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1. Introduction cont’d ...

Motivation

Distributed detection has been attracting significant interest in the
context of WSNs [Chamberland 2007] and [Barbarossa 2013].

Flexible and can be seamlessly deployed for military monitoring and
surveillance purpose [Chen 2006].

Challenges

They suffer from constrained bandwidth and limited on-board power.

Challenges in the design of distributed detection algorithms, especially
when the intruder’s signature is unknown to the WSN.

Objective

To improve the detection by fusing the measurements provided by
various SNs in a manner that:

1 Efficiently utilizes the scarce bandwidth.
2 Overcomes the limitations of a fading wireless channel.
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1. Introduction

Literature Review

Chamberland addressed the decentralized detection in bandwidth
constrained sensor networks, where the design of sensor messages sent
to the FC that minimize the error probability is investigated
[Chamberland 2003].

Xiao and Luo investigated the problem of detecting a known
deterministic parameter under restricted channel capacity [Xiao 2005].

The channel fading effect on distributed detection was tackled by
Chenn [Chenn 2006].

Barbarossa and Sardelliti addressed both issues of limited bandwidth
and channel imperfections. They optimized the transmission power
for the detection of a known signal [Barbarossa 2013].
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2. Problem Formulation cont’d ...

X 1
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M sensor nodes reporting to a FC tasked with the detection of any
intruders.

The intruder leaves a signature signal unknown to the WSN but
deterministic.

The i th SN collects N samples corrupted by (AWGN) zero mean and
known variance σ2

i .
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2. Problem Formulation cont’d ...

System Model

Depending on the underlying hypothesis:

H0 : xi (n) = wi (n)

H1 : xi (n) = si (n) + wi (n)
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2. Problem Formulation cont’d ...

Optmimum detection

The intruder’s signal is unknown at the SNs, hence the i th SN
estimates the energy of the received signal:

Ti =
N∑

n=1

|xi (n)|2 . (1)

SNs should send their measurements to the FC, where the ultimate
detection decision will be made.

Available bandwidth is limited.

This approach is not always feasible in the context of WSNs .

Edmond Nurellari Distributed Detection in WSN September 8, 2014 9 / 40



2. Problem Formulation cont’d ...

Optmimum detection

The intruder’s signal is unknown at the SNs, hence the i th SN
estimates the energy of the received signal:

Ti =
N∑

n=1

|xi (n)|2 . (1)

SNs should send their measurements to the FC, where the ultimate
detection decision will be made.

Available bandwidth is limited.

This approach is not always feasible in the context of WSNs .

Edmond Nurellari Distributed Detection in WSN September 8, 2014 9 / 40



2. Problem Formulation cont’d ...

Optmimum detection

The intruder’s signal is unknown at the SNs, hence the i th SN
estimates the energy of the received signal:

Ti =
N∑

n=1

|xi (n)|2 . (1)

SNs should send their measurements to the FC, where the ultimate
detection decision will be made.

Available bandwidth is limited.

This approach is not always feasible in the context of WSNs .

Edmond Nurellari Distributed Detection in WSN September 8, 2014 9 / 40



2. Problem Formulation cont’d ...

Optmimum detection

The intruder’s signal is unknown at the SNs, hence the i th SN
estimates the energy of the received signal:

Ti =
N∑

n=1

|xi (n)|2 . (1)

SNs should send their measurements to the FC, where the ultimate
detection decision will be made.

Available bandwidth is limited.

This approach is not always feasible in the context of WSNs .

Edmond Nurellari Distributed Detection in WSN September 8, 2014 9 / 40



2. Problem Formulation cont’d ...
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Optmimum detection

WSN adopts a distributed detection algorithm.

SNs send their quantized soft decisions (i.e., the quantized local test
statistics) to the FC.

FC combines them to arrive at the global decision.
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2. Problem Formulation

Proposition

We propose to quantize Ti with Li bits and transmit to the FC with
power pi over a wireless channel.

The number of quantization bits at the i th SN must satisfiy the
channel capacity constraint:

Li ≤
1

2
log2

(
1 +

pih
2
i

ζi

)
bits, i = 1, 2, . . . ,M.

The wireless channel conditions between the i th SN and the FC:

1 Suffers from zero mean AWGN with a variance of ζi .
2 Experiences flat fading with a channel gain hi (assumed to be iid).
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Part I
Soft Decision Fusion Rules

Edmond Nurellari Distributed Detection in WSN September 8, 2014 13 / 40



3. Soft Decision Fusion Rules cont’d ...

Optimal Fusion Rule cont’d ...

