

Performance metric in closed-loop sensor management for stochastic populations

Emmanuel D. Delande, Jérémie Houssineau, and Daniel E. Clark {E.D.Delande, jh207, D.E.Clark}@hw.ac.uk

> Engineering & Physical Sciences Heriot-Watt University Edinburgh, UK

SSPD Conference - September 9, 2014 @ University of Edinburgh, UK

Delande, Houssineau, Clark (H-W U)

Sensor management

A B A B A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

September 9, 2014

1 / 18

2 Information gain for stochastic populations

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 2 / 18

æ

① Closed-loop sensor management for multi-object filtering

2 Information gain for stochastic populations

3 Further developments

æ

Multi-object tracking problem

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 4 / 18

æ

Multi-object tracking problem

 $\bullet~\mathbf{X}:$ physical space of interest (surveillance area)

4 D F 4 A F

Multi-object tracking problem

- X: physical space of interest (surveillance area)
- Targets currently in **X** described by state $x \in \mathbf{X}$ (position, velocity, etc.)

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Multi-object tracking problem

- X: physical space of interest (surveillance area)
- Targets currently in **X** described by state $x \in \mathbf{X}$ (position, velocity, etc.)
- Targets currently away from **X** assume "empty state" ψ

< 47 ►

Multi-object tracking problem

- X: physical space of interest (surveillance area)
- Targets currently in **X** described by state $x \in \mathbf{X}$ (position, velocity, etc.)
- Targets currently away from **X** assume "empty state" ψ
- Goal: what is the state of y in $\overline{\mathbf{X}} = \{\psi\} \cup \mathbf{X}$?

Multi-object tracking problem

- X: physical space of interest (surveillance area)
- Targets currently in **X** described by state $x \in \mathbf{X}$ (position, velocity, etc.)
- Targets currently away from **X** assume "empty state" ψ

• Goal: what is the state of y in $\overline{\mathbf{X}} = \{\psi\} \cup \mathbf{X}$?

Bayesian flow $P_{\mathfrak{Y}_{t-1}}$ prediction $P_{\mathfrak{Y}_{t|t-1}}$ update $P_{\mathfrak{Y}_{t}}$ $P_{\mathfrak{Y}_{t-1}}$ prediction $P_{\mathfrak{Y}_{t|t-1}}$ update $P_{\mathfrak{Y}_{t}}$ Plande. Houssineau, Clark (H-W U) Sensor management September 9, 2014 4/18

Multi-object tracking problem

- X: physical space of interest (surveillance area)
- Targets currently in **X** described by state $x \in \mathbf{X}$ (position, velocity, etc.)
- Targets currently away from **X** assume "empty state" ψ

• Goal: what is the state of y in $\overline{\mathbf{X}} = \{\psi\} \cup \mathbf{X}$?

Bayesian flow

• $P_{\mathfrak{Y}_t}$: "information" known by operator at time t on all targets

• Z_t : observations produced and collected at time t by the operator

What is a sensor, from a tracking perspective?

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 5 / 18

æ

What is a sensor, from a tracking perspective?

• On top of the detection level: produces a set of observations Z_t at each time t

What is a sensor, from a tracking perspective?

- On top of the detection level: produces a set of observations Z_t at each time t
- Known by the operator through a *stochastic description*

• • • • • • • • • • • • •

What is a sensor, from a tracking perspective?

- On top of the detection level: produces a set of observations Z_t at each time t
- Known by the operator through a *stochastic description*

Stochastic description

Likelihood l_t(z, x): how likely is obs. z to come from a target with state x?

Image: A math the second se

What is a sensor, from a tracking perspective?

- On top of the detection level: produces a set of observations Z_t at each time t
- Known by the operator through a *stochastic description*

Stochastic description

- Likelihood l_t(z, x): how likely is obs. z to come from a target with state x?
- Probability of detection $p_{d,t}(x)$: how likely is a target with state x to be detected?

Image: A matrix and a matrix

What is a sensor, from a tracking perspective?

