Introspective Classification for Pedestrian Detection

Calum Blair

John Thompson Institute for Digital Communications, University of Edinburgh Neil Robertson Visionlab, Heriot-Watt University

THE UNIVERSITY of EDINBURGH

SSPD 2014 Edinburgh 8th September 2014

Motivation

Motivation

- Machine learning in battlespace scenarios: algorithm reliability & effect on operator trust
- Timely & accurate detections
- Separate *accuracy* (% of samples right) from *reliability* (variations in confidence measure)
- Detector performance comparison
- [dstl] technical challenges:
 - #27 (SWaP reduction)
 - #29 (Accreditable machine learning)
- Pedestrian \rightarrow other objects & modalities

Previous Work

- Grimmet, Paul, et al: Introspective classification for mission-critical decision making (2013):
 - Traffic light recognition (goal: autonomous system)
 - Detector which knows when it is uncertain: "reflect an amount of ambiguity appropriate to a given situation".
 - Gaussian Processes (GPs) perform well, but computeand memory-intensive
- Trade off speed and accuracy? Still true with 'harder' objects (when p_d < 99%) ?

Structure

- Evaluate classification approaches & probability generation techniques
- Results misclassification & reliability

State of the art:

ACF (Dollar et al, PAMI 2014):

- Classifier based on random forests
- 2048 trees in model
- Confidence output: [-200: 200], based on interaction of test window's feature vector with trees

Squash score with sigmoid to obtain detection probability measure :

$$p = \frac{1}{\exp(-2 * score)}$$

Use extracted features as starting point for detection eval.

Feature extraction (ACF)

64x128 window, d=5120 feature vector Common approach (HOG etc) Starting point for classifier algorithms INRIA pedestrian dataset: 1150 training & 450 test images

Dollar et al, Integral Channel Features, 2009

Adaboost/Random Forests

- Adaboost cascade classifier:
 - learn best features & thresholds at each decision tree
 - sum weights over all trees to get score s
 - aim is to produce strong decisions over training data, not give confidence score for borderline samples

Support Vectors

- Maximum margin classifier: best separation of classes
- Confidence score increases further from hyperplane: not always representative?
- Linear kernel (accuracy vs runtime compromise)

$$f(\mathbf{x}) = \sum_{i=1}^{N} (\mathbf{x}_i \cdot w_i) + b$$

Gaussian Processes

• Form Gaussian distribution based on training, test data.

Gaussian processes classifier (GP)

- obtain predictive variance by computing covariance of *entire training set* with test sample
- O(n²) over test data
- Probabilistic output given directly
- GPU: 4x speedup but still not realtime

P)
$$\mathbf{K}_{N+T} = \begin{bmatrix} \mathbf{K}_N & \mathbf{K}_{NT} \\ \mathbf{K}_{TN} & \mathbf{K}_T \end{bmatrix}$$

 $k(x) = exp(-\frac{(\mathbf{x_i} - \mathbf{x_j})^2}{2\ell^2})$

 $p(\mathbf{y}_T | \mathbf{y}) = \mathcal{N}(\boldsymbol{\mu}_T, \boldsymbol{\Sigma}_T)$

Misclassification performance

Name	True Pos.	False Neg.	False Pos.	F1 score	frame runtime (s)
Adaboost-sigmoid	543	46	326	0.745	0.058
Adaboost-platt	527	62	93	0.872	0.058
Adaboost-IR	521	68	64	0.888	0.061
Adaboost→SE-GP*	505	84	118	0.833	(variable)
Logitboost	541	48	341	0.735	0.06
SE-GP	529	60	1030	0.492	142
Lin-GP	500	89	4792	0.169	120
Lin-SVM	485	104	548	0.598	0.45
RVM	505	84	1811	0.348	8.68

*Run SE-GP only on window locations identified by adaboost

Mean-squared error penalises confident wrong classifications more than uncertain ones:

$$MSE = \frac{2}{N} \sum_{k=1}^{N} (C_k - p(1|\mathbf{x}_i))^2$$

Reliability results

Name	Area Under Curve	Mean Squared Error	frame runtime (s)
Adaboost-sigmoid	0.760	0.797	0.058
Adaboost-platt	0.834	0.331	0.058
Adaboost-IR	0.807	0.346	0.061
Adaboost→SE-GP	0.796	0.410	(variable)
Logitboost	0.749	0.813	0.06
SE-GP	0.865	0.595	142
Lin-GP	0.806	0.978	120
Lin-SVM	0.722	0.691	0.45
RVM	0.787	1.207	8.68

"How often did a prediction with e.g. p=0.8 result in a true positive?" Modified to show discarded stages.

A reminder...

Adaboost \rightarrow GP:

Platt:

- Active learning •
- More expensive algorithms •
- Unknown class identification •

Uncertainty

Summary

- GPs & probability generation techniques effective at separating uncertain from certain detections.
- GPs arguably not worth extra computational cost -- even when Adaboost used to filter negatives.
- Future work: apply to more classes/modalities

Detector performance in practice