Optimal soft decision fusion rule is investigated given infinite
bandwidth for each WSN (no quantization is required).

Given the local soft test statistic:

Ti =
N∑

n=1

|xi (n)|2 . (2)

The optimal fusion rule follows from the likelihood ratio test:

LRT (T ) =
p {T1,T2, ...,TM |H1}
p {T1,T2, ...,TM |H0}

≥ γ (3)

where p {T1,T2, ...,TM |Hj} is the joint probability distribution of
local soft decisions under the j th hypothesis.
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3. Soft Decision Fusion Rules cont’d ...

Optimal Fusion Rule cont’d ...

Ti can be adequately approximated by a Gaussian distribution with
the following mean and variance:

E {Ti |H0} = Nσ2
i , Var {Ti |H0} = 2Nσ4

i (4)

E {Ti |H1} = Nσ2
i (1 + ξi ) , Var {Ti |H1}=2Nσ4

i (1+2ξi )

(5)

where ξi =
N∑

n=1
s2
i (n) /Nσ2

i is the SNR at the i th SN.

Noise at different SNs assumed independent, LLR takes the form:

Tf =
M∑
i=1

((
Ti − Nσ2

i

)2

2Nσ4
i

−
(
Ti − Nσ2

i (1 + ξi )
)2

2Nσ4
i (1 + 2ξi )

)
≥ γ′ (6)
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3. Soft Decision Fusion Rules cont’d ...

Optimal Fusion Rule

The LLR can be further simplified

Tf =
M∑
i=1

ai (Ti − bi )
2 (7)

ai =
ξi

Nσ4
i (1 + 2ξi )

, bi =
Nσ2

i

2
.

where γ′ = 2 ln

(
M∏
i=1

γ

( √
2Nσ4

i√
2Nσ4

i (1+2ξi )

))
.
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Suboptimal Fusion Rules cont’d ...

Suboptimal Fusion Rules

The optimal fusion rule requires the exact knowledge of the SNR (ξi ).

Use its structure to formulate implementable suboptimal rules.

We propose three suboptimal rules:

1 Weighted fusion
2 Equal fusion
3 Optimum linear fusion
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Suboptimal Fusion Rules

Weighted Fusion Rule

Replace ai by awi = 1/2Nσ4
i and we let bwi = bi =

Nσ2
i

2 . This rule
approaches the optimal one when the SNR is large.

Tf =
M∑
i=1

ai (Ti − bi )
2 (8)

Equal Weight Fusion Rule

aei = 1 for all i = 1, 2, · · · ,M. Also, bei = bi .

Optimum Linear Fusion Rule

T l
f =

M∑
i=1

αiTi , where αi = ξi
Nσ2

i (1+2ξi )
.
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Part II
Quantized Soft Decision Fusion Rules
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Quantized Soft Decision Fusion Rules cont’d ...

Quantized Optimal Fusion Rule cont’d ...

Previously we assumed infinite bandwidth is available to send the
exact Ti to FC.

Now let the quantized test statistic (T̂i ) at the i th sensor be modeled
(with Li bits) as

T̂i = Ti + vi (9)

vi is the quantization noise with uniform distribution in the interval
[−B,B] and variance

σ2
vi

=
B2

3× 22Li
. (10)
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Quantized Soft Decision Fusion Rules cont’d ...

Quantized Optimal Fusion Rule

Approximating T̂i ’s as Gaussian distribution, the LLR optimum fusion
rule can be shown to be:

T q
f =

M∑
i=1

aqi

(
T̂i − bqi

)2
(11)

aqi = ξi

Nσ4
i

(
1+2ξi+

σ2
vi

2Nσ4
i

)(
1+

σ2
vi

2Nσ4
i

) bqi =
Nσ2

i
2 −

σ2
vi

4σ2
i
.
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Quantized Soft Decision Fusion Rules cont’d ...

Observations

Note that T q
f → Tf as σ2

vi
→ 0 for all i .

Consequently, aqi → ai and bqi → bi under the previous condition.

Interesting observation is that T q
f → Tf as N →∞, regardless of σ2

vi
.

Bandwidth can be saved but at the expense of increasing both the
number of collected measurements and also the detection delay.
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Quantized Soft Decision Fusion Rules cont’d...

