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Introduction

Change detection is the capability to identify temporal changes within a
given scene starting from a pair of co-registered images representing the
area of interest;

Two main approaches exists: incoherent and coherent;

We introduce a structured approach to derive the Generalized Likelihood
Ratio Test;

The block diagonal structure of the polarimetric covariance matrix is
exploited to achieve our goal, moreover the derived rule show Constant
False Alarm Rate (CFAR) behavior.



Problem Formulation 1/2

A multipolarization SAR sensor measures for
each pixel of the image under test N ∈ {2, 3}
complex returns, collected from different polari-
metric channels.

The N returns from the same pixel are stacked
to form the vector X(l ,m), where l = 1, . . . , L
and m = 1, . . . ,M.

We suppose that X (reference data) and Y (test data) of the same
geographic area are available;

We focus on the problem of detecting the presence of possible changes in
a rectangular neighbourhood A, with size K = W1 ×W2 ≥ N, of a given
pixel;

We denote by RX (RY ) the matrix whose columns are the vectors of the
polarimetric returns from the pixels of X (Y) which fall in the region A
and SX = RX R†X (SY = RY R†Y ).
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Problem Formulation 2/2

RX and RY are modeled as statistically independent random matrices;

The columns of Rx (RY ) are assumed statistically i.i.d. random vectors
drawn from a complex circular zero-mean Gaussian distribution with
positive definite covariance matrix ΣX (ΣY ), complying with the structure
introduced in [Novak 1990]

ΣX ∈ Ξ (ΣY ∈ Ξ),

where

Ξ =


Σ ∈ H++

N : Σ =

„
Σ1 0
0 σ2

«ff
,

In this way, the change detection problem in the region A can be
formulated in terms of the following binary hypothesis test(

H0 : ΣX = ΣY

H1 : ΣX 6= ΣY



Problem Formulation 2/2

RX and RY are modeled as statistically independent random matrices;
The columns of Rx (RY ) are assumed statistically i.i.d. random vectors
drawn from a complex circular zero-mean Gaussian distribution with
positive definite covariance matrix ΣX (ΣY ), complying with the structure
introduced in [Novak 1990]

ΣX ∈ Ξ (ΣY ∈ Ξ),

where

Ξ =


Σ ∈ H++

N : Σ =

„
Σ1 0
0 σ2

«ff
,

In this way, the change detection problem in the region A can be
formulated in terms of the following binary hypothesis test(

H0 : ΣX = ΣY

H1 : ΣX 6= ΣY



Problem Formulation 2/2

RX and RY are modeled as statistically independent random matrices;
The columns of Rx (RY ) are assumed statistically i.i.d. random vectors
drawn from a complex circular zero-mean Gaussian distribution with
positive definite covariance matrix ΣX (ΣY ), complying with the structure
introduced in [Novak 1990]

ΣX ∈ Ξ (ΣY ∈ Ξ),

where

Ξ =


Σ ∈ H++

N : Σ =

„
Σ1 0
0 σ2

«ff
,

In this way, the change detection problem in the region A can be
formulated in terms of the following binary hypothesis test(

H0 : ΣX = ΣY

H1 : ΣX 6= ΣY



Unstructured and Structured GLRT 1/3

The Unstructured GLRT does not exploit the special structure of ΣX and
ΣY and was derived in [Novak 2005]

det2(SX + SY )

det(SX ) det(SY )

H1
>
<
H0

TU ,

In our approach we consider the special structure of the covariance SX and
SY

SX =

"
SX ,1 SX ,2

S†X ,2
cσ2

X ,1

#
SY =
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SY ,1 SY ,2
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Unstructured and Structured GLRT 2/3

Exploiting the Gaussian assumption together with the structure of SX and
SY the the joint probability density function (pdf) of RX and RY can be
written;

The structured GLRT is the decision rule

max
ΣX,1,ΣY ,1,σ

2
X,1
,σ2

Y ,1

fRX ,RY
(RX ,RY |H1,ΣX ,1ΣY ,1, σ

2
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2
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ΣX,1,σ

2
X,1

fRX ,RY
(RX ,RY |H0,ΣX ,1, σ

2
X ,1)

H1
>
<
H0

TS,0 .