- On top of the detection level: produces a set of observations Z_t at each time t
- Known by the operator through a *stochastic description*

Stochastic description

- Likelihood l_t(z, x): how likely is obs. z to come from a target with state x?
- Probability of detection $p_{d,t}(x)$: how likely is a target with state x to be detected?
- Probability of false alarm $p_{fa,t}(z)$: how likely is the sensor to produce a false alarm with state z?

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 6 / 18

(日) (四) (보) (보) (보)

 \mathbf{Z}_t

<ロ> (四) (四) (日) (日) (日)

• *Discrete* observation space \mathbf{Z}_t

3

- *Discrete* observation space \mathbf{Z}_t
- *Localized* false alarm process: at most one false alarm, per cell and per scan

イロト イロト イヨト

- *Discrete* observation space \mathbf{Z}_t
- *Localized* false alarm process: at most one false alarm, per cell and per scan

イロト イロト イヨト

 In each cell z ∈ Z_t, false alarm occurs with probability p_{fa,t}(z)

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 6 / 18

- *Discrete* observation space \mathbf{Z}_t
- *Localized* false alarm process: at most one false alarm, per cell and per scan

Image: A math a math

 In each cell z ∈ Z_t, false alarm occurs with probability p_{fa,t}(z)

• \mathbf{Z}_t projected onto \mathbf{X} shapes the sensor field of view (FoV)

- *Discrete* observation space \mathbf{Z}_t
- *Localized* false alarm process: at most one false alarm, per cell and per scan

(日) (四) (三)

 In each cell z ∈ Z_t, false alarm occurs with probability p_{fa,t}(z)

- \mathbf{Z}_t projected onto \mathbf{X} shapes the sensor field of view (FoV)
- Outside of the sensor FoV, $p_{d,t}$ is always zero (i.e. no target detection)

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 7 / 18

- 12

・ロト ・四ト ・ヨト ・ヨト

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 7 / 18

- 12

・ロト ・四ト ・ヨト ・ヨト

• U_t : pool of available *actions* at time t

- 21

- U_t : pool of available *actions* at time t
- $u_i \in U_t$: describes a specific sensor (i.e. $\ell_{u_i}, p_{d,u_i}, p_{fa,u_i}, \mathbf{Z}_{u_i}$)

- U_t : pool of available *actions* at time t
- $u_i \in U_t$: describes a specific sensor (i.e. $\ell_{u_i}, p_{d,u_i}, p_{fa,u_i}, \mathbf{Z}_{u_i}$)
- Question: which action u_i should be selected to collect the "best" observations Z_t ?

- U_t : pool of available *actions* at time t
- $u_i \in U_t$: describes a specific sensor (i.e. $\ell_{u_i}, p_{d,u_i}, p_{fa,u_i}, \mathbf{Z}_{u_i}$)
- Question: which action u_i should be selected to collect the "best" observations Z_t ?

Closed-loop sensor management for multi-object filtering

2 Information gain for stochastic populations

3 Further developments

3

Information gain

Construction of information gain: principle

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 9 / 18

3

Objective

The operator has access to the predicted information $P_{\mathfrak{Y}_{t|t-1}}$ and considers some action $u \in U_t$ for the next observation. Can we quantify the expected information gain G_u of action u?

A B A B A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Objective

The operator has access to the predicted information $P_{\mathfrak{Y}_{t|t-1}}$ and considers some action $u \in U_t$ for the next observation. Can we quantify the expected information gain G_u of action u?

Outline

1. Suppose that observations $Z \subseteq \mathbf{Z}_u$ are collected. How does the updated information $P_{\mathfrak{Y}_t}(\cdot|Z)$ look like?

Objective

The operator has access to the predicted information $P_{\mathfrak{Y}_{t|t-1}}$ and considers some action $u \in U_t$ for the next observation. Can we quantify the expected information gain G_u of action u?

Outline

- 1. Suppose that observations $Z \subseteq \mathbf{Z}_u$ are collected. How does the updated information $P_{\mathfrak{Y}_t}(\cdot|Z)$ look like?
- 2. How much does the operator learn from $P_{\mathfrak{Y}_{t|t-1}}$ to $P_{\mathfrak{Y}_{t}}(\cdot|Z)$?

