to calibrate
velocity estimations. The experimental results based on the
GOTCHA GMTI dataset illustrate the effectiveness of the
presented processings.
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A Multi-Family GLRT for Detection
in Polarimetric SAR Images

L. Pallotta, Member, IEEE, C. Clemente, Member, IEEE, A. De Maio, Fellow, IEEE,
and D. Orlando, Senior Member, IEEE

Abstract—This paper deals with detection from multi-
polarization SAR images. The problem is cast in terms of a
composite hypothesis test aimed at discriminating between the
Polarimetric Covariance Matrix (PCM) equality (absence of
target in the tested region) and the situation where the region
under test exhibits a PCM with at least an ordered eigenvalue
smaller than that of a reference covariance. This last setup reflects
the physical condition where the back scattering associated with
the target leads to a signal, in some eigen-directions, weaker
than the one gathered from a reference area where it is a-
priori known the absence of targets. A Multi-family Generalized
Likelihood Ratio Test (MGLRT) approach is pursued to come
up with an adaptive detector ensuring the Constant False Alarm
Rate (CFAR) property. At the analysis stage, the behaviour of the
new architecture is investigated in comparison with a benchmark
(but non-implementable) and some other adaptive sub-optimum
detectors available in open literature. The study, conducted in the
presence of both simulated and real data, confirms the practical
effectiveness of the new approach.

Index Terms— CFAR, Covariance Matrix Equality, MGLRT.

I. INTRODUCTION

Polarimetric SAR images provide enhanced information on
the imaged scene that can be exploited for improved target de-
tection, recognition and scene classification [1]. Following the
imaging stage, target detection can be applied and improved
performance are achievable exploiting the multi-polarimetric
nature of the data. Detectors exploiting the polarimetric infor-
mation have been developed for specific applications including
change [2], [3], [4], oil spill [5], [6] and ship detection [7].
In this paper, the problem of target detection is formulated
in terms of a binary hypothesis test aimed at discriminating
between the presence and the absence of variations in the
Polarimetric Covariance Matrix (PCM) of the radar returns.
The presence of targets such as oil spills and ship wakes
modifies the backscattering of sea surface. The idea is to
compare the region under test, which possibly contains targets,
to a reference area where only echoes from the sea are
present. Without loss of generality, in this paper we will
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focus on the specific case of oil spills, where it is reasonable
to assume that the PCM of data containing oil slicks share
eigenvalues smaller than or equal to the PCM of the sea
returns. The decision problem is solved applying the GLRT
and the devised architecture is referred to as Positive Definite
Difference GLRT (PDD-GLRT). At the design stage, it is
assumed that the rank difference between the two covariance
matrices is known. However, this assumption might not be met
in practical scenarios, since such a-priori information is not
available at the receiver. In order to circumvent this drawback,
the previous results are extended to come up with a decision
rule capable of properly estimating the rank difference. This
goal is achieved exploiting the Multi-family GLRT (MGLRT)
[8] and the devised decision rule is referred to as Multi-family
PDD-GLRT (M-PDD-GLRT). Finally, numerical examples are
provided to prove the effectiveness of the proposed approach
also in comparison with existing strategies for oil spills
detection.

The remainder of this paper is organized as follows. Section
IT is devoted to the problem formulation. The derivations of
the PDD-GLRT and its multi-family modification are reported
in Section III. Section IV analyzes the performance in terms
of detection probability on simulated and real data. Some
concluding remarks and future research tracks are given in
Section V.

NOTATION

Vectors and matrices are denoted by boldface lower-case
and upper-case letters, respectively. Symbols det(-) and tr ()
denote the determinant and the trace of a square matrix,
respectively. Symbol HY is used to represent the set of N x N
hermitian matrices, while I and O represent the identity matrix
and the null vector or matrix, respectively, both of proper
dimensions. The curled inequality symbol > is used to denote
generalized matrix inequality: for any A € HY, A > 0
means that A is a positive semi-definite matrix. Symbols
()" and (-)' stand for transpose and conjugate transpose,
respectively. Finally, the acronym iid means independent and
identically distributed while the symbol E[-] denotes statistical
expectation.

