THALES

Topographic Visual Analytics of Multibeam Dynamic SONAR Data

Domain Background:

- a pulse and the returning echo is compared to the original pulse)
- which lead to high uncertainty, noise and non-linearity:
 - and high rates of false alarms in classification

Data:

Beam Grouping Approach:

Thales Supervisors: Les Hart, Robert Taylor and Geoff Williams

Iain Rice NCRG Aston University ricei@aston.ac.uk

Aston University Supervisors: Professor David Lowe and Professor Ian Nabney

Topographic Visualisation:

To avoid the data overload problem we seek a visualisation of the observed data that is *topographic* – preserving neighbourhood relationships and global structure of input data. In a pointwise dimension reduction problem we seek to minimise the

$d_{ii}^{*} = ||x_{i} - x_{i}||^{2}$ $d_{ii}^{*} = ||y_{i} - y_{i}||^{2}$

The points, **y**, are created using a Radial Basis Function network, creating a feed forward mapping where new datapoints can be projected to a visualisation space.

$\mathbf{y}_{i} = \boldsymbol{\Sigma}_{i} \boldsymbol{\lambda}_{i} \boldsymbol{\varphi}(||\mathbf{x}_{i} - \boldsymbol{\mu}_{i}||)$

This deterministic approach to visualisation called NeuroScale was extended to include uncertainty where the visualised points, y, are replaced with distributions:

$d_{ii} = KL(y_{i} || y_{i})$

Beam by Beam Approach:

The target signal is modelled as a periodic nonlinear auto-regressive signal of

-5