Objective

The operator has access to the predicted information $P_{\mathfrak{Y}_{t|t-1}}$ and considers some action $u \in U_t$ for the next observation. Can we quantify the expected information gain G_u of action u?

Outline

- 1. Suppose that observations $Z \subseteq \mathbf{Z}_u$ are collected. How does the updated information $P_{\mathfrak{Y}_t}(\cdot|Z)$ look like?
- 2. How much does the operator learn from $P_{\mathfrak{Y}_{t|t-1}}$ to $P_{\mathfrak{Y}_{t}}(\cdot|Z)$?
- 3. How much can be expect to learn from $P_{\mathfrak{Y}_{t|t-1}}$ if he chooses action u?

Objective

The operator has access to the predicted information $P_{\mathfrak{Y}_{t|t-1}}$ and considers some action $u \in U_t$ for the next observation. Can we quantify the expected information gain G_u of action u?

Outline

- 1. Suppose that observations $Z \subseteq \mathbf{Z}_u$ are collected. How does the updated information $P_{\mathfrak{Y}_t}(\cdot|Z)$ look like?
- 2. How much does the operator learn from $P_{\mathfrak{Y}_t|_{t-1}}$ to $P_{\mathfrak{Y}_t}(\cdot|Z)$?
- 3. How much can be expect to learn from $P_{\mathfrak{Y}_{t|t-1}}$ if he chooses action u?

Mathematical framework: stochastic populations for Bayesian estimation

- Well-defined probabilistic framework, developed by J. Houssineau (PhD student) and D. Clark (supervisor)
- Tracking algorithm: ISP filter (Delande, Houssineau, Clark)
イロト イヨト イヨト イヨト

The population of appearing targets $\mathfrak{Y}^{\mathbf{a}}_t$

イロト イヨト イヨト イ

The population of appearing targets $\mathfrak{Y}_t^{\mathbf{a}}$

• Principle: no information is available on any specific individual

The population of appearing targets $\mathfrak{Y}^{\mathbf{a}}_t$

- Principle: no information is available on any specific individual
- Population size is described by cardinality distribution $c_t^{a}(\cdot)$

The population of appearing targets $\mathfrak{Y}^{\mathbf{a}}_t$

- Principle: no information is available on any specific individual
- Population size is described by cardinality distribution $c_t^{\rm a}(\cdot)$
- All individuals are described by a unique probability measure $\hat{p}_t^{a}(\cdot)$ on **X**

(D) (A) (A) (A)

The population of appearing targets $\mathfrak{Y}^{\mathbf{a}}_t$

- Principle: no information is available on any specific individual
- Population size is described by cardinality distribution $c_t^{\rm a}(\cdot)$
- All individuals are described by a unique probability measure $\hat{p}_t^{a}(\cdot)$ on **X**

Example: the operator expects (eventual) targets entering from the South-West

The population of appearing targets $\mathfrak{Y}^{\mathbf{a}}_t$

- Principle: no information is available on any specific individual
- Population size is described by cardinality distribution $c_t^{\mathrm{a}}(\cdot)$
- All individuals are described by a unique probability measure $\hat{p}_t^{a}(\cdot)$ on **X**

Example: the operator expects (eventual) targets entering from the South-West

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 10 / 18

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 11 / 18

<ロ> (四) (四) (三) (三) (三)

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: individual level

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: individual level

• Principle: individuals are *distinguishable* and identified by *tracks*

Delande, Houssineau, Clark (H-W U)

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: individual level

- Principle: individuals are *distinguishable* and identified by *tracks*
- Track y is described by probability measure $p_{t|t-1}^{y}(\cdot)$ on $\bar{\mathbf{X}}$:

Delande, Houssineau, Clark (H-W U)

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: individual level

- Principle: individuals are *distinguishable* and identified by *tracks*
- Track y is described by probability measure $p_{t|t-1}^{y}(\cdot)$ on $\bar{\mathbf{X}}$:

