

Sparse Methods in Radar Signal Processing

Randy Moses

Dept. of Electrical and Computer Engineering The Ohio State University

This work was supported by AFOSR, AFRL, and DARPA

It never rains in Edinburgh

- It never rains in Edinburgh
- The letter 's' is subject to P_M and P_{FA}
 - P_M: Defence vs Defense
 - P_{FA}: Optimization vs Optimisation

- It never rains in Edinburgh
- The letter 's' is subject to P_M and P_{FA} - P_M : P_{FA} ! Defence vs Defense - P_{FA} : P_M ! Optimization vs Optimisation

- It never rains in Edinburgh
- The letter 's' is subject to P_M and P_{FA} - P_M : P_{FA} ! Defence vs Defense
 - $-P_{FA}$: P_{M} ! Optimization vs Optimisation
- If a roundabout doesn't have trees or grass on it, it is perfectly okay to drive right over it.
 - My apologies to any of you who were approaching a roundabout while I was driving through!

Context

- Advances in digital processing are enabling revolutionary opportunities for radar signal processing
 - Sophisticated radar image/volume reconstructions
 - Multi-function radars that can simultaneously perform imaging, detection, moving object tracking and recognition, etc.
 - Persistent sensing over space and time
 - Combined sensing and communication
 - Estimation/inference with uncertainty analysis
- Challenges
 - Very large data, processing, and communications tasks
 - Traditional models for radar backscattering may not apply over wide angles

SAR Data Collection

SAR Image Formation

Traditional approach: tomography

Tomographic image I(x,y) is a matched filter for an isotropic point scatterer at location (x,y). [Rossi+Willsky]

Linear Algebra Formulation

- Measurements y (M £ 1) : phase history data as a function of (f,az,el)
- Reconstruction: x (N \pounds 1): set of (x,y) or (x,y,z) locations with significant radar scattering energy

$$y = Ax + \nu$$

$$A = \left[e^{-j(k_{x,m}x_n + k_{y,m}y_n + k_{z,m}z_n)} \right], \quad M \times N$$

Matched filter:

$$\hat{x} = A^H y$$

Example: Ohio Stadium

X-Band Radar 3° aperture 1ft x 1ft res

SAR Image Detail

3D Reconstruction

Can Sparsity Play a Role?

- At high frequencies, radar backscatter is well-modeled as a sum of responses from canonical scattering terms.
- EM scattering theory provides a rich characterization of backscatter behavior as a function of object shape
 - Azimuth, elevation, frequency dependence
 - Polarization dependence
 - Phase response range
- This scattering theory suggests that the radar response may be sparse in some representations
 - Sparse reconstruction
 - Parametric modeling

Scattering Model

Canonical Shape Type Γ	Icon	Polarization Type β	Amplitude Response $M_{\Gamma}(k, \hat{\phi}, \hat{\theta}; \Theta)$	Calibration Factor A	Range Offset ΔR_r
Plate	odd $M_{\text{plate}}(\Theta_{\text{plate}}) = \frac{ikA}{\sqrt{\pi}} \operatorname{sinc}\left[kL\sin\hat{\phi}\cos\hat{\theta}\right] \operatorname{sinc}\left[kH\sin\hat{\theta}\right]$ $\hat{\phi} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$		LH	0	
Dihedral		even	$\begin{split} M_{\rm dih}(\Theta_{\rm dih}) &= \frac{jk}{\sqrt{\pi}} A \operatorname{sinc} \left[kL \sin \hat{\phi} \cos \hat{\theta} \right] \\ &\times \begin{cases} \sin \hat{\theta}, \hat{\theta} \in [0, \frac{\pi}{4}] \\ \cos \hat{\theta}, \hat{\theta} \in [\frac{\pi}{4}, \frac{\pi}{2}] \end{cases}, \hat{\phi} \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{split}$	2LH	0
Trihedral		odd	$\begin{split} M_{\rm tri}(\Theta_{\rm tri}) &= \frac{jkA}{2\sqrt{\pi}} \times \begin{cases} -\cos\left(\hat{\phi} - \frac{\pi}{4}\right), & \hat{\phi} \in \left[-\frac{\pi}{4}, 0\right] \\ \sin\left(\hat{\phi} - \frac{\pi}{4}\right), & \hat{\phi} \in \left[0, \frac{\pi}{4}\right] \end{cases} \\ & \times \begin{cases} \sin\left(\hat{\theta} + \frac{\pi}{4} - \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)\right), & \hat{\theta} \in \left[0, \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)\right] \\ \cos\left(\theta + \frac{\pi}{4} - \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)\right), & \hat{\theta} \in \left[\tan^{-1}\left(\frac{1}{\sqrt{2}}\right), \frac{\pi}{2}\right] \end{cases} \end{split}$	$2\sqrt{3}H^2$	0
Cylinder	0	odd	$M_{\rm cyl}(\Theta_{\rm cyl}) = jk\sqrt{\cos\hat{\phi}}A \operatorname{sinc}\left[kL\sin\hat{\phi}\right] \hat{\phi} \in \left[-\tfrac{\pi}{2}, \tfrac{\pi}{2}\right]$	$L\sqrt{r}$	$2r\cos\phi$
Top-hat		even	$M_{\rm top}(\Theta_{\rm top}) = A\sqrt{jk} \times \begin{cases} \sin \hat{\theta}, & \hat{\theta} \in [0, \frac{\pi}{4}] \\ \cos \hat{\theta}, & \hat{\theta} \in [\frac{\pi}{4}, \frac{\pi}{2}] \end{cases}$	$\sqrt{\tfrac{8r}{\sqrt{2}}}H$	$2r\cos\theta$
Sphere	0	odd	$M_{\rm sphere}(\Theta_{\rm sphere}) = A \sqrt{\pi} r$	1	2r