II. PROBLEM FORMULATION

A multi-polarization SAR sensor, for each pixel of the
image under test, measures N = 3 complex returns, which are
collected from three different polarimetric channels (namely
HH, HV, and VV). The N returns associated with the same

978-1 -5090-0326-6/15%/5331 .00 ©2016 IEEE



pixel are organized in the specific order HH, HV, and VV to
form the vector X (I1,03), 1y =1,...,Lyand lo = 1,..., L
(L1 and Lo represent the vertical and horizontal size of the
image, respectively). Therefore, the sensor provides a 3-D data
stack X of size L; x Ly x N which is referred to as datacube,
whose pictorial representation is given in Fig. 1.

X (ly,12)

Fig. 1. A pictorial representation of the construction of the datacube for
polarimetric images.

Starting from the datacube X of the scene illuminated by
the radar, for each pixel under test, we extract a rectangular
neighborhood A of size K = W; x Wy > N. We denote by
Z =z ... zg] € CN*K the matrix whose columns are the
vectors of the polarimetric returns from the pixels of X which
fall in the region A. The matrix Z is modeled as a random
matrix, whose columns are assumed iid random vectors drawn
from a complex circular zero-mean Gaussian distribution with
positive definite covariance matrix R.

Our goal is to identify those regions of X that exhibit
variations of the covariance matrix R with respect to a
preassigned reference region. Specifically, the presence of
specific objects in the observed scene yields signal echoes
with spectral properties different from those associated with
the background [5], [6]. For instance, consider an oil spill
on the sea surface, whose reflectivity coefficient reduces the
intensity of the backscattering signal. Thus, if we denote
by R, and R, the PCMs of a region Aj containing
sea returns and of a region A, associated with a target,
respectively, physical argumentations on backscattering lead
to the condition R A~ R A, = 0.

Based on the aforementioned observations, the detection
problem addressed in this work can be written in terms of
the following hypothesis test

I zp~CN(O,R) k=1,....K
"1 Yy, ~CN(O,R) m=1,....M
H, zp ~ CN(0, Ry) k=1,....K
1y, ~CNOR +Ry) m=1,....M
(1)
where
e zp, k=1,...,K,and y,,,, m = 1,..., M, are statisti-

57

Backto Contents

cally independent random vectors'.
o matrices R and R; are full-rank, namely Rank (R) =
Rank (R;) = N;
o the rank of Ry, say p, is assumed known and within the
interval (0, N].
Moreover, we assume that K > N and M > N to ensure that
the PCMs

K M
G = szzi: and H = Z Ynyh )
k=1 m=1

are full-rank with probability 1.

III. DETECTOR DESIGN

In this section, an adaptive decision rule is devised resorting
to the GLRT design criterion. To this end, let us define Z i =
[z1 ... zxg] and Yy = [y; ... yy,], then the likelihood
functions of Zy and Y j; under Hy and H; are given by

(Zkg,Y n; R, Hy) =
K+M . (3)
vam|  eelwlR@ M)

and
[(Zk,Yu; Ry, Ry, Hy) =
1 15 M exp {—tr [Rl_lG} —tr [(Ry+ Ry)'H|}
[WN} [det(Ry)] X [det(Ry + R2)|M ’
“4)
respectively. Now, observe that the GLRT for the problem at
hand is

maxmax f(Zx,Y u; Ry, Ry, Hy) [,
Rl 2 >

1.
max f(Zk,Y p; R, H <
f( K M 0) HO

(&)

Under the above assumptions, it is possible to show that the
generalized likelihood ratio (5) is statistically equivalent® to

o,
A(Zg.Yn) 2 . ©)
Hy
where
L, if p* <p,
A(Zw, Y ) =2 4 (14 6)E+M 7
p(Zx, Yu) (A+0)77 +51\2[ ,  otherwise, @
i=1 (
6, i=1,...,p*, are p* eigenvalues of G~'H with p* being

the minimum between the number of eigenvalues of G~ ' H
greater than M /K and p.