 $\tilde{p}^y_{t|t-1}(\cdot) = \frac{\mathbf{1}_{\mathbf{x}}(\cdot)p^y_{t|t-1}(\cdot)}{p^y_{t|t-1}(\mathbf{1}_{\mathbf{x}})}$ is the spatial distribution in the scene

11 / 18

The population of previously detected targets $\mathfrak{Y}^{d}_{t|t-1}$: individual level

- Principle: individuals are *distinguishable* and identified by *tracks*
- Track y is described by probability measure $p_{t|t-1}^{y}(\cdot)$ on $\bar{\mathbf{X}}$:

 $\tilde{p}_{t|t-1}^{y}(\cdot) = \frac{\mathbf{1}_{\mathbf{x}}(\cdot)p_{t|t-1}^{y}(\cdot)}{p_{t|t-1}^{y}(\mathbf{1}_{\mathbf{x}})}$ is the *spatial distribution* in the scene $\bar{p}_{t|t-1}^{y} = p_{t|t-1}^{y}(\mathbf{1}_{\mathbf{x}})$ is the *probability of presence* in the scene

11 / 18

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The population of previously detected targets $\mathfrak{Y}^{d}_{t|t-1}$: individual level

- Principle: individuals are *distinguishable* and identified by *tracks*
- Track y is described by probability measure $p_{t|t-1}^{y}(\cdot)$ on $\bar{\mathbf{X}}$:

 $\tilde{p}_{t|t-1}^{y}(\cdot) = \frac{\mathbf{1}_{\mathbf{x}}(\cdot)p_{t|t-1}^{y}(\cdot)}{p_{t|t-1}^{y}(\mathbf{1}_{\mathbf{x}})}$ is the *spatial distribution* in the scene $\bar{p}_{t|t-1}^{y} = p_{t|t-1}^{y}(\mathbf{1}_{\mathbf{x}})$ is the *probability of presence* in the scene

11 / 18

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The population of previously detected targets $\mathfrak{Y}^{d}_{t|t-1}$: individual level

- Principle: individuals are *distinguishable* and identified by *tracks*
- Track y is described by probability measure $p_{t|t-1}^{y}(\cdot)$ on $\bar{\mathbf{X}}$:

 $\tilde{p}_{t|t-1}^{y}(\cdot) = \frac{\mathbf{1}_{\mathbf{X}}(\cdot)p_{t|t-1}^{y}(\cdot)}{p_{t|t-1}^{y}(\mathbf{1}_{\mathbf{X}})}$ is the *spatial distribution* in the scene $\bar{p}_{t|t-1}^{y} = p_{t|t-1}^{y}(\mathbf{1}_{\mathbf{X}})$ is the *probability of presence* in the scene

11 / 18

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

<ロ> (四) (四) (三) (三) (三)

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

・ロト ・ 日 ・ ・ ヨ ・ ・

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

・ロト ・ 日 ・ ・ ヨ ・

The population of previously detected targets $\mathfrak{Y}^{\mathrm{d}}_{t|t-1}\!\!:$ hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

Time t

イロト イロト イヨト

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

Image: A math a math

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

Image: A matrix and a matrix

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

A D >
 A B >
 A

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

The population of previously detected targets $\mathfrak{Y}^{\mathrm{d}}_{t|t-1}:$ hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

A D >
 A B >
 A

The population of previously detected targets $\mathfrak{Y}^{\mathrm{d}}_{t|t-1}:$ hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

4 D F 4 A F

The population of previously detected targets $\mathfrak{Y}^{\mathrm{d}}_{t|t-1}:$ hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

4 D F 4 A F

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

4 D F 4 A F

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level • $Y_{t|t-1}$: all possible tracks, up to time t

1 D F 1 A F

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level • $Y_{t|t-1}$: all possible tracks, up to time t

1 D F 1 A F

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level • $Y_{t|t-1}$: all possible tracks, up to time t

1 D F 1 A F

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

• Hypothesis $h \subseteq Y_{t|t-1}$: any subset of *compatible* tracks

Image: A math a math

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

• Hypothesis $h \subseteq Y_{t|t-1}$: any subset of *compatible* tracks $\rightarrow \emptyset, \{y\}, \{y'\}, \{y''\}, \{y, y'\}, \{y', y''\}$ OK,

Delande, Houssineau, Clark (H-W U)

12 / 18

A ID 10 A ID 10 A ID 10

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

• Hypothesis $h \subseteq Y_{t|t-1}$: any subset of *compatible* tracks $\rightarrow \emptyset, \{y\}, \{y'\}, \{y''\}, \{y, y'\}, \{y', y''\}$ OK, $\{y, y''\}, \{y, y', y''\}$ not OK

12 / 18

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
First things first... (cont.)