Jackson & RLM: 2009

Persistent, Wide-Angle Radar

- Sparsity in sensing
- Sparsity in reconstruction
 - Compressive sensing
 - Other sparse reconstruction techniques
 - Parametric modeling

Sparse Reconstruction

Sparsity

- Measurements y (M \pounds 1) : sparse sampling of full (f,az,el) radar measurement space
- Reconstruction: x (N \pounds 1): sparse set of (x,y,z) locations with significant radar scattering energy

$$y = Ax + \nu$$

$$A = \left[e^{-j(k_{x,m}x_n + k_{y,m}y_n + k_{z,m}z_n)}\right], \quad M \times N$$

Sparse reconstruction:

$$\hat{x} = \arg\min_{x} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{p}^{p} \quad p \leq 1$$

Compressive Sensing

A satisfies the Restricted Isometry Property (RIP)

$$\hat{x} = \|y - Ax\|_2^2 + \lambda \|x\|_1$$

Compressive Sensing

- Discrete linear model
- ℓ_1 regularization (=convex problem)
- Provable performance guarantees

Compressive Sensing: Hype or Help?

Does compressive sensing apply to radar?

- Hype or help?
- Bandwagon or breakthrough?
- Satan or salvation?
- Fraud or foundation?

From: L. Potter, Optical Society of America Incubator, April 2014

- Radar signals aren't compressible in many applications.
- For air-to-ground surveillance, sensor data has high entropy

- CS orthodoxy assumes ranges, angles, velocities are discretized to a sample grid – yet these parameters are continuous-valued.
- Basis mismatch leads to loss of sparsity; oversampled grids destroy low coherence

Benchtop X-band result using ℓ_1 with chirp waveforms and 47:1 compression.

 RF receiver noise power, cost, and power consumption scale with the precision of sample timing, not the average #samples per unit time.

- Linear Processing: Image analysts understand and accept the structured and predictable artifacts of linear processing
- Nonlinear processing artifacts are unpredictable and foreign

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland

 CS is an imposter: it's been around for seven decades or more...

THE TECHN	BELL SYST ICAL JOU	ЕМ JRNAL			
VOLUME XXXIX Copyright 1980	JULY 1960 American Telephone and Telegraph Co	NUMBER 4	Jn	ited S	tates Patent [19]
The Theory a By J. I S. DARLIN (Mar	nd Design of Ch R. KLAUDER, A. C. PRIC NGTON and W. J. ALBERS nuscript received April 5, 1960)	irp Radars [5 E, [5 SHEIM [7	5]	COMPRES Inventors:	SIVE RECEIVER Chester E. Stromswold, Nashua; John T. Apostolos, Manchester, both of N.H.; Robert P. Boland, Malden; Walter J. Albersheim, Wayban, both
		[7	3]	Assignee:	of Mass. Sanders Associates, Inc., Nashua, N.H.
		[2	21]	Appl. No.:	871,297
		(2	22]	Filed:	Jan. 23, 1978

Compressive Sensing is hype, suited to carnival criers, research funding chasers, and academic navel gazing.