Quantized Sub-Optimum Fusion Rules

T q
f =

M∑
i=1

aqi

(
T̂i − bqi

)2

The suboptimal (quantized) fusion rules can be easily shown to be:

Weighted fusion :aqi = awqi = 1

Nσ4
i

(
1+

σ2
vi

2Nσ4
i

)2 .

Equal fusion: aqi = aeq = 1 and beq = bwq = bqi .

Li ≤ 1
2 log2

(
1 +

pih
2
i

ζi

)
bits, i = 1, 2, . . . ,M.
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Quantized Soft Decision Fusion Rules

Quantized Linear Fusion Rule

T l
f =

M∑
i=1

αq
i T̂i

The weights of suboptimal (quantized) linear fusion rules can be
easily shown to be:

αq
i =

ξi

2σ2
i

[
1 + 2ξi +

σ2
vi

Nσ2
i

] . (12)

E. Nurellari, D. McLernon, M. Ghogho and S. Aldalahmeh, ”Optimal quantization
and power allocation for energy-based distributed sensor detection,”
Proc. EUSIPCO, Lisbon, Portugal, 1-5 Sept. 2014.
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Optimum Sensor Transmit Power Allocation cont’d ...

Optimization Problem cont’d ...

To this end, we first need to adopt an optimization criterion.

A natural one is the probability of detection, which depends on the
distribution of the fusion rule.

Letting Ui =
(
T̂i − bi

)2
then the optimum fusion rule can be written

as

T q
f =

M∑
i=1

aqi Ui . (13)

Using the central limit theorem, T q
f can be approximated by a

Gaussian distribution:

T q
f ∼

{
N
(
E
{
T q
f |H0

}
,Var

{
T q
f |H0

})
under H0

N
(
E
{
T q
f |H1

}
,Var

{
T q
f |H1

})
under H1

(14)
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Optimum Sensor Transmit Power Allocation

Optimization Problem

The probability of detection implicitly depends on the transmission
power through the first and second moments of test statistics.

We can optimize the transmission powers (pi ) to maximize Pd under
the constraint of a maximum aggregate transmit power budget (Pt):

popt = arg max
p

Pd (p)

subject to
M∑
i=1

pi ≤ Pt for pi ≥ 0, i = 1, . . . ,M
(15)

where p = [p1, p2, . . . , pM ].

We adopt the spatial branch-and-bound strategy using the YALMIP
optimization tools.
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Simulations setup

We simulate a WSN of M SNs detecting an intruder with si (n) = A,
where A = 0.1.

The communication noise variances set to ζi = 0.1 ∀i (for simplicity).

The measurement noise variances are generated randomly and used
throughout the simulations.

The average measurement SNR for the network is defined as

ξa = 10 log10

(
1
M

M∑
i=1

ξi

)
.

In all simulations we assume perfect knowledge of ξi .
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Simulation Results 1/6
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Figure: Receiver operating characteristics of six different fusion rules for N = 10, M = 10, ξa = −8.5 dB and B = 0.5.
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Simulation Results 2/6
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Figure: Probability of detection (Pd ) versus number of samples (N) with M = 20, Pfa = 0.1,B = 0.5 and ξa = 8.5 dB.
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Simulation Results 3/6
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Figure: Probability of detection (Pd ) versus number of sensors (M) for N = 10, Pfa = 0.1, ξa = 8.5 dB and B = 0.5.
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Simulation Results 4/6
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Figure: Probability of detection (Pd) versus the signal to noise ratio (ξa) for M = 20, N = 10, Pfa = 0.1 and B = 0.5.
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Simulation Results 5/6
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Figure: Probability of detection (Pd) versus the number of samples (N) for M = 10 sensors,Pfa = 0.1, ξa = 8.5 dB and
B = 1.
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Simulation Result 6/6
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Figure: Optimum sensor transmit power and channel quantization bits allocation for N = 10, Pfa = 0.1, ξa = 8.5 dB and
Pt = 20.
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Conclusions

We show that the optimal fusion for energy-based soft decisions is the
weighted distance of the decisions from their mean under the null hypothesis.

Realizable suboptimal fusion rules derived from the optimal one were
proposed as well, in which more weight in the actual fusion are given to
decisions with better sensing quality.

We show that the effect of quantization on the detection performance can
be mitigated by increasing the number of measurements (N), or equivalently
incurring more delay in the system.

Finally, the SN’s transmission power has been optimally allocated.
Intuitively, more power is given to SNs having better channel gains and
consequently increased number of bits.
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Questions/Comments?
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