By replacing the unknown parameters in the likelihood ratio with their
maximum likelihood estimates, under each hypothesis, we obtain the
structured GLRT.
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Unstructured and Structured GLRT 3/3

Hence, performing the maximizations over the parameters we can obtain
the structured GLRT

det2K (SX ,1 + SY ,1)
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X ,1 +cσ2
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<
H0

TS,1 ,

with TS,1 a modified version of TS,0.

Finally, after a monotonic transformation, we get the following equivalent
form of the GLRT

det2(SX ,1 + SY ,1)

det(SX ,1) det(SY ,1)
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X ,1 +cσ2

Y ,1

”2

cσ2
X ,1
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TS ,

with TS the modified detection threshold.

It can be proved that this decision rule ensures the CFAR property with
respect to both ΣX ,1 and σ2

X ,1.
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Performance Assessment 1/8

The standard ROCs are computed for the unstructured and structured
GLRTs and compared with the benchmark performance of the optimum
Neyman-Pearson detector;

The optimum receiver assumes that the actual covariance matrices are
known, and can be expressed as:
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h“
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which resorting to the special structure of ΣX and ΣY leads to
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Performance Assessment 2/8

In order to set the detection threshold, Monte Carlo simulations are used
assuming 100/Pfa independent runs. Additionally, 105 independent trials
are exploited to estimate Pd ;

The theoretical covariance matrices considered to estimate the Pd are:

ΣX =

0@ 1 0.5 0
0.5 1 0
0 0 0.2

1A ΣY = 2ΣX ,

while ΣY = ΣX was considered to estimate the Pfa.
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Pd versus Pfa for W = [3, 5, 7].
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Performance Assessment 4/8

The analysis is performed using real X-band data available in the Coherent
Change Detection Challenge dataset acquired by the Air Force Research
Laboratory (AFRL).
The dataset has been acquired using a coherent receiver with 640 MHz
bandwidth and dual-polarized mode with a range and cross-range
resolution of 0.3 m;

The selected area of interest is a sub-image of 1000× 1000 pixels (i.e.,
L = M = 1000) and is composed of several parking lots which are
occupied by numerous parked, (i.e., stationary) vehicles.



Performance Assessment 5/8

For this particular scenario the changes between the reference and test images
(denoted by X and Y respectively), occurred during the time interval between
the two acquisitions can be distinguished in two cases:

a vehicle is present in X but is not present in Y, this case is referred as
departure;
a vehicle is not present in X but is present in Y, this event is referred as
arrival.

Using the cases defined above, can be visually identified (by flickering the two
images) a total of 34 changes between X and Y.

Reference image (X) Test image (Y)
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Ground truth (black regions denotes departures and white regions the arrivals)
and ground truth with guard cells .

For each detector, the thresholds are set to ensure Pfa = 10−3 in the
complement of the extended ground truth area, namely, in the region
where no changes occur;
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Detections maps for W = 3

Unstructured and Structured GLRT
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W
Detector 3 5 7

Unstructured GLRT (6) 3802 6492 7533
Structured GLRT (8) 4949 6655 7387

Table: Number of correct detections for W = 3, 5 and 7.

The Structured GLRT outperforms the unstructured GLRT for the smaller
window sizes (W = 3 and 5) whereas the unstructured GLRT outperforms
the structured GLRT for the larger window size of W = 7 when it is able
to detect more changes in the image;

This last result can be justified in terms of a covariance model mismatch
in the sense that the off-diagonal entries of the polarimetric covariance
matrix which in the theoretical model have been set to zero might not be
exactly zero in reality (even if very close to that value).



Conclusions

The block-diagonal structure for the polarimetric covariance matrix is
exploited to derive a new decision rule based on the GLRT criterion;

The proposed approach has been compared with both the optimal and the
unstructured GLRT, with analysis on both simulated and real
full-polarimetric SAR data;

The performance analysis has confirmed that a structured approach can
provide increase in performance with particular benefits when a small
amount of homogeneous data is available;

Possible future research tracks will consider the extension of the
framework relaxing the Gaussian requirement for the data as well as the
analysis on other datasets acquired by a different system, possibly at
different resolutions (different performance behaviours could be observed
on different datasets).
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