The population of previously detected targets $\mathfrak{Y}_{t|t-1}^{d}$: hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

Hypothesis h ⊆ Y_{t|t-1}: any subset of *compatible* tracks
→ Ø, {y}, {y'}, {y''}, {y, y'}, {y', y''} OK, {y, y''}, {y, y', y''} not OK
c_{t|t-1}(h): probability of hypothesis h (∑_{h∈H_{t|t-1}} c_{t|t-1}(h) = 1)

Delande, Houssineau, Clark (H-W U)

12 / 18

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

First things first... (cont.)

The population of previously detected targets $\mathfrak{Y}^{\mathrm{d}}_{t|t-1}:$ hypothesis level

• $Y_{t|t-1}$: all possible tracks, up to time t

Hypothesis h ⊆ Y_{t|t-1}: any subset of compatible tracks
→ Ø, {y}, {y'}, {y''}, {y, y'}, {y', y''} OK, {y, y''}, {y, y', y''} not OK
c_{t|t-1}(h): probability of hypothesis h (∑_{h∈H_{t|t-1}} c_{t|t-1}(h) = 1)
→ i.e. how likely is h to represent the true target configuration?

12 / 18

- 3

イロト イヨト イヨト イヨト

Data association (ISP filter, unpublished)

Given a possible configuration $(h \in H_{t|t-1}, n \in \mathbb{N})$ of the target population, what are the possible associations with the collected observations Z?

Data association (ISP filter, unpublished)

Given a possible configuration $(h \in H_{t|t-1}, n \in \mathbb{N})$ of the target population, what are the possible associations with the collected observations Z?

Data association (ISP filter, unpublished)

Given a possible configuration $(h \in H_{t|t-1}, n \in \mathbb{N})$ of the target population, what are the possible associations with the collected observations Z?

Each association $\mathbf{a} = (h, n, \mathbf{h} \in \operatorname{Adm}_{Z_t}(h, n))$ leads to a unique hyp. $\hat{h} \in H_t$:

- Assessed by prob. $P_u^{\mathbf{a}}$ (i.e. how likely is the association producing \hat{h} ?)
- Composed of tracks $\hat{h} = \bigcup_{y \in h_d} \{y : \nu(y)\} \cup \bigcup_{y \in h \setminus h_d} \{y : \phi\} \cup \bigcup_{z \in Z_a} \{a : z\}$
- Update from $p_{t|t-1}^y$ to $p_u^{y:z}$: usual single-measurement/single-target update (e.g. Kalman)

Information gain

Then, what is the information gain for track y?

Delande, Houssineau, Clark (H-W U)

Sensor management

< ∃⇒ September 9, 2014 14 / 18

3

・ロト ・日下・ ・ヨト

Information gain

Then, what is the information gain for track y?

Rényi divergence

Delande, Houssineau, Clark (H-W U)

Sensor management

September 9, 2014 14 / 18

・ロト ・回ト ・ヨト

Rényi divergence

• Suppose track y has been updated with observation $z \in Z \cup \{\phi\}$

Rényi divergence

- Suppose track y has been updated with observation $z \in Z \cup \{\phi\}$
- What have we learnt from $p_{t|t-1}^{y}$ to $p_{u}^{y:z}$?