The above architecture will be referred to in the following as
PDD-GLRT. In the next subsection, we apply the Exponential
Embedded Family (EEF) framework [8], [9] to devise an
architecture based upon the PDD-GLRT that does not use any
a priori information on the rank of Rj.

'For the sake of simplicity, in the following, we neglect the possible low
correlation level between adjacent pixels.
2The proof is omitted for the sake of brevity.



A. Multi-Family PDD-GLRT

In the present subsection, we introduce a variant to the PDD-
GLRT which does not need the above a-priori information.
Specifically, the binary hypotheses considered before become
multiple nested instances each tied up to a rank value of Ry,
that is denoted by r(i) = ¢, ¢ = 1,..., N. In this scenario,
the classical GLRT cannot be used and, hence, we resort to
the MGLRT [8] [9] that allows the PDD-GLRT to be utilized
also in the case where the rank is not known. Specifically, the
MGLRT can be written in terms of the EEF computed for a

given model order® i, i = 1,..., N, [9] namely
o,
N>
EEF , 8
e () I'?o n ®)
where

EEF(i) = (CG,;(ZKa Y )

—r(i) rog (S ZEIM) ] ) o)

In the last equation, (g, (Z k,Y ar) is two times the logarithm
of the PDD-GLRT decision statistic with p = 7, namely

CGi(ZKaYM) = QIOgAi(ZK,YM),

whereas u(-) is the Heaviside step function. Thus, when there
are multiple nested alternative hypotheses, the MGLRT first
computes the PDD-GLRT for each hypothesis, (g, () say,
applies the transformation (9) to construct the EEF(7), and
chooses the hypothesis attaining the maximum. For the sake
of completeness, we provide below the explicit expression of
Cc,(Zk,Y w), which contains the constants which have been
incorporated into the threshold of the PDD-GLRT, i.e.,

Ce.i(Zx, Y ) = =2(K + M)r(i) log(K + M)
+ 2K (i) log(K) + 2Mr(i) log(M)
r(i) r(i)
—2M ) "logd; + 2(K + M) Y log(1+ d;).

n=1
(11)

(10)

n=1

IV. PERFORMANCE ANALYSES

In this section, we investigate the performances of the
proposed detectors in terms of Probability of Detection (Pp).
For comparison purposes, we also plot the performance curves
of other approaches available in the open literature. More
precisely, we consider the GLRT devised in [3], [4], [6], whose
expression is

o let(@+ )
O et (G)F et (DY 5

12)

3The model order is represented by the rank of Ra.
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the Maximum Likelihood Detector (MLD) proposed in [6]
given by
det (FI) 11

det (G) (13)

Amip =
Hy

and the Single Likelihood Detector (SLD) proposed in [6]
whose decision statistic is

Agip =tr (G_lH) . (14)

In order to better analyze the behavior of all these detectors,
the comparisons also include the clairvoyant counterparts,
namely the Likelihood Ratio Test (LRT) and the clairvoyant
SLD (C-SLD). More precisely, the former is statistically
equivalent to

ALRT =tr [R_l (G + H)

H,y
~R'G—(Ri+Ry)'H] Z 1, (15)
Hy
while the latter has the following expression
Acsp =tr (Ry'H). (16)

The analysis is conducted on both simulated and real SAR
data. In the latter case, we prove the effectiveness of the newly
proposed detectors in terms of the capability to detect oil spills
over the sea surface.

A. Detection Capability on Simulated Data

This subsection is devoted to the performance analysis using
computer simulated data for a preassigned value of Probability
of False Alarm (Pr4). Specifically, the numerical examples
are obtained by means of standard Monte Carlo counting
techniques. The detection thresholds and the Pp values are
evaluated resorting to 100/Pr4 and 103 independent trials,
respectively. The nominal Pr 4 is set to 1074, As to the vector
size, it is chosen equal to 3 to account for the fact that SAR
sensors collect data using three different polarizations, whereas
as to the parameter p the value p = 2 is considered.

