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● SONAR (sound navigation and ranging) has been used since the early 1900's
● SONAR types: Passive (listening to radiated sound) and Active (Projector generates
    a pulse and the returning echo is compared to the original pulse)
● Problems not faced in other signal processing domains (radar or speech analysis)           
  which lead to high uncertainty, noise and non-linearity:

• large amounts of clutter from unknown sources creating a low signal-to-noise ratio 
and high rates of false alarms in classification

• high volume data analysis with sensors consisting of a large number of sensors
• encompassing reflections from the sea bed, surface and refracted paths.

● SONAR Systems are working with high-dimensional, multimodal data requiring   
   compression without data overload and analysed in real time by human operators

Domain Background:

Beam by Beam Approach:

Beam Grouping Approach:
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To avoid the data overload problem we seek a visualisation of the observed data 
that is topographic – preserving neighbourhood relationships and global structure 
of input data. In a pointwise dimension reduction problem we seek to minimise the 
STRESS when creating points, y, to represent the high dimensional data, x. 
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The points, y, are created using a Radial Basis Function network, creating a feed 
forward mapping where new datapoints can be projected to a visualisation space.
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This deterministic approach to visualisation called NeuroScale was extended to 
include uncertainty where the visualised points, y, are replaced with distributions:

x ~ N(m,σ) y ~ N(y,σ) d
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Data:

The data supplied by DSTL is a 
real world 32 hydrophone 
scenario where a speedboat 
travelled from end to end of the 
array in a shallow water 
environment. There was some 
~50Hz noise present in all 
sensors, however there was no 
rain or shipping noise present. 
The broadband plot of the 
exercise is shown on the right.

The target signal is modelled as a periodic nonlinear auto-regressive signal of 
order 14 estimated by an RBF Neural Network. The residuals, |x – x|, are 
modelled by a realistic noise mixture model.

 Laplace    +   Rayleigh  +  Gamma  +        K        +   Gaussian
 (other signals)   (thermal)          (rain)     (reflections)    (residuals)

The beam dissimilarity is the sum of 
the target signal and noise dissimilarity 
measures. The target signal dissimilarity 
compares the PSD of the predictive RBF 
model above and the noise dissimilarity 
compares overlap of the PDFs using the 
Bhattacharyya distance. The variance of 
the noise mixture is then treated as the 
uncertainty used as the variance when 
constructing each visualised Gaussian 
distribution, y, creating a 33 component 
GMM visualisation space.

Beams are grouped in overlapping sections of 
5 beams and modelled with a nonlinear vector 
autoregressive process using an RBF network:
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As a proxy for a noise model we construct 
covariance matrices characterising the models:

Σ
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In order to visualise this NVAR process we must specify d*

ij
 so the model 

covariance is treated as being the covariance of a 5-dimensional Gaussian and 
the zero-mean KL divergence is used to compare the models between beams.
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