As far as RF sensing is concerned, it belongs in a dust bin.

Rebuttal:

Why Compressed Sensing matters for practical radar

Rebuttal 1: Low Entropy

While radar images are on the whole high entropy, many applications have low entropy signals or components.

Change Detection

Autofocus (phase tracking)

Target Chips

Rebuttal 2:

- Recent advances effectively address grid quantization
 - Fannjiang
 - Austin

Rebuttal 3: Performance Gains

In *quantitative* ATR performance, ~2x effective resolution enhancement is observed using sparse recovery methods.

Ka Band 1-meter SAR ROC curves for the 74 km² Stockbridge NY and Ayer MA clutter data and 192 TEL target images (Lincoln Lab, 1996)

Rebuttal 4: New insights, algorithms

- Semi-definite programming formulation gives tractable computation
 - Impressive gains in speed, convergence in a few short years
- Convex formulation yields provable finite-sample performance guarantees
- Seamlessly tackles model order selection

Algorithm	Error	Time (sec)
Singular value thresholding	3.4e-4	877
[Cai/Candes/Shen08]		
Dual method	1.6e-5	177
[Ganesh/Wright/Wu/Chen/Ma'09]		
Accelerated proximal gradient	1.8e-5	8
[Ganesh/Wright/Wu/Chen/Ma'09]		
Alternating direction methods	2.2.e-5	5
[Yuan/Yang'09]		
Inexact augmented Lagrange method	4.3e-8	2
[Lin/Chen/Wu/Ma'09]		
Bilinear generalized AMP	3.8e-8	1
[Schniter/Parker/Cevher'12]		

Recovery of 400x400 rank-20 matrix corrupted by 5%-sparse amplitudes uniform on [-50,50]

Rebuttal 5: multi-mode enabler

- Sampling across space (antenna arrays) and slow-time (pulses) provide avenues for compression beyond stretch processing
- Compression across antennas and pulses provides flexibility for multi-mode RF system operation

The Front Porch

The accessibility and popularity of compressive sensing provides a format for rich cross-disciplinary interactions and an invitation for practitioners to reconsider data acquisition and nonlinear processing.

- Vocabulary of *linear algebra* to consider inverse problems and estimation tasks
- Invitation to consider signal structure or parsimony beyond bandlimitedness
- Invitation to consider nonuniform sampling strategies
- Good convex programming codes.

How Can Sparsity Play a Role?

Persistent Sensing enables:

- High resolution, volumetric imaging of stationary objects and scenes
- Continuous tracking of moving objects

Scattering Model

	Polarization	Frequency Aspect	Location
	Dependence	Dependence Dependence	Dependence
$S(f,\phi,\theta) =$	$\begin{bmatrix} A_{HH} & A_{HV} \\ A_{VH} & A_{VV} \end{bmatrix}$	$\left[\left(rac{jf}{f_c} ight)^\gamma \; M(\phi, heta) \; \phi$	$e^{j\frac{4\pi f}{f_c}\Delta R(x,y,z;a)}$