The simulated data, z;, £ = 1,..., K, and y,,, m =
1,..., M, are modeled as N-dimensional zero-mean complex
circular Gaussian vectors with covariance matrices Ry = I
and R; + R», respectively. Matrix R» is rank deficient and
is defined as Ry = |a|®p,p| + |B|>popl, where the N-
dimensional steering vectors, p; and p,, have been chosen
as

p; = [1,0,...,O]T,

17
py, =[0,1,0,...,0]7, a7
and |a]? = |B|%, so as Ry is a rank-2 matrix.
The SNR is defined as
SNR = |a*p! Ry 'p, + |B?PI R 'py = 20, (18)

In Fig. 2, we plot Pp versus SNR assuming K = M = 9.
It turns out that the PDD-GLRT and the MLD perform better
than all the other adaptive architectures. In addition, the M-
PDD-GLRT exhibits some losses with respect to the PDD-



GLRT even though both detectors outperform the GLRT and
the SLD with a gain of about 1 dB at Pp = 0.9. As last
remark, note that the PDD-GLRT suffers a detection loss of
about 5 dB with respect to the LRT (or the C-SLD).
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=0~ GLRT

02 - - - LRT
=O- MLD
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= = = C-SLD
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Fig. 2. Pp versus SNR for PDD-GLRT (4-marked blue solid curve), M-
PDD-GLRT (+-marked blue dotted curve), GLRT (o-marked red dot-dashed
curve), LRT (red dashed curve), MLD ([J-marked green dot-dashed curve),
SLD (>-marked magenta dot-dashed curve), C-SLD (magenta dashed curve),
for a nominal Pr4 = 10~%. The other simulation parameters are KX = 9,
M =9, N =3, and p = 2.

In Fig. 3, we focus on a smaller number of test data,
ie., M = 4, leaving the same value of K as in Fig. 2.
From the figure, it can be observed that there is a general
worsening in the receivers’ performance. The figure highlights
also that the PDD-GLRT and the M-PDD-GLRT achieve the
best performances with the former performing better than the
latter. Finally, the GLRT is the worst with a loss higher than
3 dB if compared to the PDD-GLRT and its multi-family
version.
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Fig. 3.  Pp versus SNR for PDD-GLRT (4-marked blue solid curve), M-
PDD-GLRT (+-marked blue dotted curve), GLRT (o-marked red dot-dashed
curve), LRT (red dashed curve), MLD (O-marked green dot-dashed curve),
SLD (>-marked magenta dot-dashed curve), C-SLD (magenta dashed curve),
for a nominal Pr4 = 10~%. The other simulation parameters are K = 9,
M =4, N=3,and p = 2.

Summarizing, the PDD-GLRT seems a reasonable choice
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since it exhibits a more robust behavior than the counterparts
being the one less sensitive to parameters variations and giving
in all the analyzed situations acceptable performances. In other
words, the PDD-GLRT represents a kind of “all seasons”
architecture.

B. Test on Real Radar Data

As final part of the performance analysis, in this subsection,
we evaluate the effectiveness of the new detectors on real SAR
data. More precisely, we use a data set obtained from the
GOMoil_07601_10052_101_-100622_L090_CX_02 SAR image
which is composed of sea data containing an oil spill on it.
The image has been acquired on 22nd of June 2010, during
the British Petroleum oil spill incident in the Gulf of Mexico
(known also as the Deepwater Horizon Oil Spill). This image
contains a scene acquired with a sensor exploiting all the
polarizations and the corresponding polarimetric overlay is
reported in Fig. 4.

Fig. 4. Three polarization color overlay of the SAR image GO-
Moil_07601-10052_101_100622_L.090_CX_02.

The data set is a sub-image of 3000 x 2000 pixels, whose
span (i.e., |[HH|* + |[VV|? + 2|HV|?) [1] expressed in dB
values is also displayed in Fig. 5.