Image: A math a math

Rényi divergence

- Suppose track y has been updated with observation $z \in Z \cup \{\phi\}$
- What have we learnt from $p_{t|t-1}^{y}$ to $p_{u}^{y:z}$?
- We define $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$

Rényi divergence

- Suppose track y has been updated with observation $z \in Z \cup \{\phi\}$
- What have we learnt from $p_{t|t-1}^{y}$ to $p_{u}^{y:z}$?
- We define $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- The track gain $G_u^{y:z}$ is non-negative, and equals zero iff:

Rényi divergence

- Suppose track y has been updated with observation $z \in Z \cup \{\phi\}$
- What have we learnt from $p_{t|t-1}^{y}$ to $p_{u}^{y:z}$?
- We define $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- The track gain $G_u^{y:z}$ is non-negative, and equals zero iff: $p_{t|t-1}^y = p_u^{y:z}$ on **X** (i.e. nothing learnt on target localization)

イロト イヨト イヨト イヨト

Rényi divergence

- Suppose track y has been updated with observation $z \in Z \cup \{\phi\}$
- What have we learnt from $p_{t|t-1}^{y}$ to $p_{u}^{y:z}$?
- We define $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- The track gain $G_u^{y:z}$ is non-negative, and equals zero iff: $p_{t|t-1}^y = p_u^{y:z}$ on **X** (i.e. nothing learnt on target localization), and

(D) (A) (A) (A)

Rényi divergence

- Suppose track y has been updated with observation $z \in Z \cup \{\phi\}$
- What have we learnt from $p_{t|t-1}^{y}$ to $p_{u}^{y:z}$?
- We define $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- The track gain $G_u^{y:z}$ is non-negative, and equals zero iff: $p_{t|t-1}^y = p_u^{y:z}$ on **X** (i.e. nothing learnt on target localization), and $p_{t|t-1}^y(\psi) = p_u^{y:z}(\psi)$ (i.e. nothing learnt on target presence)

・ロト ・ 同ト ・ ヨト ・ ヨト

Delande, Houssineau, Clark (H-W U)

Sensor management

∃ ⊳ September 9, 2014 15 / 18

3

・ロト ・ 日 ・ ・ ヨ ・

What is the expected gain from action u, given Z?

What is the expected gain from action u, given Z?

1. Gain from y to y:z:
$$G_u^{y:z} = \frac{1}{\alpha - 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$$

Image: A math a math

What is the expected gain from action u, given Z?

- 1. Gain from y to y:z: $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- 2. Gain from (h, n) to \hat{h} : $G_u^{\mathbf{a}} = \sum_{y \in h_d} G_u^{y:\nu(y)} + \sum_{y \in h \setminus h_d} G_u^{y:\phi} + \sum_{z \in Z_a} G_u^{\mathbf{a}:z}$

What is the expected gain from action u, given Z?

- 1. Gain from y to y:z: $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^\alpha \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- 2. Gain from (h, n) to \hat{h} : $G_u^{\mathbf{a}} = \sum_{y \in h_d} G_u^{y:\nu(y)} + \sum_{y \in h \setminus h_d} G_u^{y:\phi} + \sum_{z \in Z_a} G_u^{a:z}$
- 3. Expected gain from (h, n), given Z: $G_u^{h,n}(\cdot|Z) = \sum_{\mathbf{h} \in \operatorname{Adm}_Z(h,n)} P_u^{\mathbf{a}} G_u^{\mathbf{a}}$

What is the expected gain from action u, given Z?

- 1. Gain from y to y:z: $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- 2. Gain from (h, n) to \hat{h} : $G_u^{\mathbf{a}} = \sum_{y \in h_d} G_u^{y:\nu(y)} + \sum_{y \in h \setminus h_d} G_u^{y:\phi} + \sum_{z \in Z_a} G_u^{a:z}$
- 3. Expected gain from (h, n), given Z: $G_u^{h,n}(\cdot|Z) = \sum_{\mathbf{h} \in \operatorname{Adm}_Z(h,n)} P_u^{\mathbf{a}} G_u^{\mathbf{a}}$
- 4. Expected gain from $P_{\mathfrak{Y}_{t|t-1}}$, given Z: $G_u(\cdot|Z) = \sum_{h \in H_{t|t-1}} \sum_{n \ge 0} c_{t|t-1}(h) c_{t|t-1}^{\mathbf{a}}(n) G_u^{h,n}(\cdot|Z)$

What is the expected gain from action u, given Z?