Canonical Shape Type Γ	$ \begin{array}{c c} \operatorname{ical} \\ e \\ \Gamma \end{array} & \operatorname{Icon} & \operatorname{Polarization} \\ \Gamma & \operatorname{Type} \beta \end{array} & \operatorname{Amplitude Response} M_{\Gamma}(k, \mathring{\phi}, \hat{\theta}; \Theta) \\ \\ & \\ s & \\ & \\ s & \\ & \\ & \\ & \\ & \\$		Calibration Factor A	Range Offset ΔR_r	
Plate			LH	0	
Dihedral		even	$\begin{split} M_{\rm dih}(\Theta_{\rm dih}) &= \frac{jk}{\sqrt{\pi}} A \operatorname{sinc} \left[kL \sin \hat{\phi} \cos \hat{\theta} \right] \\ &\times \begin{cases} \sin \hat{\theta}, \hat{\theta} \in [0, \frac{\pi}{4}] \\ \cos \hat{\theta}, \hat{\theta} \in [\frac{\pi}{4}, \frac{\pi}{2}] \end{cases}, \hat{\phi} \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{split}$	2LH	0
Trihedral		odd	$\begin{split} M_{\rm tri}(\Theta_{\rm tri}) &= \frac{jkA}{2\sqrt{\pi}} \times \begin{cases} -\cos\left(\hat{\phi} - \frac{\pi}{4}\right), & \hat{\phi} \in \left[-\frac{\pi}{4}, 0\right] \\ \sin\left(\hat{\phi} - \frac{\pi}{4}\right), & \hat{\phi} \in \left[0, \frac{\pi}{4}\right] \end{cases} \\ & \times \begin{cases} \sin\left(\hat{\theta} + \frac{\pi}{4} - \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)\right), & \hat{\theta} \in \left[0, \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)\right] \\ \cos\left(\theta + \frac{\pi}{4} - \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)\right), & \hat{\theta} \in \left[\tan^{-1}\left(\frac{1}{\sqrt{2}}\right), \frac{\pi}{2}\right] \end{cases} \end{split}$	$2\sqrt{3}H^2$	0
Cylinder	0	odd	$M_{\rm cyl}(\Theta_{\rm cyl}) = jk\sqrt{\cos\hat{\phi}}A \operatorname{sinc}\left[kL\sin\hat{\phi}\right] \hat{\phi} \in \left[-\tfrac{\pi}{2}, \tfrac{\pi}{2}\right]$	$L\sqrt{r}$	$2r\cos\phi$
Top-hat		even	$M_{\rm top}(\Theta_{\rm top}) = A\sqrt{jk} \times \begin{cases} \sin \hat{\theta}, & \hat{\theta} \in [0, \frac{\pi}{4}] \\ \cos \hat{\theta}, & \hat{\theta} \in [\frac{\pi}{4}, \frac{\pi}{2}] \end{cases}$	$\sqrt{\tfrac{8r}{\sqrt{2}}}H$	$2r\cos\theta$
Sphere	0	odd	$M_{\rm sphere}(\Theta_{\rm sphere}) = A \sqrt{\pi} r$	1	2r

Jackson & RLM: 2009

Parametric: Canonical Scattering Model $S(f,\phi,\theta) = \sum_{k=1}^{\kappa} \begin{bmatrix} A_{HH} & A_{HV} \\ A_{VH} & A_{VV} \end{bmatrix}_{k} \left(\frac{jf}{f_{c}}\right)^{\gamma_{k}} M_{k}(\phi,\theta) e^{j\frac{4\pi f}{f_{c}}\Delta R(x_{k},y_{k},z_{k};a_{k})}$ Polarization Frequency Location Aspect Dependence **Dependence Dependence** Dependence

Jackson & RLM: 2009

AFRL Gotcha Radar

15.25 Km. 5 Km. 5 Km.

Data Storage: 90 G samples/circle Image formation: 45 Tflops/sec Communications: 190 M samples/sec

Coherent wide-angle SAR Images

Coherent wide-angle image is not well-matched to limited persistence scattering behavior

Wide-Angle Data Collections

- Most backscatter does NOT behave like a point scatterer over wide angles
- Most scattering centers have limited response persistence
 - 20° or less at X-band [Dudgeon et al, 1994]

Standard imaging is not statistically (close to) optimal

Wide-Angle Data Collections

When the radar measurement extent is \leq scattering persistence, the isotropic assumption is ~satisfied, and tomographic imaging is ~a matched filter.

Wide-Angle Data Collections

For wide-angle measurements the isotropic scattering assumption breaks down.

- Tomography is no longer a matched filter

Scattering Aspect Dependence

GRLT Imaging

Generalizes Rossi+Willsky matched filter result to wideangle imaging with limited-persistence scattering

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland

RLM, Potter, Cetin: 2004

Sparse 3D Reconstruction, Take 1

Sparse 3D Reconstruction: Take 2

- 3D radar reconstruction necessarily will use (very) sparse measurements
- Is the radar reconstruction sufficiently sparse to overcome misparsity?