1500

Fig. 5. Real L-band data SAR image GO-
Moil_07601_10052-101-100622_L090_CX_02. Span (in dB) of the reference
image of size 3000 x 2000 pixels.

Fig. 6 shows the detection results applying detector (8)
over the described SAR image, where the test is performed
assuming the following parameter setting (notice that N = 3



since we have three polarization images). A sea data pixel is
chosen as reference to compute the sample covariance H from
a3 x 3 (e, M = 9) window centered in that pixel. Then,
a window of size 3 x 3 (i.e., K = 9) is slided over the SAR
image to test all the pixels and to compute the sample matrix
G. Finally, the threshold is chosen to ensure a nominal Pg 4
of 1073, extracting a cluster of only sea data composed of 10°
pixels and choosing the 100-th value in the decreasing ordered
statistics. The results is a detection map where the white
pixels are those associated to oil spills detections, while the
black pixels are representative of the sea data (no-detections).
The results show that the multi-family PDD is able to ensure
reliable detection of oil spills over sea. An important notice
is that the number of looks, in a real environment, has to
be chosen to manage the trade off between the accuracy of
covariance estimation and the amount of heterogeneity.

500 1000

1500 2000
Fig. 6. Real L-band data SAR GO-
Moil_07601-10052_101-100622_.L090_CX_02  detection map for the

M-PDD-GLRT with K =9, M = 9, and N = 3. The detection map has
been obtained with a nominal Pr 4 = 10~3. White pixels are the detections.

V. CONCLUSIONS

Multi-polarization SAR detection has been considered in
this paper to test the equality of two polarimetric sample
covariance matrices constructed from a reference area (where
it is known the absence of targets) and a test region (where it
is necessary to establish the spot presence), respectively. The
alternative hypothesis is represented by the instance where the
PCM within the reference area exhibits at least an ordered
eigenvalue greater than the corresponding one extracted from
the PCM of the area under test. First of all, assuming the exact
knowledge about the number of different eigenvalues between
the reference and tested PCMs, the PDD-GLRT is devised.
Then, to come up with a fully adaptive detector without any
a priori assumption about the aforementioned number, the M-
PDD-GLRT is introduced.

At the analysis stage, the oil spill detection case has been
analysed and examples have been provided to prove the
effectiveness of the proposed approach also in comparison
with existing strategies. To this end, both simulated and real
multi-polarization SAR data have been used. Possible future
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research track might concern the extension of the approach
to the case of a joint multi-frequency and multi-polarization
processing as well as to consider the presence of a non-
Gaussian backscattering due to sea.
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Abstract—Synthetic aperture systems rely on accurate knowl-
edge of Transmitter (Tx) and Receiver (Rx) positions at each
ping. In Synthetic Aperture Sonar (SAS), due to the nature of
propagation and navigation in water, they have to be estimated
by either physical sensors or raw data or a combination of
these and employed to compensate motion errors. Hence, motion
compensation is a major issue in SAS. In this paper we propose a
new image domain based motion compensation approach which
is intended to loosen the restrictions imposed by previously pro-
posed approach such as Displaced Phase Center Approximation
(DPCA) and the dependency on an accurate Inertial Navigation
System (INS). The real bistatic observation model is replaced
by a virtual bistatic model which allows for taking into account
rotations between Txs and Rxs. The ping to ping displacements
are then obtained by minimizing an error function between the
projections on vector space intersections.

I. INTRODUCTION

Synthetic Aperture Sonar (SAS) systems share with Syn-
thetic Aperture Radar (SAR) many practical and theoretical
aspects, as they were originally introduced by moving the
synthetic aperture paradigm from radar to sonar. Therefore,
most image formation algorithms which have been conceived
for SAR have been also considered in SAS literature [1].
Despite the overlapping concepts such as range migration
and range invariant resolution, underwater SAS systems are
operated in a much more challenging environment than SAR as
(i) the navigation in water is affected by non-negligible errors
and cannot always rely on an external accurate positioning
system; (ii) motion errors are comparable to the wavel