- 1. Gain from y to y:z: $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- 2. Gain from (h, n) to \hat{h} : $G_u^{\mathbf{a}} = \sum_{y \in h_d} G_u^{y:\nu(y)} + \sum_{y \in h \setminus h_d} G_u^{y:\phi} + \sum_{z \in Z_a} G_u^{a:z}$
- 3. Expected gain from (h, n), given Z: $G_u^{h,n}(\cdot|Z) = \sum_{\mathbf{h} \in \operatorname{Adm}_Z(h,n)} P_u^{\mathbf{a}} G_u^{\mathbf{a}}$
- 4. Expected gain from $P_{\mathfrak{Y}_{t|t-1}}$, given Z: $G_u(\cdot|Z) = \sum_{h \in H_{t|t-1}} \sum_{n \ge 0} c_{t|t-1}(h) c_{t|t-1}^{\mathbf{a}}(n) G_u^{h,n}(\cdot|Z)$

What is the expected gain from action u?

Delande, Houssineau, Clark (H-W U)

イロト イヨト イヨト イヨト

What is the expected gain from action u, given Z?

- 1. Gain from y to y:z: $G_u^{y:z} = \frac{1}{\alpha 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^{\alpha} \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$
- 2. Gain from (h, n) to \hat{h} : $G_u^{\mathbf{a}} = \sum_{y \in h_d} G_u^{y:\nu(y)} + \sum_{y \in h \setminus h_d} G_u^{y:\phi} + \sum_{z \in Z_a} G_u^{a:z}$
- 3. Expected gain from (h, n), given Z: $G_u^{h,n}(\cdot|Z) = \sum_{\mathbf{h} \in \operatorname{Adm}_Z(h,n)} P_u^{\mathbf{a}} G_u^{\mathbf{a}}$
- 4. Expected gain from $P_{\mathfrak{Y}_{t|t-1}}$, given Z: $G_u(\cdot|Z) = \sum_{h \in H_{t|t-1}} \sum_{n \ge 0} c_{t|t-1}(h) c_{t|t-1}^{\mathbf{a}}(n) G_u^{h,n}(\cdot|Z)$

What is the expected gain from action u?

1. Expected gain from $P_{\mathfrak{Y}_{t|t-1}}$: $G_u = \sum_{Z \subseteq \mathbf{Z}_u} G_u(\cdot|Z)$

Delande, Houssineau, Clark (H-W U)

Closed-loop sensor management for multi-object filtering

2 Information gain for stochastic populations

③ Further developments

3

イロト イヨト イヨト イヨト

3

・ロト ・回ト ・ヨト

Information gain G_u global by nature, but core element is *track*-based Rényi divergence

$$G_u^{y:z} = \frac{1}{\alpha - 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^\alpha \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$$

イロト イボト イヨト イヨト

Information gain ${\cal G}_u$ global by nature, but core element is $\mathit{track}\text{-}\mathsf{based}$ Rényi divergence

$$G_u^{y:z} = \frac{1}{\alpha - 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^\alpha \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$$

Elementary changes in the divergence operator allow emphasis on specific regions of the target state space and/or specific tracks, e.g.

Information gain G_u global by nature, but core element is track-based Rényi divergence

$$G_u^{y:z} = \frac{1}{\alpha - 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^\alpha \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$$

Elementary changes in the divergence operator allow emphasis on specific regions of the target state space and/or specific tracks, e.g.

Exclusion of *regions* from decision policy

17 / 18

Information gain ${\cal G}_u$ global by nature, but core element is $\mathit{track}\text{-}\mathsf{based}$ Rényi divergence

$$G_u^{y:z} = \frac{1}{\alpha - 1} \log \left[\int \left[p_{t|t-1}^y(x) \right]^\alpha \left[p_u^{y:z}(x) \right]^{1-\alpha} \mu(\mathrm{d}x) \right]$$

Elementary changes in the divergence operator allow emphasis on specific regions of the target state space and/or specific tracks, e.g.

Thank you for your attention!

(日) (四) (코) (코) (코) (코)