AFRL Backhoe Data Dome, with sparse "squiggle path" shown

Squiggle Path 3D Tomographic Reconstruction

Squiggle Path Collection: *l*_p Regularized LS Reconstruction

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland

Austin, Ertin, RLM, 2011

Backhoe Squiggle Image

Backhoe Squiggle Image

Gotcha I_p **Reconstructions: Camry**

- AFRL Gotcha Radar
- X-band circular SAR
- 500MHz bandwidth
- Public data releases

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland

Austin, Ertin, RLM, 2011

Vehicle Classification; Attributed Point Sets

Camry:

Maxima:

Using standard feature classifiers, >95% correct classification is obtained for 10-class GOTCHA vehicle set using 500 MHz X-band circular SAR

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland

Dungan and Potter, 2011, 3

Newer Directions 1: Probabilistic

- Develop a Bayesian approach to Sparse Modeling
 - Output are full posterior distributions
 - Belief propagation using probalistic factor analysis
 - Robust co-estimation of 'tuning' parameters
 - Computation is comparable to CS

Modeling Azimuth Dependence

- Develop a Bayesian approach to Sparse Modeling
 - Temporal (=azimuth) dependence model on aspect amplitude
 - Estimate of pdf for each variable

From: J. Ash, E. Ertin, L. Potter, E. Zelnio, "Wide Angle Synthetic Aperture Radar," IEEE Signal Processing Magazine, **31**, 4, July 2014.

Azimuth Dependence Example

From: J. Ash, E. Ertin, L. Potter, E. Zelnio, "Wide Angle Synthetic Aperture Radar," IEEE Signal Processing Magazine, **31**, 4, July 2014.

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland

Newer Directions 2: Change Detection

- Objective: Robust SAR change detection
 - under mixed sampling geometries
 - Interrupted apertures
 - Frequency jamming
 - Pass-to-pass misalignment

- Kx

Interrupted SAR

Freq. jamming

Misalignment

Time 2

Proposed

Newer Directions 2: Change Detection

Discard 5% of Time1 data, 58% of Time2 data:

From: J. Ash, "A unifying perspective of coherent and non-coherent change detection," Proc. SPIE. **9093**, Algorithms for Synthetic Aperture Radar Imagery XXI, 909309, June 2014.

Newer Directions 3: Low-Cost Hardware

- Distributed radar testbed consisting of 14 Micro SDRs.
 - Mobile form-factor, lightweight, fully digital programmable
- Colocated MIMO Radar system with 4 TX And 4 RX channels
 - airborne collection emulation using 32 TX and 32 RX antenna array
- Stand-alone, high-performance stationary infrastructure

Micro SDR

MIMO Radar System

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh,

Prof. Emre Ertin, ertin.1@osu.edu

Newer Directions 3: Low-Cost Hardware

- 250 MHz Signal Bandwidth (60 cm resolution)
 - • Dual 250 MS/sec 14 bit A/D
 - • Dual 1 GS/sec oversampling 16 bit D/A
- Embedded Virtex-6 LX240T FPGA
- 215 mm (W) x 96 mm (H) x 290 mm (D)
- Custom X-Band RF-Frontend with switchable 4TX and 4RX Antenna Matrix
 - ability to chain for multiple units

Prof. Emre Ertin, ertin.1@osu.edu

Joint Sensing-Comm Experiment

- Self-adaptive joint radar/communication system
 - PN transmit signal waveform
- Measured and communicated range-Doppler maps
 - nth range-Doppler map used to adapt (n+1)st waveform set.

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland

Rossler, Ertin, RLM: 2011

- Transmit signal design can alter A coherence properties
- Ex: 10 targets; 2 tx designs; 10:1 basis pursuit undersampling

Transmit Designs for Coherence

Histogram of A^HA magnitudes

Newer Direction 5: Relating CS to ML/MDL

Can we related Sparse Reconstruction to parameter estimation?

$$\hat{x} = \arg\min_{x} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{p}^{p} \quad p \leq 1$$

MDL selection given by:

$$\lambda^* = \arg\min_{\lambda} J(\hat{x})$$
$$J(x) = \|y - Ax\|^2 + \frac{n_c \ln(N)}{2} \|x\|_0$$

Well-Separated Sinusoids

Closely-Spaced Sinusoids (Superresolution)

Closing Points

- Advances in sampling and digital processing are moving radar systems more firmly in the digital realm.
 - Much broader set of signaling and waveform adaptation possibilities
- Persistence and wide-angle sensing motivate rethinking the models and algorithms for radar processing.
 - Sparse nonparametric and parametric solutions
 - New opportunities for using the time dimension
- A rich collaboration across diverse research communities are steadily producing algorithms and enabling hardware proving effective on real-world radar challenges.

Thank you!